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A. Machine de Stirling linéaire (4/10 points)
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Le cycle de Stirling (& droite) est opéré sur un gaz parfait p A
avec la machine linéaire qu’on a représentée (en-dessous) aux
états 1, 2, 3 et 4 du gaz. Pendant 'isochore 2-3, le gaz qui a
la température T passe a travers le régénérateur (stries ho-
rizontales) et en ressort a la température 7. Pendant 1'iso-
chore 2-3, le gaz du co6té chaud est & la pression ps et le gaz
du coté froid est & la pression p3. Pendant l'isochore 4-1, le
gaz se réchauffe en passant a travers le régénérateur et en res-
sort & la température T ; la pression vaut py du coté froid et
p1 du coté chaud. Les réservoirs de chaleur (stries verticales)
sont aux températures T et 7. Les transferts thermiques
associés aux isothermes 1-2 et 3-4 se font avec les réservoirs.
Equations d’état : du gaz parfait, pV = NRT et U = cNRT,

du régénérateur, U, = CyT, avec Cy indépendant de la tem-
pérature.
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Questions et réponses sur la page suivante !



. (0.5 point) Le processus 2-3 comprend une action mécanique du piston a la source chaude, et
une action mécanique du piston & la source froide. Calculer le travail WQ'S opéré sur le gaz a la
source chaude. On suppose que les actions mécaniques des pistons sont des processus réversibles.

+
Wi = ...

. (0.5 point) Le piston a la source froide donne lieu & un travail W;g Montrer que le travail total
Wog = WQ”;, + Way du processus isochore 2-3 est donné par Wag = (I — T~ )NR.

. (0.5 point) Déterminer le transfert thermique Q23 qui a lieu entre le gaz et le régénérateur
pendant l'isochore 2-3, en fonction de (T — T7).

Q23 = ...

Ci-aprés, on peut considérer (023 connu.

. (0.5 point) Que vaut le changement de température AT, du régénérateur pendant l'isochore
2-3.

AT, = ...

. (0.5 point) Comme @23 est un processus interne a la machine, il n’y a pas de transfert thermique
avec I’environnement pendant le processus 2-3. Quel est par conséquent le potentiel thermody-
namique (F,G,H,U) qui est conservé pendant les processus isochores tels qu’ils sont définis
ici? Rappeler ici les grandes lignes de votre démonstration que vous aurez faite sur les pages
annexes.

Grandeur conservée : ...

. (0.5 point) Que vaut le transfert thermique Q41 7

Qu = ...

. (0.5 point) Que vaut le changement d’entropie du gaz pendant le processus isotherme 1-2 7

ASig = ...

. (0.5 point) Est-ce que T+ S1o + T~ S41 est une grandeur positive ou négative ? Justifier.

>0
(T+A;912 + T_A534) ou ?
<0



. (0.5 point) Calculer le travail W;g opéré sur le gaz a la source chaude. On suppose que les
actions mécanique des pistons sont des processus réversibles.

+ _ Vi 0 [ _ _ - _ +
Wy —EV2+ (=p)dV =€y, (—=p2)dV = paVa = poV~ = NRT

. (0.5 point) Montrer que le travail Was = W;g + Wy5 du processus isochore 2-3 est donné par
Wog = (T+ — Tf)NR.

Wag = W + Wy = poVo —psVs = (I + —-T7)NR

. (0.5 point) Déterminer le transfer thermique Q93 entre le gaz et le régénérateur qui a lieu
pendant l'isochore 2-3, en fonction de (T — T7).

Q23 =Us —Uy—Wo3=—(c+1)(T+-T")NR (< 0 = la chaleur sort du gaz)

Ci-aprés, on peut considéré Q93 connu.

. (0.5 point) Que vaut le changement de température AT, du régénérateur pendant l'isochore

2-3.
AT = — s (—Qa3 car Q23 sort du gaz)
Cy
. (0.5 point) Comme @23 est un processus interne a la machine, il n’y a pas de transfert thermique
avec ’environnement pendant le processus 2-3. Quel est par conséquent le potentiel thermody-
namique (F,G, H,U) qui est conservé pendant les processus isochores tels qu’ils sont définis

ici? Rappeler ici les grandes lignes de votre démonstration faite sur les pages annexes.

Grandeur conservée : I'enthalpie du gaz, car pour le systéme entier (avec régénérateur), on a :
Us = Uz = p2Va — p3Vs = paVa + Uy = p3Vs + Us = Hy = H3
. (0.5 point) Que vaut le transfert thermique Q41 7

Q41 = —Q23

parce qu’il s’agit des mémes conditions expérimentales, avec un renversement du temps.

