
Solutions to Problem Set 14
Rotation, translation, and rolling

PHYS-101(en)

1. Wheel pulled by a block
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1. Consider the system composed of the wheel and the block (i.e. the two objects in the problem that
move and have mass). Since we are asked about the state of the system at a particular position (i.e.
after the center of the wheel has traveled a distance d), it is best to use conservation of energy. If we
were asked about the system after a given amount of time t, it would be easiest to use Newton’s laws.

The forces on the wheel are gravity F⃗gw = mgŷ, the normal force from the table N⃗ = −Nŷ, and the
tension from the wire T⃗ = T x̂. Additionally, we can infer that there must be a static friction force
Ff ≤ µsN in the −x̂ direction, in order for the wheel to roll without slipping. The forces on the block
are gravity F⃗gb = mgŷ and the tension force from the wire T⃗ = −T ŷ. The tension in the wire at the
block must be equal in magnitude to the tension at the wheel as both the rope and pulley are massless.

Since tension is an internal force that does not dissipate any energy, the only nonconservative forces
that could be doing work on the system are the normal force N⃗ and the friction force F⃗f . However,
since the wheel is rolling without slipping, both forces are not being applied over a distance, just at
a changing but always stationary point. This is analogous to a box sitting on a table. You can push
the box slightly and static friction will keep it at rest by opposing the applied force. In this case,
friction does no work as the box is stationary the entire time, so the force is applied over zero distance.
Another way to see this is by considering the power P = F⃗ · v⃗. Since the velocity of the point of the
wheel in contact with the ground is v⃗ = 0, the power is clearly P = 0. Since the power P = dW/dt
is also the time derivative of the work W , the work must be a constant value throughout the motion
of the block. Since the amount of work done by the friction and normal forces on the wheel is zero
initially (as the system has yet to start to move), this means they never do any work. Thus mechanical
energy is conserved throughout the motion of the system.
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The total mechanical energy of the system is given by

Em = Krot
w +Ktrans

w +Ktrans
b + Ugb ⇒ Em =

Iw
2
ω2
w +

m

2
v2w +

m

2
v2b −mgyb (1)

⇒ Em =
m

4
R2ω2

w +
m

2
v2w +

m

2
v2b −mgyb, (2)

where Krot
w is the rotational kinetic energy of the wheel, Ktrans

w is the translational kinetic energy
of the wheel, Ktrans

b is the translational kinetic energy of the falling block, Ugb is the gravitational
potential energy of the block,

Iw =
m

2
R2 (3)

is the moment of inertia of the uniform solid wheel rotating about its center, ωw is the angular speed
of the wheel, vw is the speed of the center of mass of the wheel, vb is the speed of the block, and we
have defined a Cartesian coordinate system as shown in the figure above. Using the no-slip condition,
we know that the speed of the center of the wheel is

vw = Rωw ⇒ ωw =
vw
R

. (4)

Substituting this into equation (2) gives

Em =
m

4
R2

(vw
R

)2

+
m

2
v2w +

m

2
v2b −mgyb ⇒ Em =

3

4
mv2w +

m

2
v2b −mgyb. (5)

Since the wire is inextensible and we have carefully defined our coordinate system such that xw = 0
and yb = 0 initially, we can see the constraint condition is yb = xw. Taking a derivative in time gives

vb = vw. (6)

Substituting these two relations into equation (5) gives

Em =
3

4
mv2w +

m

2
v2w −mgxw =

5

4
mv2w −mgxw. (7)

Now we can apply conservation of mechanical energy between the initial state (when everything is at
rest) and the final state (when the center of the wheel has moved by a distance xw = d) to find

0− 0 =
5

4
mv2w −mgd, (8)

where we have take the reference point for the gravitational potential energy of each object to be their
initial location. Solving for the final velocity of the center of the wheel gives

vw =

√
4

5
gd. (9)

2. For the wheel not to slip, the static friction force must not exceed its maximum magnitude of

Ff ≤ µsN. (10)

Drawing a free body diagram for the wheel and looking at Newton’s second law in the vertical direction
shows that the normal force has a magnitude of N = mg. Thus, we find

Ff ≤ µsmg. (11)
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By rearranging we find that the coefficient of static friction must be sufficiently high to satisfy

µs ≥
Ff

mg
, (12)

otherwise the wheel will slip.

