
Solutions to Problem Set 12
Angular momentum

PHYS-101(en)

1. Planetary survey

After the instrument is launched, the only force it will experience is its gravitational attraction to the planet.
This force is given by

F⃗G = −Gmpmi

r2
r̂, (1)

where r is the distance between the instrument and the center of the planet, r̂ is the radial unit vector
pointing from the center of the planet towards the instrument, and G is the universal gravitational constant.
Since this is the only force acting on the instrument, it experiences a total external torque about the center
of the planet of ∑

τ⃗ext = τ⃗G = r⃗ × F⃗G = r⃗ ×
(
−Gmpmi

r2
r̂

)
= −Gmpmi

r2
r⃗ × r̂ = 0, (2)

where we have used equation (1) and the fact that the cross product of parallel vectors is zero. Thus, since
the total external torque on the instrument about the center of the planet is zero, its angular momentum
about the center of the planet must be conserved throughout its motion. Conservation of angular momentum
is expressed as

L⃗i = L⃗f , (3)
where the angular momentum is

L⃗ = r⃗ × p⃗ = r⃗ ×miv⃗. (4)
Here p⃗ and v⃗ are the momentum and velocity of the instrument respectively. It is natural to define a
cylindrical coordinate system with its origin at the center of the planet. The initial velocity can be found
from trigonometry and the figure below to be

v⃗i = −v0 cos θr̂ + v0 sin θϕ̂. (5)

Substituting this and the initial position vector of the instrument into equation (4) gives

L⃗i = (5rpr̂)×mi

(
−v0 cos θr̂ + v0 sin θϕ̂

)
= 5rpmiv0 sin θ

(
r̂ × ϕ̂

)
= 5rpmiv0 sin θẑ. (6)

θ

vf
v0̂ϕ

⃗r
̂z

We will consider the final state to occur when the instrument just grazes the surface of the planet. At this
instant, the position vector is r⃗f = rpr̂ and the final velocity v⃗f = vf ϕ̂ is in the direction exactly tangent to
the surface. Thus, the final angular momentum is

L⃗f = (rpr̂)×mi

(
vf ϕ̂

)
= rpmivf

(
r̂ × ϕ̂

)
= rpmivf ẑ. (7)
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Plugging equations (6) and (7) into equation (3) yields

5rpmiv0 sin θẑ = rpmivf ẑ ⇒ vf = 5v0 sin θ. (8)

However, this equation still has two unknowns vf and θ, so we require another condition.

To determine the final velocity of the instrument, we can think about the situation physically. We realize that
the instrument will be accelerated as it falls into the gravitational potential of the planet. The change in speed
of the instrument can be found from conservation of mechanical energy because there are no nonconservative
forces acting on the instrument. Thus, we have

Emi = Emf ⇒ Ki + UGi = Kf + UGf . (9)

In previous problem sets, we’ve found the universal gravitational potential (with a reference point infinitely
far away) to be

UG(R) = −Gmimp

R
. (10)

Plugging this and the form of the kinetic energy into equation (9) gives

mi

2
v20 −

Gmimp

5rp
=

mi

2
v2f − Gmimp

rp
. (11)

Substituting equation (8) allows us to find the final answer of

mi

2
v20 −

Gmimp

5rp
=

mi

2
(5v0 sin θ)

2 − Gmimp

rp
⇒ (5v0 sin θ)

2 = v20 +
8Gmp

5rp
(12)

⇒ θ = sin−1

(
1

5

√
1 +

8Gmp

5v20rp

)
. (13)

2. Toy locomotive

We begin by choosing our system to consist of the locomotive and the track. Because there are no external
torques about the central vertical axis, the angular momentum of our system must remain constant about
that axis

L⃗i
sys = L⃗f

sys. (1)

The initial angular momentum of the system is

L⃗i
sys = 0 (2)

because both the locomotive and the track are at rest. The final angular momentum will be composed of
the angular momentum of the locomotive and the track according to

L⃗f
sys = L⃗f

L + L⃗f
T , (3)

where the subscripts L and T refer to the locomotive and track respectively.

The final angular momentum of the locomotive (which can be considered to be a point mass) is given by

L⃗f
L = R⃗L × p⃗L = RT r̂ ×mLv⃗L, (4)

where r⃗L is the position vector from the pivot point at the top of the vertical axis to the locomotive, p⃗L is
momentum of the locomotive in the ground reference frame, and v⃗L is the velocity of the locomotive relative
to the ground. From the figure we see that the locomotive is moving only in the ϕ̂ direction, so v⃗L = vf ϕ̂
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(where vf is the final speed relative to the floor that we are trying to determine). Plugging this into equation
(4) produces

L⃗f
L = RT r̂ ×mLvf ϕ̂ = RTmLvf ẑ, (5)

where the ϕ̂ unit vector points counter-clockwise (when viewed from above) and the ẑ unit vector points
upwards.

