
Physique avancée II – Examen été 2020 – Prof. J-Ph. Ansermet

Nom : l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2

Prénom : l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2
N◦ Sciper : l2 l2 l2 l2 l2 l2

A. Machine de Stirling linéaire (4/10 points)

Le cycle de Stirling (à droite) est opéré sur un gaz parfait
avec la machine linéaire qu’on a représentée (en-dessous) aux
états 1, 2, 3 et 4 du gaz. Pendant l’isochore 2-3, le gaz qui a
la température T+ passe à travers le régénérateur (stries ho-
rizontales) et en ressort à la température T−. Pendant l’iso-
chore 2-3, le gaz du côté chaud est à la pression p2 et le gaz
du côté froid est à la pression p3. Pendant l’isochore 4-1, le
gaz se réchauffe en passant à travers le régénérateur et en res-
sort à la température T+ ; la pression vaut p4 du côté froid et
p1 du côté chaud. Les réservoirs de chaleur (stries verticales)
sont aux températures T+ et T−. Les transferts thermiques
associés aux isothermes 1-2 et 3-4 se font avec les réservoirs.
Equations d’état : du gaz parfait, pV = NRT et U = cNRT ,
du régénérateur, Ur = CV T , avec CV indépendant de la tem-
pérature.
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Questions et réponses sur la page suivante !
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1. (0.5 point) Le processus 2-3 comprend une action mécanique du piston à la source chaude, et
une action mécanique du piston à la source froide. Calculer le travail W+

23 opéré sur le gaz à la
source chaude. On suppose que les actions mécaniques des pistons sont des processus réversibles.

W+
23 = ...

2. (0.5 point) Le piston à la source froide donne lieu à un travail W+
23. Montrer que le travail total

W23 = W+
23 + W−

23 du processus isochore 2-3 est donné par W23 = (T+ − T−)NR.

3. (0.5 point) Déterminer le transfert thermique Q23 qui a lieu entre le gaz et le régénérateur
pendant l’isochore 2-3, en fonction de (T+ − T−).

Q23 = ...

Ci-après, on peut considérer Q23 connu.

4. (0.5 point) Que vaut le changement de température ∆Tr du régénérateur pendant l’isochore
2-3.

∆Tr = ...

5. (0.5 point) CommeQ23 est un processus interne à la machine, il n’y a pas de transfert thermique
avec l’environnement pendant le processus 2-3. Quel est par conséquent le potentiel thermody-
namique (F,G,H,U) qui est conservé pendant les processus isochores tels qu’ils sont définis
ici ? Rappeler ici les grandes lignes de votre démonstration que vous aurez faite sur les pages
annexes.

Grandeur conservée : ...

6. (0.5 point) Que vaut le transfert thermique Q41 ?

Q41 = ...

7. (0.5 point) Que vaut le changement d’entropie du gaz pendant le processus isotherme 1-2 ?

∆S12 = ...

8. (0.5 point) Est-ce que T+S12 + T−S41 est une grandeur positive ou négative ? Justifier.

(
T+∆S12 + T−∆S34

)
> 0
ou
< 0

?
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1. (0.5 point) Calculer le travail W+
23 opéré sur le gaz à la source chaude. On suppose que les

actions mécanique des pistons sont des processus réversibles.

W+
23 =∈V

+
3

V +
2

(−p)dV =∈0V2
(−p2)dV = p2V2 = p2V

− = NRT+

2. (0.5 point) Montrer que le travail W23 = W+
23 + W−

23 du processus isochore 2-3 est donné par
W23 = (T+− T−)NR.

W23 = W+
23 + W−

23 = p2V2 − p3V3 = (T +−T−)NR

3. (0.5 point) Déterminer le transfer thermique Q23 entre le gaz et le régénérateur qui a lieu
pendant l’isochore 2-3, en fonction de (T+ − T−).

Q23 = U3 − U2 −W23 = −(c + 1)(T +−T−)NR (≤ 0⇒ la chaleur sort du gaz)

Ci-après, on peut considéré Q23 connu.

4. (0.5 point) Que vaut le changement de température ∆Tr du régénérateur pendant l’isochore
2-3.