In order to determine Ff , we must analyze the entire system. We can apply Newton’s second law to
the wheel to get the equation∑

Fwx = maw ⇒ T − Ff = m
dvw
dt

⇒ T = Ff +m
dvw
dt

(13)

in the horizontal direction, where aw is the acceleration of the center of the wheel. Applying Newton’s
second law to the falling block and substituting equation (13) gives∑

Fby = mab ⇒ mg − T = m
dvb
dt

⇒ mg − Ff −m
dvw
dt

= m
dvb
dt

. (14)

From the constraint condition of equation (6), we find

mg − Ff −m
dvw
dt

= m
dvw
dt

⇒ mg − Ff = 2m
dvw
dt

⇒ dvw
dt

=
g

2
− Ff

2m
. (15)

Lastly, applying Newton’s second law for the rotational motion of the wheel about its center gives∑
τ⃗w = Iwα⃗w ⇒ Rŷ × F⃗f = Iw

dωw

dt
ẑ ⇒ Rŷ × (−Ff x̂) = Iw

dωw

dt
⇒ Ff =

Iw
R

dωw

dt
(16)

in the ẑ direction, where α⃗w is the angular acceleration of the wheel (which is the derivative of the
angular velocity ω⃗w). There are no other torques on the wheel because tension and gravity act at
the pivot point and the normal force is anti-parallel to the position vector to its point of application
(i.e. the cross product in the torque evaluates to zero). Substituting equations (3), (4), and (15) into
equation (16) gives

Ff =
1

R

(m
2
R2

)(
1

R

dvw
dt

)
=

m

2

(
g

2
− Ff

2m

)
=

1

4
mg − 1

4
Ff , (17)

which can be rearranged to show

Ff =
1

5
mg. (18)

Substituting this into equation (12) reveals the condition on the static coefficient of friction to be

µs ≥
1

5
= 0.2. (19)

This is quite a fundamental solution as we see that it is independent of the mass m and radius R. The
main requirement for it to be applicable is that the wheel and block must have the same mass.
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2. Donkey cart
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1. Due to the symmetry of the system, the free body diagram for all of the wheels is identical and is
shown above. There are four forces on each wheel: gravity acting at the center of mass of the wheel
(i.e. the center of the wheel), the normal force from the axle of the cart, the normal force from the
ground, and the static friction force from the ground.

2. To approach this problem, it is best to first think about which objects are moving together and the
different types of motion that are occurring. Since the wheels and the body of the cart are attached via
the axles, the translational motion of the centers of the wheels and the cart must be identical. Thus,
we can consider the cart-wheels system as a whole and write Newton’s second law in the horizontal
direction as ∑

F⃗ = (M + 4m) a⃗ ⇒ Fd − 4Ff = (M + 4m) a, (1)

where a is the acceleration of the cart as well as the centers of the wheels. Note that all other forces
are internal forces within the cart-wheels system, so they cancel due to Newton’s third law.

However, there is one other type of motion, which is the rotation of the wheels. Enforcing the no-
slip condition will allow us to relate the frictional force causing the rotation of the wheels with the
translational motion of the whole cart. We start by writing Newton’s second law for the rotation of a
single wheel in the ẑ direction as∑

τ⃗ = Iwα⃗ ⇒ R⃗f × F⃗f =
m

8
d2α⃗ ⇒

(
−d

2
ŷ

)
×(−Ff x̂) = −m

8
d2

dω

dt
ẑ ⇒ Ff =

m

4
d
dω

dt
, (2)

where Iw = m(d/2)2/2 = md2/8 is the moment of inertia of the wheel about its axle, α⃗ is the angular
acceleration of the wheel, R⃗f is the position vector from the axle to the point of application of the
friction force, and ω is the angular velocity of the wheel in the ẑ direction. The condition for rolling
without slipping is given by

ω =
v

d/2
, (3)

where v is the translational velocity of the center of the wheel (as well as the cart as a whole).

