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A. Cycle de Zeuner (4/10 points)

On analyse le cycle proposé par le Dr. Zeuner de I’Ecole Polytechnique de Ziirich dans son traité
de 1869. Ce cycle comporte quatre processus (voir figure). On suppose que les processus sont tous
réversibles, y compris les transferts thermiques avec I’extérieur, et qu’ils sont opérés sur un gaz parfait
pour lequel on a pV = NRT et U = ¢NRT (selon la notation usuelle). Les 4 processus réversibles sont
les suivants :

1 -2 : un transfert thermique caractérisé par P = AN RT , oll A est une constante

2 - 3 : un processus adiabatique réversible
3 - 4 : un transfert thermique caractérisé par Py = ANRT', avec le méme A
4 -1 : un processus adiabatique réversible
p . T
\ in
2
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Sur le graphique, les fléches associées aux transferts thermiques sont indicatives, les formules données
ci-dessus pour les Pg ont le bon signe par rapport a la convention usuelle. Dans cette réalisation
particuliére du transfert thermique de puissance Pp, il faut comprendre 7' comme étant la valeur
instantanée de la température du gaz. Elle dépend du temps, tout comme Fg.

Remarque : la formule donnée pour les transferts thermiques est sans rapport direct avec la loi de
Fourier. Il faut s’imaginer ici que l'environnement change de température en méme temps que le
systéme. Il s’agit en quelque sorte d’une machine ditherme dans laquelle chaque source change de
température de fagon controlée au cours du temps.

Questions et réponses sur la page suivante !



. (0.5 point) Partant de dU = §@ + dW, montrer que pendant le processus réversible 1 — 2, on
adQ =TdS.

. (1.0 point) Montrer que pendant les transferts thermiques 1 —2 et 3 —4, le transfert thermique
infinitésimal 6Q) = Pgdt est donné par 6Q = cypdV + cVdp, ot v = 1+ 1/c est le coefficient
"gamma" du gaz parfait. Faire les développements sur les feuilles annexes. Reportez ici deux
étapes essentielles de vos calculs.

. (1.0 point) Montrer que pour le processus 1 — 2, la relation entre p et V est donnée par
pV* = constante. Faire les calculs sur les feuilles annexes. Exprimer k en termes de ¢, v et .

. (0.5 point) Calculer le changement d’entropie ASiy du gaz par le processus 1-2. Faire les
développements sur les feuilles annexes. Exprimer votre réponse en termes des variables 17 et

. (1.0 point) Calculer le travail pendant les processus 1-2 et 2-3 et finalement, le travail W =
Wis + Was + W34 4+ Wy pendant 'exécution d’un cycle. Faire les développements sur les feuilles
annexes.Exprimer vos réponses en fonction de 17, Tb, T5 et Ty.

Wig = e

Wogz = eeienni.



SOLUTIONS du probléme "Cycle de Zeuner"

1. (0.5 point) Partant de dU = §Q + 0W, montrer que pendant la transformation réversible 1 — 2,
on a 0Q) =TdS.

dU =6Q + oW
réversible = 0W = —pdV
=
0Q =TdS

2. (1.0 point) Montrer que pendant les transferts thermiques 1 —2 et 3 —4, le transfert thermique
infinitésimal 6Q) = Pgdt est donné par 0Q) = cypdV + cVdp, ot v = 1 + 1/c est le coefficient
"gamma" du gaz parfait. Faire les développements sur les feuilles annexes. Reportez ici deux
étapes essentielles de vos calculs.

dU =cNRdAT =TdS — pdV
= cd(pV) = cepdV + cVdp
=
TdS = (c+1)pdV +cVdp
= cypdV + cVdp

3. (1.0 point) Montrer que pour le processus 1 — 2, la relation entre p et V est donnée par
pV* = constante. Faire les calculs sur les feuilles annexes. Exprimer k en termes de ¢, v et .