Next we must determine the final angular momentum of the track (which is a continuous system). We know
that the moment of inertia of a thin uniform ring about an axis passing through its center is

IT = mTR
2
T . (6)

This can also be calculated from the definition of the moment of inertia according to

IT =

∫
ring

ρ2dm =

∫
ring

ρ2λdlϕ =

∫
ring

ρ2λρdϕ = λρ3
∫ 2π

0

dϕ = λR3
T (2π − 0) =

(
mT

2πRT

)
R3

T 2π = mTR
2
T

(7)
using the linear mass density λ = mT /(2πRT ) = dm/dlϕ and the arc length along the track lϕ = ρϕ. Using
the definition of the angular momentum of a continuous system, we know that the final angular momentum
of the track is

L⃗f
T = IT ω⃗f , (8)

where ω⃗f is the final angular velocity of the track. The angular velocity can be related to the tangential
velocity of any point on the track through

ω⃗f =
ρ⃗× v⃗ϕ
ρ2

=
RT ρ̂×

(
−vT ϕ̂

)
R2

T

= −vT ρ̂× ϕ̂

RT
= − vT

RT
ẑ, (9)

where vT is the final tangential speed of the track relative to the ground and we have deduced its direction
from imagining the physical situation (i.e. by Newton’s third law, if the locomotive goes one way, the track
must go the other). Substituting this and equation (6) into equation (8) gives

L⃗f
T =

(
mTR

2
T

)(
− vT
RT

ẑ

)
= −mTRT vT ẑ. (10)

Unfortunately, we do not know the tangential speed of the track vT . However, we can find it from information
given in the problem statement. Specifically, we know the speed of the locomotive relative to the track v.
The formula for converting velocities between different reference frames is

v⃗gL = v⃗gT + v⃗TL ⇒ vf ϕ̂ = −vT ϕ̂+ vϕ̂ ⇒ vT = v − vf , (11)

where v⃗gL = vf ϕ̂ is the velocity of the locomotive in the reference frame of the ground, v⃗gT = −vT ϕ̂ is the
velocity of the track in the reference frame of the ground, and v⃗TL = vϕ̂ is the velocity of the locomotive in
the reference frame of the track. Plugging this into equation (10) gives

L⃗f
T = −mTRT (v − vf ) ẑ, (12)

which is now composed exclusively of known quantities and the parameter we are trying to find vf .

Finally, we can substitute equations (2), (3), (5), and (12) into equation (1) to find the final answer of

0 = L⃗f
L + L⃗f

T ⇒ 0 = RTmLvf ẑ −mTRT (v − vf ) ẑ ⇒ vf =
mT

mL +mT
v. (13)
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3. Particle-rod collision revisited

1. The motion of any rigid body can be represented as the motion of the center of mass, plus a rotation
about the center of mass. In problem set 6, we found the position of the center of mass after the
collision to be

R⃗CM (t) =
V0

2
tx̂+

ℓ

4
ŷ. (1)

However, to completely specify the motion of the particle-rod system, we must also calculate the
angular velocity of rotation of the system about its center of mass.
To calculate the rotation after the collision from the information just before the collision, we will use
conservation of angular momentum about the center of mass (as there are no external torques acting
on the particle-rod system). This is expressed as

L⃗b = L⃗a. (2)

where the subscript “b” indicates that the quantity is evaluated just before the collision and the subscript
“a” indicates just after. Just before the collision, the angular momentum of the system about the center
of mass is the sum of the angular momenta of all the objects i in the system. This is

L⃗b =
∑
i

L⃗ib =
∑
i

r⃗ib ×miv⃗ib = r⃗pb ×Mv⃗pb, (3)

where the subscript “p” indicates the particle. Note that there is no contribution to the angular
momentum from the rod as it is completely stationary before the collision. From inspecting the
problem statement we see that, just before the collision, the particle is moving with v⃗pb = V0x̂ at a
position r⃗pb = −(ℓ/4)ŷ relative to the center of mass of the particle-rod system at t = 0. Substituting
these values, equation (3) becomes

L⃗b =
M

4
ℓV0ẑ. (4)

After the collision, the rod and particle form a combined object that rotates at a common angular
velocity ω⃗ about its center of mass. The angular momentum of such an rotating extended object is

L⃗a = ICM ω⃗, (5)

where ICM is the momentum of inertia of the particle-rod system about its center of mass. Substituting
this and equation (4) into equation (2) allows us to find

ω⃗ =
M

4ICM
ℓV0ẑ. (6)

This is almost the final solution, but we don’t yet know ICM . To calculate it, we start from the
definition of the center of mass