Substituting this into equation (2) gives

Ff =
m

4
d

(
2

d

dv

dt

)
=

m

2
a. (4)

Substituting this into equation (1) allows us to find

Fd − 4
(m
2
a
)
= (M + 4m) a ⇒ Fd = (M + 6m) a ⇒ a =

Fd

M + 6m
. (5)
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Since the acceleration is constant, it is straightforward to integrate this to find that the velocity is

v(t) = at+ v0 = at =
Fd

M + 6m
t, (6)

where the problem statement tells us that the initial velocity is v0 = 0. Plugging in the numerical
values into equations (5) and (6) gives a = 0.94 m/s2 and v = 2.8 m/s after t = 3 seconds respectively.

3. To calculate the required coefficient of static friction to enable rolling without slipping, we first must
calculate the magnitude of the static friction force. This can be found by substituting equation (5)
into equation (4) to see

Ff =
m

2

Fd

M + 6m
. (7)

We then require that this force be less than the maximum possible static friction force

Ff ≤ µsNg ⇒ m

2

Fd

M + 6m
≤ µsNg ⇒ µs ≥

m

2

1

Ng

Fd

M + 6m
. (8)

The normal force can be found through the vertical component of Newton’s second law on the entire
cart-wheels system according to∑

F⃗ = (M + 4m) a⃗ ⇒ 4Ng−Fg = 0 ⇒ 4Ng−(M + 4m) g = 0 ⇒ Ng =
1

4
(M + 4m) g (9)

as the acceleration in the ŷ direction is zero. Substituting this into equation (8) gives

µs ≥
m

2

4

(M + 4m) g

Fd

M + 6m
⇒ µs ≥

2m

M + 4m

Fd

(M + 6m) g
. (10)

Plugging in the numerical values from the problem statements yields

µs ≥ 0.014. (11)

Remarkably, we see that the diameter of the wheel has no influence on the answer.

3. The hanging spider

x

x = 0

x = xeq
mg

Fs

k

1. We will choose to use a one-dimensional Cartesian coordinate system with the origin defined to be the
location of the ceiling. If the spider were located at x = 0, the spring would have a length of zero.
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Thus, the equilibrium position of the spring is at x = L, but this is different than the equilibrium
position of the spider (due to the presence of the gravitational force). We show a free body diagram
above, but note that the spring force can point either up or down depending on the location of the
spider. The equilibrium position of the spider xeq is where the sum of the forces are equal to zero (i.e.
the acceleration is a = 0). This is the definition of “equilibrium.” Using Newton’s second law and the
form of the spring force

Fs = k (x− L) , (1)

we find
mg − Fs = 0 ⇒ mg − k (xeq − L) = 0 ⇒ xeq = L+

m

k
g, (2)

where we know that for equilibrium the spring force must be pointing up to counteract gravity.

2. The equation of motion is also found from Newton’s second law, but allowing the spider to be at other
positions than the equilibrium position (such that the acceleration a is not necessarily zero). At any
arbitrary x location, Newton’s second law is

mg − Fs = ma ⇒ mg − k (x− L) = m
d2x

dt2
⇒ d2x

dt2
+

k

m
x =

k

m
L+ g. (3)

This is the equation of motion for the spider.

3. The problem statement tells us that the general solution to equation (3) has the form

x(t) = A cos (ω0t+ φ) + x. (4)

We can find the values of the constants by substituting equation (4) into equation (3). We start by
taking the first and second derivatives to find the velocity and acceleration of the spider to be

v(t) =
dx

dt
= −Aω0 sin (ω0t+ φ) (5)

a(t) =
d2x

dt2
= −Aω2

0 cos (ω0t+ φ) (6)

respectively. Substituting equations (4) and (6) into equation (3), we find

−Aω2
0 cos (ω0t+ φ) +

k

m
(A cos (ω0t+ φ) + x) =

k

m
L+ g (7)

⇒
(

k

m
− ω2

0

)
A cos (ω0t+ φ) =

k

m
L+ g − k

m
x. (8)

To solve this equation, we note that the time t is an independent parameter and equation (8) must be
satisfied for all values of t. This means that we can separate the equation based on terms with different
functional dependences on time (i.e. the terms proportional to cos (ω0t+ φ) and those constant with
t) and require them to zero independently (e.g. equations (9) and (11) below). Equivalently, we can
simply evaluate equation (8) at t = (π/2− φ)/ω0 to find(

k

m
− ω2

0

)
A cos

(
ω0

(
π/2− φ

ω0

)
+ φ

)
=

k

m
L+ g − k

m
x ⇒ 0 =

k

m
L+ g − k

m
x (9)

