
Solutions to Problem Set 13
Harmonic motion and gyroscopes

PHYS-101(en)

1. Gyroscope

1. Since we are interesting in finding the additional force required to achieve particular motion, we can
ignore the force of gravity. The only forces we must consider are the additional force from the demon-
strator’s hand on the right end of the bar F⃗r and the additional force from the demonstrator’s hand on
the left end of the bar F⃗l. Note that here the subscript r indicate the right end of the bar, while the
subscript l indicates the left. If the gyroscope is displaced in a direction parallel to its axis of rotation,
there is no change in angular momentum. Since dL⃗/dt = 0, the net torque can be found to be

τ⃗net =
dL⃗

dt
= 0 (1)

from Newton’s second law for rotation, where we recall that a torque is defined to be τ⃗ = r⃗× F⃗ . Thus,
since F⃗r is applied at r⃗r = ℓx̂ and F⃗l is applied at r⃗l = −ℓx̂, they must satisfy

τ⃗net = τ⃗r + τ⃗l = r⃗r × F⃗r + r⃗l × F⃗l = ℓx̂× F⃗r − ℓx̂× F⃗l = 0 ⇒ x̂×
(
F⃗r − F⃗l

)
= 0. (2)

Note that we have defined the origin to be the initial position of the center of the wheel.

a

̂x̂y

̂z

To accelerate a mass M , we need a net force F⃗net given by Newton’s second law of

F⃗net = Ma⃗ = Max̂. (3)

Thus, the additional forces from the demonstrator’s hands must also satisfy

F⃗r + F⃗l = Max̂ ⇒ F⃗l = Max̂− F⃗r. (4)

Substituting equation (4) into equation (2) gives

x̂×
(
F⃗r −

(
Max̂− F⃗r

))
= 0 ⇒ x̂× F⃗r = 0. (5)
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as x̂× x̂ = 0. Writing out F⃗r = Frxx̂+Fry ŷ+Frz ẑ component-by-component in Cartesian coordinates
allows us to reformulate the equation as

x̂× (Frxx̂+ Fry ŷ + Frz ẑ) = 0 ⇒ Fry ẑ − Frz ŷ = 0. (6)

If we take the dot product of this equation with ẑ, we see that Fry = 0 and if we take the dot product
of this equation with ŷ, we see that Frz = 0. This implies that

F⃗r = Frxx̂ = Frx̂ (7)

must be purely in the x̂ direction. Through substitution into equation (4), we see that the same is true
for

F⃗l = Max̂− Frx̂ = (Ma− Fr) x̂ = Flx̂. (8)

Taking the dot product of both sides of this equation with x̂, we find

Ma− Fr = Fl ⇒ Fr + Fl = Ma. (9)

Thus, the additional forces from each hand must only have an x̂ component and satisfy Fr +Fl = Ma.

2. This problem is tricky because there are two different types of rotation. There is the rotation of the
hoop about the axis, which has a constant magnitude ωh that starts out in the x̂ direction at t = 0.
However, it changes direction because the bar is made to rotate about its center with a constant angular
velocity ωbẑ. The second type of rotation (i.e. the rotation of the bar in the x-y plane) causes the
angular momentum to change. To quantify this second type of rotation, we will use the cylindrical
coordinate system shown in the figure below (which shows the wheel from a top view relative to the
figure in the problem statement).

ωh

̂ϕ
ωh

̂x̂z

̂y ̂ρ
̂z

̂ϕ

We can write the total angular momentum of the system (including both types of rotation) as

L⃗sys = L⃗h + L⃗b = Ihωhρ̂+ Ibωbẑ, (10)

where ρ̂ is changing with time and the subscripts h and b indicate the hoop and bar respectively.
The hoop is thin and rotating about its center, so its moment of inertia is Ih = MR2. The bar is
massless, but its rotation also rotates the hoop about its diameter. Thus, it has a moment of inertia
of Ib = MR2/2, which we have found from a table noting that the hoop is thin (meaning it has zero
width). Substituting these values into equation (10), we find

L⃗sys = MR2ωhρ̂+
M

2
R2ωbẑ. (11)
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A change in angular momentum is always caused by a net torque, which can be found from Newton’s
second law for rotation

τ⃗net =
dL⃗sys

dt
. (12)

Substituting equation (11) gives

τ⃗net =
d

dt

(
MR2ωhρ̂+

M

2
R2ωbẑ

)
= MR2ωh

dρ̂

dt
. (13)