ICM =

∫
M

ρ2dm, (7)

where the integral is taken over the entire mass of the combined object. Because integrals are just
summations of infinitesimally small differential elements, we can separate it into the contributions from
the two objects

ICM =

∫
rod

ρ2dm+

∫
particle

ρ2dm = Irod + Iparticle. (8)
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Since the particle is well represented by a point mass, all of its mass is located at the same distance
ρ = ℓ/4 from the center of mass. Thus,

Iparticle =

∫
particle

ρ2dm =

∫
particle

(
ℓ

4

)2

dm =
ℓ2

16

∫
particle

dm =
1

16
Mℓ2. (9)

There are two ways to find the contribution to the moment of inertia from the rod. This first is simpler
and uses the parallel axis theorem. From the table of moments of inertia presented in lecture, we know
that a uniform thin rod rotated about its center of mass (i.e. its geometric center) has a moment of
inertia of Icenterrod = Mℓ2/12. However, we are interested in the rotation of the rod about the center of
mass of the particle-rod system, not the center of mass of the rod alone. From equation (1), we see
that the center of mass of the rod (which is at (ℓ/2)ŷ) is a distance of h = ℓ/4 away from the center of
mass of the particle-rod system at t = 0. Thus, we will use the parallel axis theorem to see that

Irod = Icenterrod +Mh2 =
1

12
Mℓ2 +

1

16
Mℓ2 =

7

48
Mℓ2. (10)

The second way to find the moment of inertia of the rod is to directly evaluate the integral in equation
(8). This approach is more challenging, but applies to a wider variety of situations. To convert from
an integral over mass to an integral in space, we use the linear mass density λ = dm/dρ and the fact
that the density is uniform λ = M/ℓ to see that dm = (M/ℓ)dρ. Substituting this we see that

Irod =

∫
rod

ρ2dm =
M

ℓ

∫
rod

ρ2dρ. (11)

To determine the bounds of the integral, we must think about the geometry of the problem. Here ρ
represents the distance from the center of mass of the particle-rod system, which is at y = ℓ/4. Thus,
to integrate over the full object we must consider the part of the rod above and below the center of
mass, which is tricky as some of these points have the same value of ρ. This can be handled by splitting
the integral into the contributions above and below, which are given by

Irod =
M

ℓ

∫ 3ℓ/4

0

ρ2dρ+
M

ℓ

∫ ℓ/4

0

ρ2dρ. (12)

respectively. Evaluting the integrals is straightforward and yields

Irod =
M

ℓ

(
ρ3

3

]ρ=3ℓ/4

ρ=0

+
M

ℓ

(
ρ3

3

]ρ=ℓ/4

ρ=0

=
M

3ℓ

(
3

4
ℓ

)3

+
M

3ℓ

(
1

4
ℓ

)3

=
1

3

(
27

64
+

1

64

)
Mℓ2 =

7

48
Mℓ2,

(13)

which is identical to the solution using the parallel axis theorem (i.e. equation (10)).

Substituting equation (9) and (13) into equation (8) gives the total moment of inertia of the particle-rod
system around its center of mass, which is

ICM =
7

48
Mℓ2 +

1

16
Mℓ2 =

5

24
Mℓ2. (14)

Substituting this into equation (6) gives the final answer of

ω⃗ =
6

5

V0

ℓ
ẑ. (15)

Importantly, since there are no additional forces acting at later times, we have conservation of angular
momentum. Thus, the angular velocity of the particle-rod system remains the same at all times t ≥ 0.
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2. We know that the particle-rod system moves based on the combination of two types of motion. Its
center of mass translates, which has been calculated in equation (1). Additionally, in the center of
mass reference frame, all points in the system rotate about the center of mass with a constant angular
velocity ω⃗ = (6/5)(V0/ℓ)ẑ. This rotation is uniform circular motion, so the angular velocity corresponds
to a velocity of

v⃗ = ω⃗ × ρ⃗ = ωẑ × ρρ̂ = ρωϕ̂. (16)

We are asked about the position of the particle, which is located at a distance ρ = ℓ/4 away from the
center of mass. Thus, it has a velocity of

v⃗ =
ℓ

4
ωϕ̂ (17)

after the collision. Note that if we substitute the value for ω, we find v⃗ = (6/20)V0ϕ̂, which shows that
the particle is slowed down substantially as a result of the collision.