. (0.5 point) Que vaut le changement d’entropie du gaz pendant le processus isotherme 1-2 7

dU:TdS—pdV:cNRdT:O:dS:%dV:NRdVV:

V- DP1
L’entropie est fournie & la source chaude.

. (0.5 point) Est-ce que T+ S1s + T~ S41 est une grandeur positive ou négative ? Justifier.

>0
(T+A512 + T_AS34) ou ?
<0

Ceci représente la chaleur échangée avec l’environnement. Comme on donne du travail a la
machine, qui fonctionne donc selon un cycle calorifique, le transfert thermique est négatif (la
chaleur est donnée au systéme), i.e. cette grandeur est négative.
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B. Chaleur latente par Clausius Clapeyron (3/10 points)

On veut analyser ’expérience suivante. Une quantité d’eau Ny est placée soudainement dans une boite

rigide. Cette boite a des parois adiabatiques, sauf la paroi diatherme qui la met en contact thermique

avec un réservoir de chaleur, de température T'. L’eau va s’évaporer jusqu’a ce que le systéme, constitué

du liquide et de la vapeur, atteigne I’équilibre. On peut donc représenter le systéme thermodynamique

baigné comme étant composé de deux sous-systémes séparés par une paroi mobile et perméable.

On admet les hypothése suivantes :

en tout temps, les sous-systémes sont en équilibre thermique avec le réservoir de chaleur (la

paroi diatherme entre chaque sous-systéme et le réservoir de chaleur est fixe).

- le changement de volume de 'eau (dit & I’évaporation) est négligeable, c’est-a-dire, le volume
du liquide V5 et le volume du gaz V; sont fixes.

- la vapeur est un gaz parfait, pour lequel p; V7 = N1RT7, ou R est la constante des gaz parfait
(8.3 joule /(mole kelvin).

- Le volume molaire du liquide, vo, est mille fois plus petit que celui du gaz, v;.

- Quand AN moles passent de I'état liquide & I'état gazeux & la température T', le systéme
recoit un transfert thermique Q@ = TAN(s; — s2) ol $1 et sy sont les chaleurs molaires des

deux phases.

Réservoir

de chaleur

Questions et réponses au verso !



. (0.5 point) L’équilibre est caractérisé par un extremum de 'énergie libre F' du systéme.
Montrer sur les feuilles annexes qu’il s’agit d’un minimum. Rappeler ici la définition de F' et
exploiter U = Pg pour prouver que F < 0. On admet que pendant le processus qui aboutit a
I’équilibre, I1g # 0. Ecrire ci-dessous F' en fonction de U et de S, ’entropie du systéme. Ecrire
g en fonction de S et de Pg. En déduire F.

. (0.5 point) Partant de dF' = 0, expliquer pourquoi p; = pg a l’équilibre.

. (0.5 point) On peut répéter 'expérience pour plusieurs valeurs de la température, dans un

petit domaine autour d’une valeur T' donnée et mesurer p; en fonction de 7. On en déduit

une valeur expérimentale P’ de la dérivée dp,/dT a T. En utilisant la formule de Clausius-

Clapeyron d— = L, déduire de P’ une expression de la chaleur latente molaire fo1
dT  T(vi —v9)

en fonction de T et de la pression p; de la vapeur a la température T', en négligeant le volume

molaire du liquide devant celui du gaz (v2 < v1).

Uy =

. (1.0 point) Estimer ¢5; par un argument de physique statistique basé sur la formule de Boltz-
mann pour 'entropie molaire s = RIn() ou  est le nombre de configurations d’une mole.
Considérer que le rapport du nombre de configurations €23 /€9 est égal au rapport vy /vs. En
déduire une estimation numérique de f21 a 20°C, en spécifiant les unités utilisées :

Uy =



. (0.5 point) L’équilibre est caractérisé par un extremum de 'énergie libre F' du systéme.
Montrer sur les feuilles annexes qu’il s’agit d’un minimum. Rappeler ici la définition de F' et
exploiter U = Pg pour prouver que F < 0. On admet que pendant le processus qui aboutit a
I’équilibre, I1g # 0. Ecrire ci-dessous F' en fonction de U et de S, ’entropie du systéme. Ecrire
g en fonction de S et de Pg. En déduire F.