In lecture 4a, we calculated the derivatives of the cylindrical unit vectors, finding that dρ̂/dt = (dϕ/dt)ϕ̂.
Since the bar is changing angular position ϕ at a constant angular speed ωb = dϕ/dt, we can write
dρ̂/dt = ωbϕ̂. Substituting this into equation (13) produces

τ⃗net = MR2ωhωbϕ̂. (14)

This torque must arise from the forces applied at the end of the bar by the demonstrator’s hands.
Thus, analogously to equation 2, we have

τ⃗net = τ⃗r + τ⃗l = r⃗r × F⃗r + r⃗l × F⃗l = ℓρ̂× F⃗r − ℓρ̂× F⃗l = MR2ωhωbϕ̂ (15)

⇒ ρ̂×
(
F⃗r − F⃗l

)
=

MR2

ℓ
ωhωbϕ̂, (16)

where we must take into account the rotation of the bar into our expression for the radial position of
the demonstrator’s hands by using ρ̂ instead of x̂.

Additionally, we know that the center of the bar (i.e. the center of mass of the system) has no
translational motion. Thus, by Newton’s first law, the net force must be equal to

F⃗net = F⃗r + F⃗l = 0 ⇒ F⃗l = −F⃗r. (17)

Substituting this into equation (16) gives

ρ̂×
(
F⃗r + F⃗r

)
=

MR2

ℓ
ωhωbϕ̂ ⇒ ρ̂× F⃗r =

MR2

2ℓ
ωhωbϕ̂. (18)

Writing out F⃗r = Frρρ̂+ Frϕϕ̂+ Frz ẑ component-by-component in cylindrical coordinates shows that

ρ̂×
(
Frρρ̂+ Frϕϕ̂+ Frz ẑ

)
=

MR2

2ℓ
ωhωbϕ̂ ⇒ Frϕẑ − Frzϕ̂ =

MR2

2ℓ
ωhωbϕ̂. (19)

Looking at each component of this equation, we see that we must have Frϕ = 0 and

−Frz =
MR2

2ℓ
ωhωb ⇒ Frz = −MR2

2ℓ
ωhωb. (20)

Plugging this into equation (17) shows that Flϕ = 0 and

Flz =
MR2

2ℓ
ωhωb. (21)

Thus, our final answer is

F⃗r = Fρrρ̂−
MR2

2ℓ
ωhωbẑ (22)

F⃗l = −Fρrρ̂+
MR2

2ℓ
ωhωbẑ. (23)
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We see that the radial component of the force in unconstrained as long as it is equal and opposite
according to equation (17). This is intuitive as the tension in the bar will transmit the force along the
bar, while not affecting its motion. Less intuitive is the fact that, to get the bar to rotate in the ϕ̂
direction, you must apply forces in the ẑ direction. This is the nature of a gyroscope — applying a
force creates motion in a perpendicular direction.

2. Simple pendulum

Below is the free body diagram for the point mass of the simple pendulum in polar coordinates at an arbitrary
angular position of ϕ. We define a polar coordinate system, which is natural for describing the rotational
motion of the mass. Additionally, we define a Cartesian coordinate system such that the polar angle ϕ
measures the angle from the x axis towards the positive y axis (as is conventional).

m

Lϕ

ϕ

ϕ

mg

T

̂ϕ
̂ρ̂x

̂yx

O

1. We can solve part one in two ways: using Newton’s second law or conservation of energy.

Using Newton’s second law: At a given angular position, the gravitational force on the point mass
is given by

F⃗g = mgx̂ = mg
(
cosϕρ̂− sinϕϕ̂

)
, (1)

where we have related the Cartesian and polar unit vectors using the formula x̂ = cosϕρ̂− sinϕϕ̂ from
lecture 4a. We can calculate the tension from the radial component of Newton’s second law using the
centripetal acceleration a⃗cent = −(v2ϕ/L)ρ̂ to get

mg cosϕ− T = macent = −m
v2ϕ
L

⇒ T = mg cosϕ+m
v2ϕ
L
, (2)

where vϕ is the speed of the point mass (which is purely tangential). However, this will not be needed
for to solve the problem. Instead, the tangential component of Newton’s second law is useful

−mg sinϕ = maϕ ⇒ −g sinϕ = aϕ. (3)

The form of the acceleration in polar coordinates is given by

a⃗ =
(
ρ̈− ρϕ̇2

)
ρ̂+

(
ρϕ̈+ 2ρ̇ϕ̇

)
ϕ̂. (4)
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Since ρ = L is a constant, we have ρ̇ = 0 and we can substitute the tangential component of equation
(4) into equation (3) to find