0Q = ANRAT = A\d(pV') = ApdV + A\Vdp
0Q = cypdV + cVidp

=
(A= cy)pdV = —(\ — c)Vdp
dv dp
(A—C’y)v—i-()\—c); =0
. <Vf>(>\cv) <pf>(/\0) 0
Vi i
=

pA=a Y (A=e1) = constante
pA=y A=y (1) = constante

(=1 140 (A—c-1) (A—cy)
pVV = =pV " 0= =pV (G- =pV (G-9 = constante
A —cy
= k=
A—c

On notera que si A = 0 (processus adiabatique) on a k = 7 et il vient pV'7 = constante, comme
il se doit.

4. (0.5 point) Calculer le changement d’entropie ASiy du gaz par le processus 1-2. Faire les
développements sur les feuilles annexes. Exprimer votre réponse en termes des variables 17 et
Ts.

5Q = TdS = ANRAT
ar
dS = ANR——
S R

ASi2 = ANRIn <T2>
Th

3



5. (1.0 point) Calculer le travail pendant les processus 1-2 et 2-3 et finalement, le travail W =
Wi+ Was + Wsg 4+ Wy pendant I'exécution d’un cycle. Faire les développements sur les feuilles
annexes.Exprimer vos réponses en fonction de Ty, 1o, T3 et Ty.

W12 = AU12 — Q12 = CNR(T2 — Tl) — )\NR(TQ — Tl) = (CNR — /\)(TQ — Tl)

W23 = AU23 = CNR(T3 - Tg)

W = (cNR — \)(Ty — T1) + cNR(Ts — T3) + (cNR — \)(Ty — T3) + eNR(Ty — Ty)
Ce qui donne W = \(T1 + T3 — Ty — Ty)

Questions supplémentaires qui ne figuraient pas a ’examen
— a. Dans un diagramme (7, S) ou (p, V), 'aire comprise dans le cycle est une énergie. Quel est
le rapport entre T" et .S ou entre p et V' qui fait qu’on a une énergie ?

Les grandeurs T et S ou p et V sont dites des grandeurs.........cccceeveveeeeeeeenen...

On analyse le cycle quand il est parcouru dans le sens 1 - 2 - 3 - 4, comme indiqué sur la figure.
S’agit-il d’un cycle moteur ?

oui [ non [J JUSTIICT & oo

— b. Du fait que ASi2 + AS34 = 0, trouver une relation entre 17, 1o, T3 et Ty.
— c¢. Montrer que W est négatif.
— d. Trouver le rendement n = |W|/Q12.
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B. Effet Joule chimique (3/10 points)

On considére un systéme formé de deux
sous-systémes simples, notés 1 et 2, sépa-
rés par une paroi fixe, diatherme et per-
méable. Chaque sous-systéme échange
de fagon réversible de la substance avec
le réservoir de chaleur auquel il est
connecté. Les deux réservoirs de chaleur,
notés G et D (Gauche, Droite), et les
sous-systémes 1 et 2, contiennent tous la
méme substance chimique A, un gaz, et
sont en tout temps a la méme tempéra-
ture T'. Les pistons (sans masse et sans
frottement) sont sujets a& des pressions
extérieures p; et po définissant la pres-
sion dans chaque réservoir.

Les deux réservoirs constituent I’environnement du systéme composé des sous-systémes 1 et 2. Les
puissances sont comptées positives quand le transfert va du réservoir au sous-systéme. Les potentiels
chimiques 1 et pp ont la valeur des potentiels chimiques du gaz dans les deux réservoirs. Le systéme

est analysé quand il est dans un état stationnaire, donc S = 51 + Sg =0.