o

F=U-TS Ilg=5——%

) ) ) P
T F:U—TS:PQ—T<H5+1?>:—THS§O

Remarque : Dans le cadre de ce probléme spécifique, on peut argumenter que dF; = p;dN;
pour i=1, 2. Donc F = (1 — ug)Nl. Au début, on sait (c’est 1a que Pargument est spécifique
a ce probléme) que l'eau s’évapore, donc p; < pg et N1 > 0. Donc F' < 0.
. (0.5 point) Partant de dF = 0, expliquer pourquoi p1 = pe a I'équilibre.

dF = —=5dT — p1dVi — p2dVa + p1d Ny + podNa
dT = 0 (couplage au bain) dV; = dV2 = 0 (donnée) dN; = —dNy (conservation matiére)
:>dF:(/J,1—M2)dN1 dF:0:>/J,1:M2

. (0.5 point) On peut répéter 'expérience pour plusieurs valeurs de la température, dans un
petit domaine autour d’une valeur 1" donnée et mesurer p; en fonction de 7. On en déduit
une valeur expérimentale P’ de la dérivée dp1/dT a T. En utilisant la formule de Clausius-
dpr Iy

drT N T(Ul — UQ)’
en fonction de T et de la pression p; de la vapeur a la température T', en négligeant le volume
molaire du liquide devant celui du gaz.

Clapeyron déduire de P’ une expression de la chaleur latente molaire fo;

t—p TR T2R
D1

Remarque : Il est faut d’écrire P’ = RT/vi, qu'on obtient si on suppose la loi des gaz

parfaits. Or ici, la pression se référe a celle sur la ligne de coexistence de phase, et quand bien
méme la pression est celle du gaz, sa dépendance en température est donnée par la formule de
Clausius-Clapeyron, pas par pV = NRT.

Hors examen : 'expérimentateur trouve que la pression p; vaut 22 mbar & une température de
20°C. 1l trouve que la pression varie de 40 mbar quand la température varie de 30°C. On en
tire £;; = 43 kJ/mol.

. (1.0 point) Estimer f5; par un argument de physique statistique basé sur la formule de Boltz-
mann pour 'entropie molaire s = RIn{) ou  est le nombre de configurations d’une mole.
Considérer que le rapport du nombre de configurations €2,/ est égal au rapport vy /vs. En
déduire une estimation numérique de fo1 en spécifiant les unités utilisées.

I1 faut se souvenir que la chaleur latente vaut f2; = T'(s1 — s2). Alors,

031 =T(s1 — s3) = TRIn <”1) ~ 17 kJ /mol

U2



5. Hors examen On veut estimer comment la pression saturante po varie avec la température.
Pour se faire, on suppose que p;(pp) et u2(po) sont connus & une certaine pression standard
po. Comme Op/Ip = v, le volume molaire, qui est indépendant de la pression pour le liquide,
est qui vaut RT'/p2 pour le gaz, on a :

p1(p2) = pa(po) + v1(p2 — po)

p2(p2) = p2(po) + RT In <§§>

A Déquilibre, p1(p2) = pe(p2), ce qui donne

p1(po) +vi(p2 — po) = p2(po) + RT In (f)i)

On suppose qu’on peut négliger le terme v1(p2 — po) dans cette expression parce que le volume
molaire du liquide est trés petit et on a pris la précaution de prendre la pression standard pg
voisine de py & I’équilibre. Ainsi, on obtient une dépendence exponentielle,

P2 = Po €XpP ﬁ

avec Ap = po(po) — p1(po) qui est positif, si la pression py est dans un domaine de pression o
le liquide est la phase stable. On en déduit,

dp2 _ A dp2 RT” _ |

= —— =
ar ~ Rr2P? dT ps a
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B. Méthode de van der Pauw pour l’effet Hall (3/10 points)
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On veut mesurer l'effet Hall sur une couche mince métallique déposée sur un substrat plat et isolant.
La couche est d’épaisseur constante, homogéne et sans trou (représentée ci-dessous par la zone grise).
Sur le bord de cette couche mince, quatre contacts sont établis qu’on peut considérer comme ponctuels
(leur taille est infiniment plus petite que celle de I’échantillon). Perpendiculairement a la couche, un
champ d’induction magnétique B uniforme est appliqué sur tout ’échantillon. Le courant [, injecté
dans la couche et le courant sortant, I, sont indépendant de l'intensité du champ d’induction B.

On fera les hypothéses suivantes :
— Le gradient du potentiel électrique ¢ est donné par

Vo=-pjx)—H(i(z)x B)

ou p, la résistivité du métal, et H, le coefficient de Hall, sont des grandeurs scalaires indépen-
dantes de B.

