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sur le cahier réponse dans les cases prévues à cet effet.
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Exercice 1: Frigo confiné (11 points)

Deux étudiants de premier semestre décident de réamé-
nager leur colocation et de déplacer le frigo, qui fait trop
de bruit, dans une petite pièce à côté de la cuisine. On
suppose que cette pièce est parfaitement fermée, isolée et
étanche à l’air quand la porte est fermée. On modélise le
frigo par une boîte dont les parois ont une conductivité
thermique λ et une épaisseur e. La surface totale des
parois du frigo est A. On appelle Tb la température dans
le frigo et Th la température dans la pièce.

On suppose la température à l’intérieur du frigo et celle dans la pièce uniforme à chaque instant.
On suppose que la capacité thermique de la pièce est égale à la capacité thermique dans le frigo,
C, indépendantes de T , et on néglige la capacité thermique des parrois du frigo. On appelle τ =
(2λA)/(eC). On suppose dans un premier temps que le frigo est simplement déplacé dans la pièce,
alors qu’il est à Tb,0 et la pièce à Th,0, et laissé dans la pièce refermée, sans être branché.

a. Représenter schématiquement l’évolution en fontion du temps attendue pour la température dans le
frigo et celle dans la pièce en justifiant rapidement.

b. On appelle ∆T = Th(t) − Tb(t). Etablir l’équation différentielle donnant l’évolution de ∆T en
fonction du temps, puis la résoudre.

Z On suppose maintenant que le frigo a été déplacé alors qu’il est à Tb,0 et la pièce à Th,0,
mais cette fois il a été branché immédiatement. Le compresseur fait subir à N moles de gaz par-
fait monoatomique un cycle de Carnot idéal, fait de deux isothermes et deux adiabatiques toutes
réversibles, entre les températures Th et Tb. La puissance fournie par le compresseur est ajustée de
manière à maintenir en permanence la température de Tb,0 dans le frigo. On négligera les frottements
du moteur, ainsi que la capacité thermique du moteur et du circuit de refroidissement devant C.
On suppose que la température de la pièce change suffisament peu au cours d’un cycle pour qu’on
puisse considérer que l’isotherme à Th se fait effectivement à température constante. On appelle,
comme d’habitude, Qh, Qb les chaleurs échangées par le gaz avec la source chaude resp. la source
froide, et W le travail reçu par le gaz et venant du compresseur. On appelle α = VA/VB le taux de
compression.

Les données du problème sont à partir de maintenant Th, Tb, N , α et C.

c. Représenter un cycle ABCD subi par le gaz dans un diagramme (p, V ) et dans un diagramme (T, S).
On appelle A le point où le gaz a le plus grand volume et la plus haute température.

d. Calculer Wij le travail et Qij la chaleur, algébriques, reçus par le gaz à chaque étape du cycle en
fonction des données du problème. Identifier Qb et Qh.

Z On appelle Qcond > 0 la chaleur reçue par l’intérieur du frigo, par conduction, depuis la pièce
pendant le déroulement d’un cycle.

e. Exprimer Qcond > 0 à l’aide de Qh, et/ou Qb, et/ou W .

f. Représenter schématiquement l’évolution temporelle de Tb et Th en justifiant.

g. En prenant comme système le frigo, le fluide et la pièce, l’évolution observée est-elle réversible ou
irréversible. Si irréversible, quelle est la source d’irréversibilité ?

h. Calculer la variation de la température de la pièce ∆Th au cours d’un cycle en fonction des données
du problème.
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Exercice 2. Réaction et équilibres chimique(11 points + 2pts bonus)

On dispose de une mole de CH4 (espèce A) et 2 moles de O2 (es-
pèce B), placées dans une enceinte diatherme et fermée par un
piston séparée en 2 compartiments: A de volume V et B de volume
2V . L’ensemble est à la température T0, et chaque compartiment
à la pression p0. Les espèces gazeuses seront prises comme des
gaz parfaits, et les mélanges considérés parfaits. La pression ex-
térieure est p0 = 1 bar et la température extérieure T0 = 25°C
(conditions standard). Les enthalpies de formation en condition
standard sont ∆H0

CO2
= −400kJ/mol, ∆H0

CH4
= −75kJ/mol et

∆H0
H2O

= −250kJ/mol. On supposera que les enthalpies de for-
mation ne dépendent pas de la température. La pression de vapeur
saturante de l’eau à 25°C, psat, est de 30 mbar. Le volume molaire
de l’eau liquide peut être considéré comme quasi nul.