Notations et expressions de la conservation de la substance A :

51 . puissance thermique de G sur 1; Pout

Pln puissance chimique de G sur 1; POut

— Ig' : courant d’entropie de G vers 1; I out : courant d’entropie de D vers 2 (signe conventionnel)
At courant de substance de G' vers 1 112 = ry

: puissance thermique de D sur 2

puissance thermique de D sur 2

— I = —I'1 : courant de substance de D vers 2 (signe conventionnel)
— P(}f : puissance thermique de 1 sur 2,

— Pcl? : puissance chimique de 1 sur 2, Pgl

Pin _ TI}gn Pln _ 111151 Pout

TIOllt

: puissance chimique de 2 sur 1
On admet les relations suivantes (attention aux indices des deux derniéres relations),

Pout

Iout

PR = poly?

D1
¢ M1 D2
U2 D
11 1 § 2
P \ E PéQ — P5Ut
Pln /_ _§_>P61V2 _\ Pgut
P1i o
T T T T

: courant de substance de 1 & 2

PEt = mI3

Le transport de matiére & travers la paroi donne lieu & une production interne d’entropie,

Vu le régime stationnaire, on a 0 = Ifgn + IE‘“ + Ilg, c’est-a-dire, Ifg’“t =

Questions et réponses au verso !

IIg =

W

T

1= m[f

— (Igvl —|—H5).



1. (0.5 point) Pour quelle raison peut-on dire qu’on doit avoir une relation de la forme,

1 — pz = RoI¥? (Rc > 0 peut étre vu comme une résistance chimique)

2. (1.0 poir}t) Avec la relation ci-dessus et celles de la donnée, montrer qu'on a U = 0 compte
tenu de U = Py’ + Po' + PC%‘“ + P2". Faire les développements sur les feuilles annexes. Ce
résultat est attendu, car le systéme est en régime stationnaire.

3. (1.0 point) On appelle P la puissance chimique que l'environnement fournit au systéme.
Montrer que,

12
P = (1 —p2)ly
Faire les développements sur les feuilles années. Reportez ici en termes de I}f, les sommes
partielles suivantes,

PS4+ P8 =... P+ PR = ...

4. (0.5 point) Trouver une expression de P en terme de 1}12 seulement (pas une expression qui
contient uq et usg),



SOLUTIONS

1. (0.5 point) Pour quelle raison peut-on dire qu’on doit avoir une relation de la forme,

1 — pz = RoI¥? (Rc > 0 peut étre vu comme une résistance chimique)

Le deuxiéme principe exige que ILg > 0. La relation proposée donne Ilg = (R¢/T)(I2)?, qui
est défini positif.
2. (1.0 point) Avec la relation ci-dessus et celles de la donnée, montrer qu’on a U = 0 compte

tenu de U = P(g‘ + Pic? + Pé‘“ + Pg}m. Faire les développements sur les feuilles annexes. . Ce
résultat doit étre attendu, car le systéme est en régime stationnaire.

Le bilan d’énergie pour le systéme entier, avec les relations de la donnée, s’écrit,

U =TI+ mI} +TI§" + oI
= TIF +TIF" + (1 — p2) I
=TIP +TI 415 =0

Quand on réfléchit au sens physique de ce qui vient ci-dessous, il est intéressant de noter qu’on
a obtenu ici,
U=TI}+TI" + Po = —Tlg + Pc

On voit donc ici déja que dans ’état stationnaire la puissance chimique Pp fournie au systéme
compense la dissipation TTlg. La dissipation correspond donc bien a I’idée intuitive qu’on a &
propos du frottement mécanique.

3. (1.0 point) On appelle P la puissance chimique que lenvironnement fournit au systéme.
Montrer que,
12
P = (1 —p2)ly

Faire les développements sur les feuilles années. Reportez ici en termes de 12,
Py + PR = ... P4+ P = ..

On a donc P = Pic? + Pg“. Ces deux termes apparaissent déja dans les développements de la
réponse a la question précédente et le résultat pour P est alors immeédiat. Autre approche : de
la question 2, on tire Pg + P = _Pégn — Péut. Les deux transferts thermiques sont réversibles
(car a la frontiére du systéme), donc PgUrngut = fTIfgn legut = TTlg. Avec IIg de la donnée,
on trouve alors, P = P 4+ P2 = (3 — pg)I 2.