⇒ x = L+
m

k
g, (10)

where we note from equation (2) that x = xeq. Then we can substitute this result into equation (8) at
any arbitrary time t to get(

k

m
− ω2

0

)
A cos (ω0t+ φ) =

k

m
L+ g − k

m

(
L+

m

k
g
)

⇒
(

k

m
− ω2

0

)
A cos (ω0t+ φ) = 0 (11)

⇒ k

m
− ω2

0 = 0 ⇒ ω0 =

√
k

m
. (12)
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4. The problem states that at time t0 the velocity of the spider is v(t0) = 0 and the spring does not exert
a force on the spider. We can use equation (5) to see that the first condition is equivalent to

v(t0) = 0 = −Aω0 sin (ω0t0 + φ) ⇒ 0 = sin (ω0t0 + φ) . (13)

The sine function evaluates to zero when its argument equals nπ for some integer n ∈ Z. We are free
to arbitrarily choose any integer value of n as they all satisfy the equation. This implies that

ω0t0 + φ = nπ ⇒ φ = nπ − ω0t0. (14)

Using equations (1) and (4), we see that the second condition corresponds to

Fs (t0) = 0 = k (x (t0)− L) ⇒ x (t0) = L ⇒ A cos (ω0t0 + φ) + x = L. (15)

The condition x (t0) = L makes sense. It is saying that, if the force exerted by the spring is zero at
t = t0, the spider must be starting at the equilibrium position of the spring L. Substituting equations
(10) and (14) gives

A cos (ω0t0 + (nπ − ω0t0)) +
(
L+

m

k
g
)
= L ⇒ A cos (nπ) = −m

k
g (16)

⇒ A (−1)
n
= −m

k
g ⇒ A = − (−1)

n m

k
g ⇒ A = ±m

k
g. (17)

This indicates that there are two possible solutions: the plus sign (corresponding to odd values of n)
or the minus sign (corresponding to even values of n). However, we can show that these two solutions
are physically identical. If we take the solution with the positive sign (i.e. choosing any odd value of
n) and substitute it into equation (4) along with equation (14), we can determine the position to be

x(t) =
(m
k
g
)
cos (ω0t+ (nπ − ω0t0)) + x =

m

k
g cos (ω0 (t− t0) + nπ) + x. (18)

In the same way, we can determine the position corresponding to the solution with the negative sign
(i.e. choosing any even value of n) to be

x(t) =
(
−m

k
g
)
cos (ω0t+ (nπ − ω0t0)) + x = −m

k
g cos (ω0 (t− t0) + nπ) + x (19)

=
m

k
g cos (ω0 (t− t0) + nπ + π) + x =

m

k
g cos (ω0 (t− t0) + (n+ 1)π) + x (20)

using a trigonometric identity to remove the negative sign out in front. The only difference between
equation (18) and equation (20) is the choice of n, which is arbitrary. Thus, without loss of generality,
we can take n = 1 meaning that equations (14) and (17) become

φ = π − ω0t0 (21)

A =
m

k
g. (22)

5. The maximum speed of the spider can be found by substituting equation (22) into equation (5) to get

v(t) = −
(m
k
g
)
ω0 sin (ω0t+ φ) . (23)

The maximum of this function occurs at the time that sin (ω0t+ φ) = −1. This leads to a maximum
speed of

v(t) =
m

k
gω0 =

m

k
g

√
k

m
= g

√
m

k
, (24)

where we have used equation (12).
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6. We can substitute equations (4), (5), and (12) into the expression for E in the problem statement to
find

E =
k

2
((A cos (ω0t+ φ) + x)− x)

2
+

m

2
(−Aω0 sin (ω0t+ φ))

2 (25)

=
k

2
A2 cos2 (ω0t+ φ) +

m

2
A2

(
k

m

)
sin2 (ω0t+ φ) (26)

=
k

2
A2

(
cos2 (ω0t+ φ) + sin2 (ω0t+ φ)

)
=

k

2
A2 (27)

using the trigonometric identity sin2 θ+ cos2 θ = 1. In this formula E, represents the total mechanical
energy of the system, which is a constant as there are no nonconservative forces acting on the system.
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