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Aucun document personnel autorisé
Les réponses finales a chaque question ainsi que la justification de la réponse doivent étre reportées
sur le cahier réponse dans les cases prévues a cet effet.

Seul le cahier de réponse est ramassé et cor-
rigé. Pas de feuilles volantes.

L’examen comporte 3 exercices, numérotés de 1 a 3
Le nombre de points maximum pour cet examen est de 34 points + 4 points de bonus

Ne pas ouvrir avant le début de I’épreuve
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Exercice 1: Frigo confiné (11 points)

Deux étudiants de premier semestre décident de réamé- =

nager leur colocation et de déplacer le frigo, qui fait trop
de bruit, dans une petite piéce a co6té de la cuisine. On
suppose que cette piéce est parfaitement fermée, isolée et T
étanche a lair quand la porte est fermée. On modélise le
frigo par une boite dont les parois ont une conductivité se
thermique A et une épaisseur e. La surface totale des

parois du frigo est A. On appelle Ty, la température dans a—
le frigo et T}, la température dans la piéce. 7z 2777 777 T 77 77T
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On suppose la température a 'intérieur du frigo et celle dans la piéce uniforme & chaque instant.

On suppose que la capacité thermique de la piéce est égale a la capacité thermique dans le frigo,
C, indépendantes de T, et on néglige la capacité thermique des parrois du frigo. On appelle 7 =
(2AA)/(eC). On suppose dans un premier temps que le frigo est simplement déplacé dans la picce,
alors qu’il est & Ty o et la piece a T}, o, et laissé dans la piéce refermée, sans étre branché.

a.

Représenter schématiquement I’évolution en fontion du temps attendue pour la température dans le
frigo et celle dans la piéce en justifiant rapidement.

. On appelle AT = T,(t) — Tp(t). Etablir 'équation différentielle donnant 1’évolution de AT en

fonction du temps, puis la résoudre.

I¥° On suppose maintenant que le frigo a été déplacé alors qu’il est & Ty et la piece a T},
mais cette fois il a été branché immédiatement. Le compresseur fait subir & N moles de gaz par-
fait monoatomique un cycle de Carnot idéal, fait de deux isothermes et deux adiabatiques toutes
réversibles, entre les températures T}, et 1. La puissance fournie par le compresseur est ajustée de
maniére 4 maintenir en permanence la température de T3 o dans le frigo. On négligera les frottements
du moteur, ainsi que la capacité thermique du moteur et du circuit de refroidissement devant C.
On suppose que la température de la piéce change suffisament peu au cours d’un cycle pour qu’on
puisse considérer que l'isotherme a T}, se fait effectivement & température constante. On appelle,
comme d’habitude, @, Qp les chaleurs échangées par le gaz avec la source chaude resp. la source
froide, et W le travail requ par le gaz et venant du compresseur. On appelle a = V4 /Vg le taux de
compression.

Les données du probléme sont & partir de maintenant Tj,, T, N, o et C.

Représenter un cycle ABCD subi par le gaz dans un diagramme (p, V') et dans un diagramme (7', S).
On appelle A le point ot le gaz a le plus grand volume et la plus haute température.

Calculer W;; le travail et ();; la chaleur, algébriques, recus par le gaz & chaque étape du cycle en
fonction des données du probléme. Identifier @, et Qp.

¥ On appelle Q¢ong > 0 la chaleur reque par Uintérieur du frigo, par conduction, depuis la piéce
pendant le déroulement d’un cycle.

Exprimer Qcong > 0 & Paide de Q},, et/ou Qy, et/ou W.
Représenter schématiquement 1’évolution temporelle de Ty, et T}, en justifiant.

En prenant comme systéme le frigo, le fluide et la piéce, I’évolution observée est-elle réversible ou
irréversible. Si irréversible, quelle est la source d’irréversibilité 7

Calculer la variation de la température de la piéce AT}, au cours d’un cycle en fonction des données
du probléme.
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Exercice 2. Réaction et équilibres chimique(11 points + 2pts bonus)

On dispose de une mole de CHy (espéce A) et 2 moles de Oy (es-

péce B), placées dans une enceinte diatherme et fermée par un
?,, ﬁ; piston séparée en 2 compartiments: A de volume V et B de volume

2V. L’ensemble est a la température Tg, et chaque compartiment
| a la pression pg. Les espéces gazeuses seront prises comme des
P“SM gaz parfaits, et les mélanges considérés parfaits. La pression ex-
térieure est pg = 1 bar et la température extérieure Ty = 25°C
® @ (conditions standard). Les enthalpies de formation en condition

forlo standard sont AH@, = —400kJ/mol, AHgy = —75kJ/mol et
AH%QO = —250kJ/mol. On supposera que les enthalpies de for-
mation ne dépendent pas de la température. La pression de vapeur
saturante de I'eau & 25°C, p*, est de 30 mbar. Le volume molaire
de l'eau liquide peut étre considéré comme quasi nul.