La question suivante n’apporte pas grand chose (elle ne devrait pas étre gardée dans un exer-
cice). On peut écrire,

P 4 PB = TIP + I} P + PE™ =TI — po I}

Hors examen, pourrait étre dans un exercice

Il est intéressant de noter que les expressions pour P(i/? et P2 peuvent étre écrire ainsi parce que
la porte d’entrée et la porte de sortie du systéme constitute des transferts réversibles. Comme la
donnée implicitement signifiait que ces deux portes sont a la frontiére du systéme étudié, il était
correct de présumer que ces transferts étaient réversibles, une convention adoptée dans tout
le cours. En revanche, les transferts PéQ et Po21 sont irréversibles. On ne peut pas appliquer
la formule du cas réversible. On peut cependant dire comme au cours que Pé? = m[}f et que



PZ = 1y (—I12), ot le potentiel chimique est celui de la destination du courant de matiére. On
trouve alors la relation intéressante suivante,

PR+ P = ( — )i} = P

C’est dire que l'irréversibilité P, qui on I’a vu vaut T1lg est la raison pour laquelle PéQ % —Pg}.

On peut encore faire le calcul suivant,beaucoup plus délicat & conduire correctement, car on
traite de sous-systémes pour lesquels il existe un courant de chaleur a la paroi entre les deux,
la& ot une irréversibilité a lieu. On fait le bilan d’énergie pour les deux sous-systémes, ce qui
s’écrit :

Uy =0=P8+ Py + P¢ +P3

Uy =0=P3" + P3" + P+ PY

En sommant ces deux équations, on trouve,
Pgl + P12 — _ (Pg?l +PC122) = Pél +P21 — _ (Pcva + P6122)

Le sens physique de ce résultat devient clair si on se rapporte & la définition de la densité de
courant d’énergie interne. On réalise alors que P(%l + szl représente le courant Illf d’énergie
interne de 1 & 2 et de méme pour P(lj2 + ng. Le présent calcul about ainsi a la relation pour
le courant d’énergie interne : I}2 = —1(2]1.

. (0.5 point) Trouver une expression de P en terme de I}f seulement (pas une expression qui
contient uq et u2),

1 suffit d’appliquer dans P = (1 — po)I? la relation 3 — g = Rl pour obtenir,
P = Re(I)?

On remarque que ce résultat ressemble totalement & I’expression de l'effet Joule pour un courant
électrique I dans une résistance (électrique) R, P = RI>.
Pour la deuxiéme expression, on exploite ce qu’on a déja trouvé a la premiére question :
Ils = (Rc/T)(I}2)% On en tire,

P ="TIlg

La puissance qu’il faut fournir est directement associée a la production interne d’entropie. C’est
un résultat qui est intuitif quand on pense a 'effet Joule en ce sens que la puissance électrique
de chauffage vaut RI?.



Hors examen, pourrait étre dans un exercice

On n’a pas posé la question suivante, parce qu’elle couvre une matiére déja testée au probléme 3 de
cet examen.

Question : Pour le cas d'un gaz pour lequel on a pV = NRT, et dans la limite AM < M, trouver
une expression de p1 — po en fonction de T' et du rapport AM < M.

