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9. Coefficients calorimétriques

La calorimétrie est l’étude des échanges de chaleur. Elle s’est développée de manière
très empiriques, en regardant les relations entre changement de température et
échanges d’énergie. Nous allons prendre une approche plus formelle dans laquelle nous
définissons les coefficients calorimétriques à partir des fonctions d’état du système. Puis
nous ferons le lien avec l’expérience.
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IV - Fonctions thermodynamiques et équilibres 9. Coefficients calorimétriques

Coefficients calorimétriques dépendant de V et T
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Lien 6QesdT ? mais V partvaia aussi % transformations insible
SQ =

TdS In = TS /T
,
V) -St

IIP = TOST + TEV Maxwel dF
= -pdU-SATzU)IOD

) . E) . EV) = =
1 = ) = =Gr)=Ete

,= d to coeliation the
mige

se et

k
+ compressibilité esotherme

.

Ex :Ti +
T V t SQ : TdT +T V
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Si Vick dUto SQ : TdT 6Q : CudT

Par définition Cr = To capacité thermique à volume constant

calorifique
Cr est la gantité de chaber à apporter an système
pour faire varia T de 1K

.

SQ = CudT + T OdV

Crest aussi Cr = E
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Si Victe du = SQ + S/ (V= c)
=C

↳ 6Q = CudT

dUCT
,
v) = c) di +LV = SQ : Cod

2) = Co =Tu v
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Résumé :

dQ = CV dT +
ap

kT
dV

CV = T
∂S

∂T

���
V
=

∂U

∂T

���
V

Capacité thermique isochore du système

ap =
1
V

∂V

∂T

���
p

Coefficient de dilatation isobare

kT = � 1
V

∂V

∂p

���
T

Coefficient de compressibilité isotherme
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Coefficients calorimétriques dépendant de p et T
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Variables petT
transfo révosible SQ :

TdS

d
= 4) di + Eldp = SQ = T2S)dT + TOS) e

dG = -
SdT +Vdp - 48), =-p =V =-V

p

6Q =TE) dT - TV dpd

Lp capacité thermique à prote
SQ = CpdT - TVXpdp
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On aux Cr=

= Gi à p= cte SQ =
dH (slide 10)
H(T

, p)
60 = CpdT =

dH = Gt)dT + *

-> Cp= Et
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Résumé :

dQ = CpdT � apTV (T , p)dp

Cp = T
∂S

∂T

���
p
=

∂H

∂T

���
p

Capacité thermique isobare du système

ap =
1
V

∂V

∂T

���
p

Coefficient de dilatation isobare
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Variables T
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Coefficients massiques et molaires
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Cp et Cr : capacités thermiques da se

On définit op cr capacité thermiques mobies. I
si onc N moles Cp = Nap Cv = NC

Cetc" capacités thermiques massique
Cp-mopt et C : mc

U : en Joul C : en J
.

K" Hijouls Il foulesK

Cr Cp : J
.
K* ; <petcr

J
.

K"mol ; <p" < J .
K "by
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Coefficient adiabatique, relation de Mayer et de Reech
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Coefficient de Laplace ou adiabatique U=

=Na =
↓ indépendant de la taille du système
dépend de la substance.

On a défini Cp .
Co Xp K

+
On va montrer

que
ces grandeus sont liees.

6Q = CrdT +TdV = CpdT - TV Xp dp

&VIT
,p-) di+j )
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CidT IT [dT + b)_ dp] = CpdT - TUXdp

Sur C +T = <p - p-c =T
?1 x = <pV => Cp-C =

To
#

. VXp = TVe
Cp-C-TV P Relation de Raree

= *sal iso-Ges Est i e
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u = : sur estd
~= = = et

Ks compressibilité à Site
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Résumé :

Par définition, le coefficient adiabatique g est

g =
Cp

Cv

Relation de Mayer

Cp � Cv =
a2
p

kT
T V

Relation de Reech
Cp

Cv
=

kT
kS
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V =
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Coefficients calorimétrique d’un solide

Pour un corps incompressible et sans dilatation thermique, Cp = CV
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Solides & liquides a incompossibles + =0
dV2 o

SQ = TodT-TV < dpsa = Crdi+- L
SQ = CrdT= CpdT is Cp = Cr

En général on l'appelle C
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V - Gaz parfait et gaz de van der Waals