EZ Le piston est fixé, on retire la paroi entre les deux compartiments, mais il ne se produit pas de
réactions chimique.

a. Montrer que la température et la pression du mélange sont T} et pg.

b. Calculer I'entropie crée dans le mélange en unité de R constante des gaz parfaits.

1= Une étincelle déclenche la réaction de combustion, supposée compléte et rapide, selon la réaction

CHy + 209 — CO9 +2H50

c. Les gaz formés sont les deux triatomiques, que vaut -y, coefficient adiabatique ?

d. En supposant que le piston, libre, permet de maintenir constamment la pression a py mais que
la combustion est suffisament rapide pour que le processus soit considéré adiabatique, calculer la
température du gaz a la fin de la combustion en fonction des enthalpies standard de formation, de
v, N et R.

e. Evaluer l'ordre de grandeur de la température finale obtenue, et commenter.

1" On suppose que la combustion s’est bien passée (on a évacué de la chaleur au fur et & mesure
vers lextérieur), et que le mélange final COy H2O est revenu a l'équilibre avec 'environnement, a
la pression pg et la température Tp.

f. Représenter schématiquement un diagramme de phases de l’eau en indiquant les points /domaines
importants.

g. Calculer le volume occupé par le systéme en fonction de R, Ty, pg et p*2t.
h. Montrer que pour un gaz parfait pur, passant de la pression pg & la pression p,

W5.(T,p) — (T po) = RT'In (;;) .

i. Question bonus, 2pt. Montrer a l'aide de la relation précédente et de 1’équilibre des potentiels

chimiques que méme en présence de COs, la pression partielle de 'eau est égale a la pression de
vapeur saturante a la température du systéme.
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Exercice 3. Propriétés d’un gaz parfait (12 points + 2 points bonus)
Les parties A et B sont totalement indépendantes.

Partie A courbure de U(S,V) et H(S,p)

Nous avons vu que, de maniére générale, I’énergie interne U est une fonction convexe de S et de V' ses
variables naturelles, et H une fonction convexe de S et concave de p. Nous allons utiliser des calculs
explicites dans le cas d’un gaz parfait pour vérifier ces propriétés.

On considére N moles de gaz parfait monoatomiques & Ty et Vy dans une enceinte fermée.

a.

b.

Exprimer Uy et py en fonction de Ty, Vy, N et R.

Le gaz subit une évolution vers un état caractérisé par p, T, V, U et S. Exprimer S en fonction de
Ua V7 U07 Vb) N et SO

Montrer que U(S, V') peut s’écrire :

v\ ras-
U(S, V) = gNRTO <V0> exp (3 SNRSO>
Exprimer p en fonction de V, S, N ainsi que de Vj, pg et Sy
Montrer que )
H(S,p) = gNRTO (;)00)5 exp (? SZ;]%%)
Montrer qu’on a
7821]8552"/) >0 et LUan’ V) >0
Question bonus (2 points)
Montrer qu’on a
82}({);;1” >0 et 82}2;25’17) <0

Partie B Conséquences des lois de Joule

Un gaz suit les lois de Joule si U et H ne dépendent que de la température. Nous avons vu en cours
que I'équation d’état du gaz parfait implique les lois de Joule. Nous allons ici montrer la réciproque:
un gaz qui suit les lois de Joule a forcément comme équation d’état celle d’un gaz parfait, pV = KT
avec K constante pour un nombre de moles donné.

On prendra N moles de gaz dans une enceinte fermée, sans réaction chimique.

Montrer que pour un gaz suivant les lois de Joule, le produit pV' ne dépend que de T

¥ On écrira alors pV = f(T), f fonction & déterminer.

Etablir la différentielle de S(T, V') en fonction de T, Cy(T), V et f(T)

. En déduire que f(T)/T = K, avec K constante et que donc le gaz a comme équation d’état celle

d’un gaz parfait.
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