∆T =
−Q23

CV
(−Q23 car Q23 sort du gaz)

5. (0.5 point) CommeQ23 est un processus interne à la machine, il n’y a pas de transfert thermique
avec l’environnement pendant le processus 2-3. Quel est par conséquent le potentiel thermody-
namique (F,G,H,U) qui est conservé pendant les processus isochores tels qu’ils sont définis
ici ? Rappeler ici les grandes lignes de votre démonstration faite sur les pages annexes.
Grandeur conservée : l’enthalpie du gaz, car pour le système entier (avec régénérateur), on a :

U3 − U2 = p2V2 − p3V3 ⇒ p2V2 + U2 = p3V3 + U3 ⇒ H2 = H3

6. (0.5 point) Que vaut le transfert thermique Q41 ?

Q41 = −Q23

parce qu’il s’agit des mêmes conditions expérimentales, avec un renversement du temps.

7. (0.5 point) Que vaut le changement d’entropie du gaz pendant le processus isotherme 1-2 ?

dU = TdS − pdV = cNRdT = 0⇒ dS =
p

T
dV = NR

dV

V
⇒

∆S12 = NR ln

(
V −

V +

)
= NR ln

(
p1
p2

)
≤ 0

L’entropie est fournie à la source chaude.

8. (0.5 point) Est-ce que T+S12 + T−S41 est une grandeur positive ou négative ? Justifier.

(
T+∆S12 + T−∆S34

)
> 0
ou
< 0

?

Ceci représente la chaleur échangée avec l’environnement. Comme on donne du travail à la
machine, qui fonctionne donc selon un cycle calorifique, le transfert thermique est négatif (la
chaleur est donnée au système), i.e. cette grandeur est négative.
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Physique avancée II – Examen 2020 – Prof. J-Ph. Ansermet

Nom : l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2

Prénom : l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2
N◦ Sciper : l2 l2 l2 l2 l2 l2

B. Chaleur latente par Clausius Clapeyron (3/10 points)

On veut analyser l’expérience suivante. Une quantité d’eau N0 est placée soudainement dans une boîte
rigide. Cette boîte a des parois adiabatiques, sauf la paroi diatherme qui la met en contact thermique
avec un réservoir de chaleur, de température T . L’eau va s’évaporer jusqu’à ce que le système, constitué
du liquide et de la vapeur, atteigne l’équilibre. On peut donc représenter le système thermodynamique
baigné comme étant composé de deux sous-systèmes séparés par une paroi mobile et perméable.
On admet les hypothèse suivantes :

- en tout temps, les sous-systèmes sont en équilibre thermique avec le réservoir de chaleur (la
paroi diatherme entre chaque sous-système et le réservoir de chaleur est fixe).

- le changement de volume de l’eau (dû à l’évaporation) est négligeable, c’est-à-dire, le volume
du liquide V2 et le volume du gaz V1 sont fixes.

- la vapeur est un gaz parfait, pour lequel p1V1 = N1RT1, où R est la constante des gaz parfait
(8.3 joule /(mole kelvin).

- Le volume molaire du liquide, v2, est mille fois plus petit que celui du gaz, v1.
- Quand ∆N moles passent de l’état liquide à l’état gazeux à la température T , le système

reçoit un transfert thermique Q = T∆N(s1 − s2) où s1 et s2 sont les chaleurs molaires des
deux phases.

Questions et réponses au verso !



1. (0.5 point) L’équilibre est caractérisé par un extremum de l’énergie libre F du système.
Montrer sur les feuilles annexes qu’il s’agit d’un minimum. Rappeler ici la définition de F et
exploiter U̇ = PQ pour prouver que Ḟ ≤ 0. On admet que pendant le processus qui aboutit à
l’équilibre, ΠS 6= 0. Ecrire ci-dessous F en fonction de U et de S, l’entropie du système. Ecrire
ΠS en fonction de Ṡ et de PQ. En déduire Ḟ .

F = ΠS = Ḟ =

2. (0.5 point) Partant de dF = 0, expliquer pourquoi µ1 = µ2 à l’équilibre.