Plan du cours
I - Introduction
II - Premier principe
III - Second principe
IV - Fonctions thermodynamiques et équilibres
V - Gaz parfait et gaz de van der Waals ; théorie cinétique des gaz
VI - Changement d’états
VII - Machines thermiques
VIII - Thermochimie
IX - Transport
X - Physique statistique
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V - Gaz parfait et gaz de van der Waals

1. Détermination expérimentale de la loi des GP

2. Energie interne et enthalpie d’un Gaz parfait

3. Théorie cinétique du gaz parfait de Maxwell

4. Capacité calorifique des gaz parfaits et des solides

5. Loi de Dalton

6. Au delà du gaz parfait : van der Waals

7. Isothermes en coordonnées réduites
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V - Gaz parfait et gaz de van der Waals 1. Détermination expérimentale de la loi des GP

1. Détermination expérimentale de la loi des gaz parfaits

Observations historiques sur les comportements des gaz.

Un paramètre parmi (p,V,T) est maintenu constant, on mesure l’évolution relative des
deux autres.

1662/1676 Loi de Boyle-Mariotte

pV = cte @ T = cte

1787 Loi de Charles

Dp µ DT @ V = cte
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1802 Loi de Gay-Lussac

DV µ DT @ p = cte

1811 Loi d’Avogadro

N = cte @ p,V ,T = cte, quel que soit le gaz !

Corollaire, dans les conditions standard de température et de pression, 0°C et 1 atm le
volume d’une mole est indépendant du gaz et vaut 22.4 litres
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pV = xT + B
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Température et zéro absolu

Expérience : variation de la pression pour une variation de T à V =cte
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sTK A
T

°
C

on avait pV = x & + B

·

an e
P

on redefinit un temperatureT
telle

que Olin Es T= 0

T = 0 + 273
,
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En prenant une nouvelle origine pour la température, décalée de 273.15 degrés, on peut
écrire

pV = aT

avec a constante et T = q (°C)+273.15. Cette nouvelle température est la température
absolue, en Kelvin (K).

Combiné avec la loi d’Avogadro :

pV = NRT

Loi des gaz parfaits.

R : constante des gaz parfaits R = 8.314 JK�1mol�1

7

PVC NT



V - Gaz parfait et gaz de van der Waals 2. Energie interne et enthalpie d’un Gaz parfait

2. Energie interne et enthalpie d’un Gaz parfait
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dU = TdS-pdV
U(S

,
V) = M(S(T, V) ,

v)

OV=NRT/25 dT + GM) , GS)dV +Ot
T Fu

Cr di + T2), dV + (- p) dV
OV
W

-> dF= -SbT-pdV = = r

du = Cdi +[Tu - P] dV P = N =N
-m

du= Cod*
(0 -P)

=O

TW) = NT = = P
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H : memo chose : montre que par un GP dH = Cp&T

H
=

H (SCT
, p) , p) = dH = GHG) dT+GSdp +Et

-dH
= CdT + T Osdp + Udp de= -

SdT+Vdp $
+ = -

PU : NRT = V = NRT

dH = Gd+
+

+

0

,Gr=
NO

- GdT+
dH = CpdT

d H = CpdT valable pour un jaz parfait quelle queoitanation
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Résumé

Pour un gaz parfait
dU = CV dT dH = CpdT

Ces relations sont toujours valables, quelles que soient les types de
transformation.

Expérimentalement, Cp et CV sont indépendants de la température (dans une gamme
de température donnée, avec éventuellement des "marches")

De plus :

Pour une ransformation adiabatique réversible d’un gaz parfait

pV
g = cte (avec g = Cp

Cv
) ; démontré exercice 2 série 2.
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3. Théorie cinétique du gaz parfait de Maxwell

Hypothèses de base :

– Le gaz est constitué de particules très petites qui ne peuvent que subir des
interactions de portée extrêmement courte devant la distance moyenne entre particules,
et de type choc élastique ("modèle de sphères dures")

– A l’équilibre, il y a une distribution isotrope du gaz et des vecteurs vitesses des
particules. Aucune position de l’espace et aucune direction n’est privilégiée.
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Nu nombre coyon de particles par units de volume no = A
No est. le move dans touts l'enceinte.