−g sinϕ = L
d2ϕ

dt2
⇒ d2ϕ

dt2
+

g

L
sinϕ = 0. (5)

Using the small angle approximation sinϕ ≈ ϕ gives the differential equation of a simple harmonic
oscillator

d2ϕ

dt2
+

g

L
ϕ = 0. (6)

Using conservation of energy: Since all of the forces acting on the pendulum are conservative, we
can impose conservation of mechanical energy

Em0 = Emf (7)

between the initial state described in the problem (denoted by the subscript 0) and the final state when
the pendulum is at any arbitrary angular position ϕ (denoted by the subscript f). The only forces
involved are gravity, so equation (7) is

K0 + Ug0 = Kf + Ugf . (8)

The system is released from rest, so K0 = 0. Additionally, we will define the reference point for the
gravitational potential energy to be the origin O of our polar coordinate system (i.e. the location of
the pivot point at the top of the string). Given the Cartesian coordinate system shown above, the
gravitational potential energy of the point mass is given by

Ug = −mgx = −mgρ cosϕ = −mgL cosϕ, (9)

where we have expressed the Cartesian coordinate x in polar coordinates using the formula x = ρ cosϕ
from lecture 4a. Substituting this, K0 = 0, and the form of the rotational kinetic energy K = (I/2)ω2

into equation (8) gives

0−mgL cosϕ0 =
I

2
ω2 −mgL cosϕ, (10)

where ω is the angular speed. For a point mass located a distance ρ = L away from the axis of rotation,
the moment of inertia is I = mL2. Employing this and taking the time derivative of equation (10)
using the chain rule yields

0 =
mL2

2

(
2ω

dω

dt

)
+mgL sinϕ

dϕ

dt
⇒ 0 = Lω

dω

dt
+ g sinϕ

dϕ

dt
. (11)

Identifying that ω = dϕ/dt produces

0 = Lω
d2ϕ

dt2
+ gω sinϕ ⇒ d2ϕ

dt2
+

g

L
sinϕ = 0, (12)

which is identical to equation (5). Thus, energy conservation gives the same answer as Newton’s second
law.

2. The differential equation for a simple harmonic oscillator has the form

d2ϕ

dt2
+ ω2

0ϕ = 0, (13)

where ω0 is the angular frequency of oscillation. Thus, by comparison with equation (6), we see that

ω0 =

√
g

L
. (14)
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To get the frequency f0 (i.e. the number of oscillations per second) from the angular frequency (i.e.
the average number of radians the object completes in its oscillation per second), we use the fact that
one oscillation corresponds to 2π radians. This means that ω0 = 2πf0, so

f0 =
1

2π

√
g

L
. (15)

3. The period is the time it takes for the object to complete a full oscillation (i.e. the number of seconds
per oscillation). This is simply the inverse of the number of oscillations per second (i.e. the frequency).
Thus, using T0 = 1/f0 we find the period to be

T0 = 2π

√
L

g
. (16)

4. The angular velocity of the point mass at a given location is easiest to calculate from conservation of
energy. We can take equation (10) and let ϕ = 0 to choose the final state to be when the pendulum is
at the bottom of its swing

−mgL cosϕ0 =
I

2
ω2 −mgL. (17)

Given that I = mL2, we can rewrite this as

−mgL cosϕ0 =
mL2

2
ω2 −mgL ⇒ ω =

√
2
g

L
(1− cosϕ0). (18)

The translational speed v = vϕ is purely tangential, which is related to the angular speed ω through

vϕ = ρω. (19)

Substituting equation (18) and the fact that ρ = L gives

vϕ = L

√
2
g

L
(1− cosϕ0) ⇒ vϕ =

√
2gL (1− cosϕ0). (20)

5. No, these are not the same. The angular speed ω = dϕ/dt is the rate of change in the angular position
of the pendulum (where 2π radians corresponds to a full circle in our polar coordinate ϕ). The angular
frequency ω0 =

√
g/L represents the average number of radians the object completes per second (where

2π radians corresponds to a full oscillation). Moreover, the angular speed ω will change throughout
the pendulum’s motion, while the angular frequency ω0 is defined such that it is always a constant.

6. No, as shown by equation (16). Since the mass appears on both sides in Newton’s second law (see
equation (3)), it cancels out.
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