3. (0.5 point) On peut répéter l’expérience pour plusieurs valeurs de la température, dans un
petit domaine autour d’une valeur T donnée et mesurer p1 en fonction de T . On en déduit
une valeur expérimentale P ′ de la dérivée dp1/dT à T . En utilisant la formule de Clausius-

Clapeyron
dp1
dT

=
`21

T (v1 − v2)
, déduire de P ′ une expression de la chaleur latente molaire `21

en fonction de T et de la pression p1 de la vapeur à la température T , en négligeant le volume
molaire du liquide devant celui du gaz (v2 � v1).

`21 =

4. (1.0 point) Estimer `21 par un argument de physique statistique basé sur la formule de Boltz-
mann pour l’entropie molaire s = R ln Ω où Ω est le nombre de configurations d’une mole.
Considérer que le rapport du nombre de configurations Ω1/Ω2 est égal au rapport v1/v2. En
déduire une estimation numérique de `21 à 20◦C, en spécifiant les unités utilisées :

`21 =



1. (0.5 point) L’équilibre est caractérisé par un extremum de l’énergie libre F du système.
Montrer sur les feuilles annexes qu’il s’agit d’un minimum. Rappeler ici la définition de F et
exploiter U̇ = PQ pour prouver que Ḟ ≤ 0. On admet que pendant le processus qui aboutit à
l’équilibre, ΠS 6= 0. Ecrire ci-dessous F en fonction de U et de S, l’entropie du système. Ecrire
ΠS en fonction de Ṡ et de PQ. En déduire Ḟ .

F = U −TS ΠS = Ṡ−
PQ

T
Ḟ = U̇ −T Ṡ = PQ−T

(
ΠS +

PQ

T

)
= −TΠS ≤ 0

Remarque : Dans le cadre de ce problème spécifique, on peut argumenter que dFi = µidNi

pour i=1, 2. Donc Ḟ = (µ1 − µ2)Ṅ1. Au début, on sait (c’est là que l’argument est spécifique
à ce problème) que l’eau s’évapore, donc µ1 < µ2 et Ṅ1 > 0. Donc Ḟ ≤ 0.

2. (0.5 point) Partant de dF = 0, expliquer pourquoi µ1 = µ2 à l’équilibre.

dF = −SdT − p1dV1 − p2dV2 + µ1dN1 + µ2dN2

dT = 0 (couplage au bain) dV1 = dV2 = 0 (donnée) dN1 = −dN2 (conservation matière)
⇒ dF = (µ1 − µ2)dN1 dF = 0⇒ µ1 = µ2

3. (0.5 point) On peut répéter l’expérience pour plusieurs valeurs de la température, dans un
petit domaine autour d’une valeur T donnée et mesurer p1 en fonction de T . On en déduit
une valeur expérimentale P ′ de la dérivée dp1/dT à T . En utilisant la formule de Clausius-

Clapeyron
dp1
dT

=
`21

T (v1 − v2)
, déduire de P ′ une expression de la chaleur latente molaire `21

en fonction de T et de la pression p1 de la vapeur à la température T , en négligeant le volume
molaire du liquide devant celui du gaz.

`21 = P ′
T 2R

p1

Remarque : Il est faut d’écrire P ′ = RT/v1, qu’on obtient si on suppose la loi des gaz

parfaits. Or ici, la pression se réfère à celle sur la ligne de coexistence de phase, et quand bien
même la pression est celle du gaz, sa dépendance en température est donnée par la formule de
Clausius-Clapeyron, pas par pV = NRT .
Hors examen : l’expérimentateur trouve que la pression p1 vaut 22 mbar à une température de
20◦C. Il trouve que la pression varie de 40 mbar quand la température varie de 30◦C. On en
tire `lg = 43 kJ/mol.