N nombre de coles Np = NNA

Mr independent de 1
, 9 , z

-

une particule : citesse oo =Faer +WyEy +Eyes
-

>Vitesse moyenne (8 =I Us :
Em + ↑ & Wy ; Ey+1 E We e i

Npi
- m u

< Us
:)=co <Wy) =c <Yz) = 0

<) =T
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Isotropic des sitesses : quelle que soit la direction

on "voit" la meme chose

<* ) #0 = <W" + Vi +hi ) = <82 + <8j) + (rj
-

(ii) = <vyc = <Oz = 3 (i) = /Y

-> (2) = 3 (ii) = (iii) = 1 (t*

A Cric # So
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Lien entre pression et vitesse
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pression vers 20. pani 1 Ox

las particles qui entrat en collision avec la pari ont Na> O

= Un en + Vyg + Bz z·- Ef = -Van + Ojej tes e Atif =Tt -2 V
,
e

e

E quantit de mouvement

Ela particle
2 mNa En e
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Ni nombre de particula avec la

composante de Us = waj a dra pris-

Eiger par
units de volveme ij particules
avec Naj a dea pres

nj=
Usej ces particules participant a la pression

Pj lar contribution
la pression totale p = Pi

Vejjo
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-ot Soit At un intervalls de temps .

O I Combian de particules area Naj viennenk. traper la paroi pendent At ?
des

·

ej = va At
=

---

V
j = ljot = NajAtct ; VjRg = NjUaj St ot

the particule a Nxj entre en collision aves la panni
a AE = -

2 m vojen
Ej : force exces par la pauri sur tes los verticales a Taj
requi
,entrant

en allen pendant At
L

Fj =

At
:rajen . Inj Ta; At c) = -zmnj Vej it Es

B*
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force exercis par lesparticals si la pari zmnjvites

pression Ere = Pj = Zmnj Fi

viP= E Zanjvi Ev=wit Vai e pe

Lo Vajso

o = Eymnj vaP
p = Eunjer = Em Na

f

pO = M .NAENj We => p = No <WR)
-
(Ux)
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On a on (ii) = E 48

p : 1 M <U's = 1 x 2 .
(Ec)

p : E No <Ec

No = NWA p= WWa(Ech
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Equipartition de l’énergie

Postulat de Boltzman : chaque degré de liberté f du système stocke la même quantité
d’énergie

Energie moyenne par particule et par degré de liberté f

hE i = 1
2
kBT
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BaS

R B constant de Boltzman

"degre de libets" variable indimondante permettant de stockerP
de llonagie de Monic quadratique-

Va , VyjVz independant Ec = EmVi + Envy" + Figh
=> 3 degre de liberts·vere a einange de traustine

& dags
de libects EroritFue3
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Ici pV = ENNA (Extran <Ectraus)= Em (Vi +Vy2 + V=

3 degre detranslation pourts - <Estrang = 31RBT

PV= E NOVA GBT = NWRT
R costants des GP

PV = NRT
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Résumé :

I Un modèle simple de sphères dures permet d’arriver à

pV =
2
3
NNAhE trans

cin i

I Avec le principe d’équipartition de l’énergie de Boltzman

hE trans
cin i = 3

1
2
kBT

pV = NNAkBT = NRT
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4. Capacité calorifique des gaz parfaits et des solides
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On a vi pour un jaz perfait dU = CrdT

por un jaz parfait mono atomi que
"bills sphriques"

M
= I ExPenticales N JEctracs)

si on a un solide molecule diatonique)
U tkpT par degrade libets %

Z
woyens de stocken trot

↑ le nombre de degre de libats U = (f . ERBT) NINA
U

= AN -RBNAT = ENRTEU NRT Cu = ENR
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-

H ? dH
= CpdT Cp-G = TV

So =1
p

PV = NRT = V
= ART ap = 1 AR =

-Ki = -LG * K+: -1 NT=2
TVCp-Cv = fer & p
/\

= C + NR = ENR #NR = FU=
NR = Cp -fe

= (2)NR = H = (F2) NRT ; U = = I
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Molical monoatomique f = 3 ·

diatorique rifide f = 5 · Is
E

diatanique avec rescott = 7 ·S+2
--° # Als & liberationde

-

Va por latove



V - Gaz parfait et gaz de van der Waals 4. Capacité calorifique des gaz parfaits et des solides

25

V = #
f=3

3 3 ⑳

· f = 5 = =1
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