Réponse :

Cherchons comment le potentiel chimique dépend de la pression. On a une relation de Maxwell qu’on

déduit de dG = —SdT + Vdp + pudN,

Op_ OV _RT
op IV p

Par intégration, on en déduit,

~ RT——
M

(T, p) = p(T, po) + RT In <5> = u; — p2 = RT'In (]91) = RTIn < 7
0

M—i—AM) AM
b2
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C. Thermophorése, force entropique (3/10 points)

On considére un fluide composé de deux substances, notées A et B contenues dans un tube trés long,
si bien que la concentration locale au voisinage du milieu du tube peut étre considérée homogéne. Le
fluide est soumis au temps ¢ = 0 & un gradient de température VT constant. On observe dés que VT
est appliqué que les substances diffusent 'une par rapport & 'autre. Plus précisément, si on note les
densités de courants de matiére 54 et 3B, on a au voisinage du milieu du tube,

ja—jJjp=A5=—KVT a une dimension

Le probléme analyse cette situation en appliquant les relations d’Onsager pour obtenir une expression
de K en termes des propriétés de diffusion des composants A et B. L’analyse sera conduite pour un
transport ayant lieu dans une direction seulement (probléme & une dimension).

On utilisera les notations suivantes,
- Dénergie libre de Gibbs de tout le fluide, G(T,p, Na, Ng) = uaNa + upNp,
- le nombre total de moles N = Ny + Ng ou Ny et Np sont les quantités de substances A et B,
- la concentration ¢ = N4 /N, et par conséquent Ny = cN et Ng = (1 —¢)N,

- Dénergie libre de Gibbs par mole g(7,p, N,c¢) = G(T,p, Na, Ng)/N, ou g est écrite comme une
fonction des variables ¢ et N qui correspondent aux quantités de matiére Ny et Np,

- les potentiels chimiques sont définis comme py = 0G/ON4 et up = 0G/ONp,
- Ap=pa—ps,
- les masses molaires des substances, m4 et mp.

On admet les relations d’Onsager suivantes pour d’écrire les lois de transport (& une dimension) dans
ce fluide,
<jA> _ (LAA 0 > (-VMA)
JB 0 L) \—Vus

Quand il n’y a pas de courant convectif, la vitesse du centre de masse de n’importe quel petit élément
de volume de matiére est nulle, c’est-a -dire que le champ de vitesse v = 0. On a alors une conservation
de la quantité de mouvement qui s’écrit,

maja+mpjip =0

Pour ce probléme & une dimension, on appliquera donc ma j4a +mpjp = 0.

Questions et réponses au verso !



. (0.5 point) En développant la différentielle

G 1 dN

=S 14
montrer sur les feuilles annexes que dg(T,p, N, c) = WdT + Ndp + (na — pp)de.

En déduire dg/dec.
99 _
B = e

. (0.5 point) Donner une raison pour laquelle dg/ON = 0.

. 0Ap _ _O(S/N)
. (0.5 point) Montrer que T e

. (1.0 point) Partant des relations d’Onsager données et la relation my j4 +mpjp = 0, montrer
par des calculs en annexe que

—mp . ma

A \Y4 = Aj
ma+mp)Laa J HE (ma+mp)Lpp J

Vg =
(

. (0.5 point) La pression p est homogéne dans le tube. On considére le cas d’'un tube trés long, si
bien que c est également homogéne dans la région centrale du tube. Par conséquent, les potentiels
A
chimiques et Ap ne dépendent que de la température, ce qui implique que VAu = T;VT.
9(S/N)

Montrer que Aj = —KVT avec K exprimé en termes de L a4, Lpp, 3 .
c




1. (0.5 point) En développant la différentielle
G 1 dN
dg=d( ) =2do— a2
g <N> RS
. -5 1%
montrer sur les feuilles annexes que dg(T,p, N, c) = WdT + Ndp + (pa — pp)de.

En déduire dg/dec.

99 _
de

Développons en utilisant Ng = N — Ny,

dN

G 1

N

1 dN
= (=SdT + Vdp + j1adNa + ppdNp) — (MANA ¥ ,uBNB) o

1 dN
= - (=8dT + Vap -+ juadNa+ upd(N —~ Na) — (malNa + us(N ~ Na)) T3
. -5 Vv dN 4 Ny
=~ T @+ (ha = pp) 7~ = (ka — pp) R dN
-5V Ng NadN Ny
=~ Tyt (ha—n5) (d (N > + 7 ) (1A = nB) 37z dN

Les termes en dN s’annulent et il reste le résultat annoncé. De la différentielle, on tire immé-
diatement que Ap est la grandeur conjuguée de la concentration ¢, en ce sens que,

_ 9%

Ay =
'u(?c

2. (0.5 point) Donner une raison pour laquelle dg/ON = 0.