Z Le piston est fixé, on retire la paroi entre les deux compartiments, mais il ne se produit pas de
réactions chimique.

a. Montrer que la température et la pression du mélange sont T0 et p0.

b. Calculer l’entropie crée dans le mélange en unité de R constante des gaz parfaits.

Z Une étincelle déclenche la réaction de combustion, supposée complète et rapide, selon la réaction

CH4 + 2O2 → CO2 + 2H2O

c. Les gaz formés sont les deux triatomiques, que vaut γ, coefficient adiabatique ?

d. En supposant que le piston, libre, permet de maintenir constamment la pression à p0 mais que
la combustion est suffisament rapide pour que le processus soit considéré adiabatique, calculer la
température du gaz à la fin de la combustion en fonction des enthalpies standard de formation, de
γ, N et R.

e. Évaluer l’ordre de grandeur de la température finale obtenue, et commenter.

Z On suppose que la combustion s’est bien passée (on a évacué de la chaleur au fur et à mesure
vers l’extérieur), et que le mélange final CO2 H2O est revenu à l’équilibre avec l’environnement, à
la pression p0 et la température T0.

f. Représenter schématiquement un diagramme de phases de l’eau en indiquant les points /domaines
importants.

g. Calculer le volume occupé par le système en fonction de R, T0, p0 et psat.

h. Montrer que pour un gaz parfait pur, passant de la pression p0 à la pression p,

µg
A(T, p)− µg

A(T, p0) = RT ln

(
p

p0

)
.

i. Question bonus, 2pt. Montrer à l’aide de la relation précédente et de l’équilibre des potentiels
chimiques que même en présence de CO2, la pression partielle de l’eau est égale à la pression de
vapeur saturante à la température du système.
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Exercice 3. Propriétés d’un gaz parfait (12 points + 2 points bonus)

Les parties A et B sont totalement indépendantes.

Partie A courbure de U(S, V ) et H(S, p)
Nous avons vu que, de manière générale, l’énergie interne U est une fonction convexe de S et de V ses
variables naturelles, et H une fonction convexe de S et concave de p. Nous allons utiliser des calculs
explicites dans le cas d’un gaz parfait pour vérifier ces propriétés.

On considère N moles de gaz parfait monoatomiques à T0 et V0 dans une enceinte fermée.

a. Exprimer U0 et p0 en fonction de T0, V0, N et R.

b. Le gaz subit une évolution vers un état caractérisé par p, T , V , U et S. Exprimer S en fonction de
U , V , U0, V0, N et S0

c. Montrer que U(S, V ) peut s’écrire :

U(S, V ) =
3

2
NRT0

(
V

V0

)− 2
3

exp

(
2

3

S − S0

NR

)
d. Exprimer p en fonction de V , S, N ainsi que de V0, p0 et S0

e. Montrer que

H(S, p) =
5

2
NRT0

(
p

p0

) 2
5

exp

(
2

5

S − S0

NR

)
f. Montrer qu’on a

∂2U (S, V )

∂S2
> 0 et

∂2U (S, V )

∂V 2
> 0

g. Question bonus (2 points)
Montrer qu’on a

∂2H (S, p)

∂S2
> 0 et

∂2H (S, p)

∂p2
< 0

Partie B Conséquences des lois de Joule

Un gaz suit les lois de Joule si U et H ne dépendent que de la température. Nous avons vu en cours
que l’équation d’état du gaz parfait implique les lois de Joule. Nous allons ici montrer la réciproque:
un gaz qui suit les lois de Joule a forcément comme équation d’état celle d’un gaz parfait, pV = KT
avec K constante pour un nombre de moles donné.

On prendra N moles de gaz dans une enceinte fermée, sans réaction chimique.

h. Montrer que pour un gaz suivant les lois de Joule, le produit pV ne dépend que de T .

Z On écrira alors pV = f(T ), f fonction à déterminer.

i. Etablir la différentielle de S(T, V ) en fonction de T , CV (T ), V et f(T )

j. En déduire que f(T )/T = K, avec K constante et que donc le gaz a comme équation d’état celle
d’un gaz parfait.
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