8. Mises en contact avec I'univers; Screge, Sechangée
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8. Mises en contact avec I'univers; Screge, Sechangée

- 5¢4 Ta ‘wwae — gd{ .4¢ - adf*xgat
003.“//4 q\‘\w‘WQ

deh
On appdle Todt - £ J mm delgutl oioud)

h&g%’>o c«a:u m&g

ZgC”- = §gw -eM}\(\?(W: elf-eop ‘ﬂ%‘
S - 88’%4 fq o % cfewkd §% qnmma% K™ >D

°/

28



8. Mises en contact avec I'univers; Screge, Sechangée
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Résumé, deas

8. Mises en contact avec |'univers; Scréege, Séchangée
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9. Analyse de I'entropie créée

9. Analyse de I'entropie créée
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9. Analyse de |'entropie créée

Résumé

Le second principe postule |'existence d'une nouvelle grandeur d'état et lui attribue des
propriétés.

L'entropie d'un systéme varie par des échanges et par de la création.

Pour échanger de I'entropie, il faut échanger de la chaleur, le seul échange de travail ne
permet pas |'échange d’entropie.

L'irréversibilité est due a un déséquilibre et est a I'origine de la création
d’entropie.

Sans déséquilibre, il n'y a pas d'échange : un processus *parfaitement* réversible
n'existe donc pas, ce sera toujours une approximation.
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9. Analyse de |'entropie créée
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1. Introduction et outils mathématiques

1. Introduction et outils mathématiques

Dans ce chapitre, nous allons beaucoup "jouer" avec les fonctions d'états, et en créer
de nouvelles, puis voir leur signification et utilité...

Le second principe impose que |'entropie d'un systéme isolé augmente. Trouver la
condition pour laquelle I'entropie est maximale permet de trouver la condition

d'équilibre. S e @ 0,7

Mais qu’en est-il d'un systéme non isolé ? On sait qu'un systéme laissé en contact
thermique avec I'univers va aussi atteindre un équilibre. On va chercher des fonctions
d'état du systéme dont I'extremeum caractérise un équilibre.

Mais d'abord, un peu de maths...



1. Introduction et outils mathématiques

U(S, V,{Na}) fonction d'état extensive exprlmee comme une fonction de variables

extensives @’Ud ‘.Et]g -~ )i i V o 20

si on multiplie le systeme par A, en gardant ses varlables mtenswes constantes, toutes
les variables extensives sont multipliées par A

U(AS, AV, {AN}) = AU(S, V, {N4})

Par ailleurs, on peut exprimer toute fonction d’état en fonction d'autres. Par exemple,
systéme fermé

U(S, V) mais aussi S(U, V) ou V(U,S)



1. Introduction et outils mathématiques

Attention, bien noter quelles sont les variables quand on exprimme une dérivée

partielle!
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1. Introduction et outils mathématiques

f(x,y) telle que f(Ax,Ay) = Af(x,y)
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1. Introduction et outils mathématiques
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1. Introduction et outils mathématiques

Conclusion :
Soit f(x, y, z) telle que f(Ax, Ay, Az) = Af(x,y, z)

Alors on a :

_ Of(x,y,z) of (x,y, z) of (x,y, z)
flxy 2) = ox X+ dy Yyt z



1. Introduction et outils mathématiques
Relation cyclique des dérivées partielles

PCY, D V(T -
vanialleo
Soient x, y, z, t, ... fonctions d'état thermodynamiques . On peut exprimer
x(y,z,t,...), y(z X, t,...), z(x,y, t,...). On s'intéresse aux variables x, y et z.
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1. Introduction et outils mathématiques
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1. Introduction et outils mathématiques

Soient x, y, z, t,... grandeurs d'état d'un systéme thermodynamique. On peut donc
exprimer x(y,z, t,...), y(z,x, t,...), z(x,y, t, ...)

x(y,z,t,...) . dy(x,z,t,..)| )
dy zt, dx Z,t..
ox(y,z,t,...) . ay(x,z,t,...) . 9z(x,y,t,...) ‘ _ 1
dy 2y, dz Xk. dx .

12



2. Relations de Gibbs, Euler et Gibbs-Duhem

2. Relations de Gibbs, Euler et Gibbs-Duhem
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2. Relations de Gibbs, Euler et Gibbs-Duhem
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2. Relations de Gibbs, Euler et Gibbs-Duhem
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2. Relations de Gibbs, Euler et Gibbs-Duhem

Résumé
Gibbs
dU = TdS — pdV + {padNa}
Euler
U=TS—pV+{paNa}
Gibbs-Duhem

SdT — Vdp + {NAd‘MA} =0

16



3. Transformations de Legendre

3. Transformations de Legendre
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3. Transformations de Legendre
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4. Potentiels thermodynamiques

4. Potentiels thermodynamiques

4.a Energie libre F
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4. Potentiels thermodynamiques
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4. Potentiels thermodynamiques

4.b Enthalpie H

Par Ji'—ru\\‘m H o Im&w—fo’w o /QKMAM s ufmmﬁeﬂ*\/
u(’g/\'/‘anlO %—%: —P % 2\ b AN -F

hot - (VeRD) = H=UepV

dd = dU ¥ ()dVJ \Id‘) - TAS/FQV/S; ﬂdN*.ﬁ M—\-\H'ﬂ

dB=TAe W+ uadt} (S p, M3

A =4 ga , 28 e QW dNaj
3

21



4. Potentiels thermodynamiques
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dU = TdS — pdV + {uadN4}
dF = —SdT — pdV + {ppadNa}
dH = TdS + Vdp + {uadNa}
dG = —SdT + Vdp + {uadNa}
0= SdT — Vdp + {Nadua}

U=TS—pV + {puaNa}
F=U-TS
H=U+pV
G=U-TS+pV
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4. Potentiels thermodynamiques

4.c Enthalpie libre ou energie libre de Gibbs G
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4. Potentiels thermodynamiques

Résumé
Energie libre, F(T, V,{Na})
F=U—-TS: dF = —SdT — pdV + {uadNa}

Enthalpie, H(S, p, {Na})
H=U+pV; dH = TdS + Vdp + {uadNa}

Energie libre de Gibbs ou enthalpie libre, G(T, p, {Na})
G=U—TS+pV: dG = —SdT + Vdp + {ppadNa}
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5. Equilibres

5. Equilibres

5.a Systéme fermé maintenu a T’constant, et Viot constant
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5. Equilibres
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