On peut simplement le déduire de la forme donnée de la différentielle dg. Alternativement, on
peut argumenter que g est une grandeur molaire, donc elle ne peut pas dépendre de la quantité
totale de substance. Formellement, on peut ’exprimer ainsi. La fonction g & T, p et ¢ donnés
est une fonction caractéristique du mélange et ne dépend pas de la quantité de fluide qu’on
considére. Ce qu’on pourrait écrire : g(T',p, AN, ¢) = g(T,p, N, ¢). 1l suffit alors de dériver cette
équation par rapport a A et prendre A = 1.
OAp  O(S/N)
ar — dc

C’est la relation de Maxwell qu’on peut déduire de 'expression de dg donnée ci-dessus.

3. (0.5 point) Montrer que

4. (1.0 point) Partant des relations d’Onsager données et la relation my j4 +mpjp = 0, montrer
par des calculs en annexe que

(ma+mp)Laa

ma
ma -+ mB)LBB

Vippa = Aj Vyup = ( Aj

Comme on cherche Vug et Vup en fonction de 5, on peut considérer que les 4 équations
suivantes ont 4 inconnues :
Jja=—LaaVpa
JjB=—LppVup
maja+mpjp =0
ja+ip=A4Aj



En appliquant les deux premiéres équations dans les deux derniéres, on a le systéme d’équations :

( —Laa +Lpp > (VMA> _ (Aj)
—maLlaaVps —mpLppVug) \Vup 0
On a deux équations & deux inconnues, Vua et Vup, qui sont trés simples & résoudre. La

matrice est inversible car son déterminant vaut (ma + mp)LaaLlpp, qui est une grandeur
non-nulle.

. (0.5 point) La pression p est homogéne dans le tube. On considére le cas d’un tube trés long, si
bien que c est également homogéne dans la région centrale du tube. Par conséquent, les potentiels

0A
chimiques et Ay ne dépendent que de la température, ce qui implique que VAu = T;VT.
O(S/N
Montrer que Aj = —KVT avec K exprimé en termes de Laa, Lpp, ((9/) On prendra ici
c

Laa= Lpg.
K =

Comme Ay ne dépend que de T, son gradient ne provient que du gradient de T, avec VAu =
OAp

a7 VT. Des valeurs trouvées pour Vuy et Vup, on tire,

-1 myg  mp ) .
Vs — Vg = + A
pa HB m4+ma <LAA Lpp J

Ce résultat a la bonne symétrie en A et B. Si on intervertit les roles de A et B, on a la méme
équation. De ce résultat, on en tire la loi de thermophorése, qui s’exprime en fonction de la
variation d’entropie avec la concentration c,

ma B >1 a(S/N)VT

A] = —(mA + mB) (LAA Lo De

o S/N est 'entropie molaire qui dépend de ¢, autrement dit, ’entropie molaire de mélange.
Ici la symétrie est cachée par le fait qu'on a noté la concentration de A par la simple lettre c.
Comme cg = 1 — ¢4, si on intervertit les roles de A et B, on a le signe de la dérivée qui change,
ce qui maintient le résultat invariant par ’échange des roles de A et B.

Remarque hors examen : si on attend assez longtemps, I’hypotheése selon laquelle VAp = 0 n’est
plus valable. Le systéme partout va atteindre un équilibre local caractérisé par j4 = jp = 0.
C’est une autre condition expérimentale, celle dans laquelle on observe Ueffet Soret (voir (11.64)
Thermodynamique éd. 2020), caractérisé par un VA uniforme dans toute la longueur du tube.
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