4. (1.0 point) Estimer `21 par un argument de physique statistique basé sur la formule de Boltz-
mann pour l’entropie molaire s = R ln Ω où Ω est le nombre de configurations d’une mole.
Considérer que le rapport du nombre de configurations Ωg/Ωl est égal au rapport v1/v2. En
déduire une estimation numérique de `21 en spécifiant les unités utilisées.
Il faut se souvenir que la chaleur latente vaut `21 = T (s1 − s2). Alors,

`21 = T (s1 − s2) = TR ln

(
v1
v2

)
≈ 17 kJ/mol



5. Hors examen On veut estimer comment la pression saturante p2 varie avec la température.
Pour se faire, on suppose que µ1(p0) et µ2(p0) sont connus à une certaine pression standard
p0. Comme ∂µ/∂p = v, le volume molaire, qui est indépendant de la pression pour le liquide,
est qui vaut RT/p2 pour le gaz, on a :

µ1(p2) = µ1(p0) + v1(p2 − p0)

µ2(p2) = µ2(p0) +RT ln

(
p2
p0

)
A l’équilibre, µ1(p2) = µ2(p2), ce qui donne

µ1(p0) + v1(p2 − p0) = µ2(p0) +RT ln

(
p2
p0

)
On suppose qu’on peut négliger le terme v1(p2−p0) dans cette expression parce que le volume
molaire du liquide est très petit et on a pris la précaution de prendre la pression standard p0
voisine de p2 à l’équilibre. Ainsi, on obtient une dépendence exponentielle,

p2 = p0 exp

(
−∆µ

RT

)
avec ∆µ = µ2(p0)−µ1(p0) qui est positif, si la pression p0 est dans un domaine de pression où
le liquide est la phase stable. On en déduit,

dp2
dT

=
∆µ

RT 2
p2 ⇒ dp2

dT

RT 2

p2
= ∆µ



Physique avancée II – Examen été 2020 – Prof. J-Ph. Ansermet
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B. Méthode de van der Pauw pour l’effet Hall (3/10 points)

On veut mesurer l’effet Hall sur une couche mince métallique déposée sur un substrat plat et isolant.
La couche est d’épaisseur constante, homogène et sans trou (représentée ci-dessous par la zone grise).
Sur le bord de cette couche mince, quatre contacts sont établis qu’on peut considérer comme ponctuels
(leur taille est infiniment plus petite que celle de l’échantillon). Perpendiculairement à la couche, un
champ d’induction magnétique B uniforme est appliqué sur tout l’échantillon. Le courant Iin injecté
dans la couche et le courant sortant, Iout, sont indépendant de l’intensité du champ d’induction B.

Iout

Iin

V�

V+

B

On fera les hypothèses suivantes :
— Le gradient du potentiel électrique ϕ est donné par

∇ϕ = −ρ j(x)−H (j(x)×B)

où ρ, la résistivité du métal, et H, le coefficient de Hall, sont des grandeurs scalaires indépen-
dantes de B.

— La mesure est faite en régime stationnaire.
— La densité des électrons du métal, ne, est indépendante du temps et de la position.
— La température est partout la même et elle est indépendante du temps (pas d’effet Joule, pas

même au voisinage des contacts).
— La couche métallique est si mince qu’on peut admettre jz(x) = 0, où z est la direction normale

au plan.
— Le métal est à considérer comme une substance où il n’y a aucun effet convectif (∇v = 0). Dans

ce cas, l’équation de continuité pour la densité ne d’électrons est donnée par

ṅe +∇ · je = 0

où je est la densité de courant d’électrons. La charge électronique par mole d’électrons est
donnée par qe.

Questions et réponses au verso !
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1. (1.0 point) Montrer (sur les feuilles en annexe) qu’on peut écrire (notation : ∇xϕ = ∂ϕ/∂x),(
∇xϕ
∇yϕ

)
=

(
−ρ ρxy
−ρxy −ρ

)(
jx
jy

)
avec ρxy = ........................................

2. (0.5 point) Expliquer (d’abord sur les feuilles annexes et ensuite, en rappelant ici les étapes
essentielles) pourquoi on a la relation,

∂jx
∂x

+
∂jy
∂y

= 0

3. (1.0 point) La première question donne une relation entre la densité de courant électrique j(x)
et ∇ϕ, qu’on peut écrire, (

jx
jy

)
=

(
−σ σxy
−σxy −σ

)(
∇xϕ
∇yϕ

)
Appliquer cette relation phénoménologique au résultat de la deuxième question et l’appliquer
encore une fois pour calculer le rapport que voici des dérivées des composantes de la densité de
courant :

∂jy
∂x
∂jx
∂y

= .....