— La mesure est faite en régime stationnaire.

— La densité des électrons du métal, n., est indépendante du temps et de la position.

— La température est partout la méme et elle est indépendante du temps (pas d’effet Joule, pas
méme au voisinage des contacts).

— La couche métallique est si mince qu’on peut admettre j,(x) = 0, ou z est la direction normale
au plan.

— Le métal est & considérer comme une substance ou il n’y a aucun effet convectif (Vv = 0). Dans
ce cas, I’équation de continuité pour la densité n. d’électrons est donnée par

he"‘v'je:()

oll je est la densité de courant d’électrons. La charge électronique par mole d’électrons est
donnée par ge.

Questions et réponses au verso !



1. (1.0 point) Montrer (sur les feuilles en annexe) qu’on peut écrire (notation : Vyo = dp/0x),

)
0 I ) 1 G I TP —

2. (0.5 point) Expliquer (d’abord sur les feuilles annexes et ensuite, en rappelant ici les étapes
essentielles) pourquoi on a la relation,

aja: a]y

or dy =0

3. (1.0 point) La premiére question donne une relation entre la densité de courant électrique j(x)

Appliquer cette relation phénoménologique au résultat de la deuxiéme question et 'appliquer
encore une fois pour calculer le rapport que voici des dérivées des composantes de la densité de
courant :

9y

oz

% .....

dy

4. (0.5 point) Exprimer le changement de V¢ en fonction de p,, et de j quand le champ d’in-
duction magnétique est varié de B =0 a B # 0, c’est-a-dire, trouver la différence,

(i) - (5) =



1. (1.0 point) Montrer (sur les feuilles en annexe) qu’on peut écrire (notation : Vyo = dp/0x),

Vo —p 0 0\ [Ja T jz O = 0 0\ [Je Jy
Vel =0 —p O \dy| —Hg Jy O0|=(0 —p O |Jy| -—HB|—Je
0 0 0 0/ \U. 2 j, B 0 0 0/ \U. 0
Ve | = 0 —p O |dy|+HB[1 0 0] [y
0 0 0 0/ \4 0 0 0/ \oO
pay = —HB

2. (0.5 point) Expliquer (d’abord sur les feuilles annexes et ensuite, en rappelant ici les étapes
essentielles) pourquoi on a la relation,

24, iy _,
or Oy

De I'équation de continuité, sous ’hypothése qu’on est en régime stationnaire, on a V - 3. = 0.
Or j = geJe- Le résultat & montrer exprime simplement que V - 5 = 0.

3. (1.0 point) La premiére question donne une relation entre la densité de courant électrique j(x)

(ft C ()07 qu’OH p(iut éCI‘iI‘(i,

Appliquer cette relation phénoménologique au résultat de la deuxiéme question et 'appliquer
encore une fois pour calculer le rapport,

9y

ox
—% .....

y

On a successivement,
Vyje = —0VyVep + nyvf,SO ¢ Vajz = *UV%QO + 02y Ve Vyp
(&
Vijy = =0y Vo — oV Vo Vyjy = =02y VaVyp — Vg

Le deuxiéme set d’équations et I’équation de continuité implique VZp + V?!(p = 0. Alors le
premier set d’équation donne V,j, — Vj, = 0, donc le rapport vaut 1.

4. (0.5 point) Exprimer le changement de V¢ en fonction de p,, et de j quand le champ d’in-
duction magnétique est varié de B = 0 B # 0, c¢’est-a-dire,

(eetm) - (Seeton) = ()



Hors examen

Remarque : On a donc deux équations différentielles pour le courant électrique j(x) qui
sont indépendantes du champ magnétique B. Comme les conditions au bord ne changent pas
quand on varie le champ magnétique, on a le méme champ de courant électrique j(x) avec ou
sans champ.

Remarque : La tension électrique qu'on mesure dans cette expérience est donnée par la
différence de potentielle entre deux positions du film, ¢(x1) — ¢(x2). Elle dépend de pyy (qui
dépend de H et de B), et du champ de courant j(x) qui lui ne dépend pas de B. C’est ce que
voulait dire van der Pauw dans ses articles.

(1) J. Van Der Pauw, A method of measuring the resistivity and Hall coefficient on lamellae of
arbitrary shape, Philips Technical Review Volume 26 1958/1959

(2) J. Van Der Pauw, A method of measuring specic resistivity and Hall coefficient of disc of
arbitrary shape, Philips Technical Review Volume 13 1958