Ultimately, we want to express the position in Cartesian coordinates, so we will convert the cylindrical
unit vector ϕ̂ according to

v⃗ =
ℓ

4
ω (− sinϕx̂+ cosϕŷ) (18)

(using the table of coordinate system conversions given in lecture 4a). Given that ω is constant, we
can integrate the definition of the angular speed ϕ̇ = ω to find

ϕ(t) = ωt+ C, (19)

where C is an integration constant. Since ϕ is the angle from the +x-axis and increases towards the
+y-axis, at t = 0 the particle is at ϕ(0) = −π/2. Using this initial condition, we find that C = −π/2.
Substituting this and equation (19) into equation (18) gives

v⃗(t) =
ℓ

4
ω
(
− sin

(
ωt− π

2

)
x̂+ cos

(
ωt− π

2

)
ŷ
)
=

ℓ

4
ω (cos (ωt) x̂+ sin (ωt) ŷ) , (20)

where in the second step we have used trigonometric identities that one can find in a table. This result
is consistent with our intuition – the bottom of the rod should start rotating to the right, in the same
direction the particle strikes it.

To find the position, we simply integrate equation (20) to find

r⃗(t) =
ℓ

4
(sin (ωt) x̂− cos (ωt) ŷ) . (21)

However, we must remember that the position r⃗(t) is in the reference frame moving with the center
of mass of the particle-rod system. Thus, we must change back to the reference frame given in the
problem statement using R⃗p(t) = R⃗CM (t) + r⃗(t). This yields the final answer of

R⃗p(t) = R⃗CM (t) +
ℓ

4
(sin(ωt)x̂− cos(ωt)ŷ) . (22)

6



PHYS-101(en) Angular momentum - Solutions to Problem Set 12

4. Elliptic Orbit

1. As in problem 1, the motion of the satellite will conserve both angular momentum and mechanical
energy according to

L⃗f = L⃗c (1)
Emf = Emc. (2)

We will choose to evaluate angular momentum about the center of the planet and take the reference
point for the gravitational potential energy to be infinitely far away. Thus, conservation of angular
momentum and mechanical energy become

r⃗f ×msv⃗f = r⃗c ×msv⃗c (3)
Kf + UGf = Kc + UGc (4)

respectively. Taking a cylindrical coordinate system and substituting the forms of the kinetic and
gravitational potential energy gives

(rf r̂)×ms

(
vf ϕ̂

)
= (rcr̂)×ms

(
vcϕ̂
)

⇒ msrfvf ẑ = msrcvcẑ ⇒ rc =
vf
vc

rf (5)

ms

2
v2f − Gmsmp

rf
=

ms

2
v2c −

Gmsmp

rc
⇒ 2Gmp

rc
− 2Gmp

rf
= v2c − v2f . (6)

Substituting equation (5) into equation (6) gives

2Gmp

rf

vc
vf

− 2Gmp

rf
= v2c −v2f ⇒ 2Gmp

rfvf
(vc − vf ) = (vc + vf ) (vc − vf ) ⇒ vc =

2Gmp

rfvf
−vf . (7)

We can plug this into equation (5) to find

rc =
vf

2Gmp

rfvf
− vf

rf = rf

(
2Gmp

rfv2f
− 1

)−1

. (8)

2. Since the satellite is not burning any fuel, the gravitational attraction to the planet must be causing
the centripetal acceleration enabling the uniform circular motion. This condition is expressed through
Newton’s second law for the satellite as

F⃗G = msa⃗cent. (9)

The centripetal acceleration is given by a⃗cent = −r0ω
2r̂ = −r0(v0/r0)

2r̂ = −(v20/r0)r̂, where ω is the
angular speed of the satellite. Substituting this and the form of the gravitational force into equation
(9) gives

−Gmsmp

r20
r̂ = −ms

v20
r0

r̂ ⇒ Gmp

r0
= v20 ⇒ v0 =

√
Gmp

r0
. (10)

This solution can be checked by taking the circular case in our solution to part 1. If we let rf = rc = r0,
vf = vc = v0, and substitute equation (10), we find that both equations (7) and (8) are satisfied.
Now let’s compare v0 with vc, given that r0 = rc. Even though we have a solution for both, given by
equations (7) and (10), this turns out to be surprisingly tricky. To make the comparison easier, we
want to eliminate the velocity vf from equation (7). Thus, we rearrange equation (5) to find

vf =
rc
rf

vc. (11)
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We substitute this into equation (7) to get

vc =
2Gmp

rcvc
− rc
rf

vc ⇒ v2c =
2Gmp

rc
− rc
rf

v2c ⇒
(
rf + rc

rf

)
v2c =

2Gmp

rc
⇒ vc =

√
Gmp

rc

√
2rf

rf + rc
.

(12)
We can now evaluate equation (10) at r0 = rc to get

v0 =

√
Gmp

rc
(13)

and compare with equation (12). Since rc < rf , we know that
√

2rf/(rf + rc) > 1. Thus, we find that

vc > v0 (14)

and the speed throughout the circular orbit is less than the speed at the point of closest approach in
an elliptical orbit.
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