4. (0.5 point) Exprimer le changement de ∇ϕ en fonction de ρxy et de j quand le champ d’in-
duction magnétique est varié de B = 0 à B 6= 0, c’est-à-dire, trouver la différence,(

∇xϕ(B)
∇yϕ(B)

)
−
(
∇xϕ(0)
∇yϕ(0)

)
= ...
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1. (1.0 point) Montrer (sur les feuilles en annexe) qu’on peut écrire (notation : ∇xϕ = ∂ϕ/∂x),∇xϕ
∇yϕ
0

 =

−ρ 0 0
0 −ρ 0
0 0 0

jxjy
jz

−H
∣∣∣∣∣∣
x̂ jx 0
ŷ jy 0
ẑ jz B

∣∣∣∣∣∣ =
−ρ 0 0

0 −ρ 0
0 0 0

jxjy
jz

−HB
 jy
−jx
0


∇xϕ
∇yϕ
0

 =

−ρ 0 0
0 −ρ 0
0 0 0

jxjy
jz

+HB

0 −1 0
1 0 0
0 0 0

jxjy
0


ρxy = −HB

2. (0.5 point) Expliquer (d’abord sur les feuilles annexes et ensuite, en rappelant ici les étapes
essentielles) pourquoi on a la relation,

∂jx
∂x

+
∂jy
∂y

= 0

De l’équation de continuité, sous l’hypothèse qu’on est en régime stationnaire, on a ∇ · je = 0.
Or j = qeje. Le résultat à montrer exprime simplement que ∇ · j = 0.

3. (1.0 point) La première question donne une relation entre la densité de courant électrique j(x)
et ∇ϕ, qu’on peut écrire, (

jx
jy

)
=

(
−σ σxy
−σxy −σ

)(
∇xϕ
∇yϕ

)
Appliquer cette relation phénoménologique au résultat de la deuxième question et l’appliquer
encore une fois pour calculer le rapport,

∂jy
∂x
∂jx
∂y

= .....

On a successivement,

∇yjx = −σ∇y∇xϕ+ σxy∇2
yϕ

∇xjy = −σxy∇2
xϕ− σ∇x∇yϕ

et
∇xjx = −σ∇2

xϕ+ σxy∇x∇yϕ

∇yjy = −σxy∇x∇yϕ− σ∇2
yϕ

Le deuxième set d’équations et l’équation de continuité implique ∇2
xϕ + ∇2

yϕ = 0. Alors le
premier set d’équation donne ∇yjx −∇xjy = 0, donc le rapport vaut 1.

4. (0.5 point) Exprimer le changement de ∇ϕ en fonction de ρxy et de j quand le champ d’in-
duction magnétique est varié de B = 0 B 6= 0, c’est-à-dire,(

∇xϕ(B)
∇yϕ(B)

)
−
(
∇xϕ(0)
∇yϕ(0)

)
= ρxy

(
jy
−jx

)
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Hors examen

Remarque : On a donc deux équations différentielles pour le courant électrique j(x) qui
sont indépendantes du champ magnétique B. Comme les conditions au bord ne changent pas
quand on varie le champ magnétique, on a le même champ de courant électrique j(x) avec ou
sans champ.

Remarque : La tension électrique qu’on mesure dans cette expérience est donnée par la
différence de potentielle entre deux positions du film, ϕ(x1) − ϕ(x2). Elle dépend de ρxy (qui
dépend de H et de B), et du champ de courant j(x) qui lui ne dépend pas de B. C’est ce que
voulait dire van der Pauw dans ses articles.
(1) J. Van Der Pauw, A method of measuring the resistivity and Hall coefficient on lamellae of
arbitrary shape, Philips Technical Review Volume 26 1958/1959
(2) J. Van Der Pauw, A method of measuring specic resistivity and Hall coefficient of disc of
arbitrary shape, Philips Technical Review Volume 13 1958
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