Solutions to Problem Set 12

Angular momentum
PHYS-101(en)

1. Planetary survey

After the instrument is launched, the only force it will experience is its gravitational attraction to the planet.

This force is given by
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where 7 is the distance between the instrument and the center of the planet, 7 is the radial unit vector
pointing from the center of the planet towards the instrument, and G is the universal gravitational constant.
Since this is the only force acting on the instrument, it experiences a total external torque about the center
of the planet of

Fg=—
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where we have used equation and the fact that the cross product of parallel vectors is zero. Thus, since
the total external torque on the instrument about the center of the planet is zero, its angular momentum
about the center of the planet must be conserved throughout its motion. Conservation of angular momentum
is expressed as

Gmpm; f) _ Gmym,
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L;=1Ly, (3)
where the angular momentum is
L =7xp=7xm. (4)
Here p' and ¢ are the momentum and velocity of the instrument respectively. It is natural to define a
cylindrical coordinate system with its origin at the center of the planet. The initial velocity can be found
from trigonometry and the figure below to be

U; = —vg cos OF + vg sin 9¢?. (5)
Substituting this and the initial position vector of the instrument into equation gives
L= (Brpf) x my; (—vo cos 07 + vp sin 05)) = brpm;vg sin 0 (f X qZ)) = 5rpm;vg sin 02. (6)
Vf ........... [ =

We will consider the final state to occur when the instrument just grazes the surface of the planet. At this
instant, the position vector is 7 = r,7 and the final velocity ¥y = vy¢ is in the direction exactly tangent to
the surface. Thus, the final angular momentum is

Ef = (rpf) x my (qug) = 7pMm;vy (f X é) = TpMVZ. (7)



PHYS-101(en) Angular momentum - Solutions to Problem Set 12

Plugging equations @ and @ into equation yields
5rpmivesin bz = rymvr2 = vy = bygsinb. (8)

However, this equation still has two unknowns vy and 6, so we require another condition.

To determine the final velocity of the instrument, we can think about the situation physically. We realize that
the instrument will be accelerated as it falls into the gravitational potential of the planet. The change in speed
of the instrument can be found from conservation of mechanical energy because there are no nonconservative
forces acting on the instrument. Thus, we have

In previous problem sets, we’ve found the universal gravitational potential (with a reference point infinitely
far away) to be

Gm;m
Ua(R) = _TP. (10)
Plugging this and the form of the kinetic energy into equation @ gives
M2 Gmump My Gmimy, (1)
2 orp 2 Tp
Substituting equation allows us to find the final answer of
m; Gm;m m; . o2 Gmym . 8G'm
o 2 — # =5 (5vgsinb)” — # = (5vpsind)? = v3 + 5rpp (12)
1 8G
= f=sin o1+ g, (13)
) dUGTp

2. Toy locomotive

We begin by choosing our system to consist of the locomotive and the track. Because there are no external
torques about the central vertical axis, the angular momentum of our system must remain constant about
that axis
The initial angular momentum of the system is

L. =0 (2)

sYs

because both the locomotive and the track are at rest. The final angular momentum will be composed of
the angular momentum of the locomotive and the track according to

L =L+ I, (3)

sYs
where the subscripts L and T refer to the locomotive and track respectively.

The final angular momentum of the locomotive (which can be considered to be a point mass) is given by
L][i = RL X ﬁL = RT72 X m]j)’L, (4)

where 77, is the position vector from the pivot point at the top of the vertical axis to the locomotive, py, is
momentum of the locomotive in the ground reference frame, and vy, is the velocity of the locomotive relative
to the ground. From the figure we see that the locomotive is moving only in the (b direction, so Uy, = quﬁ
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(where vy is the final speed relative to the floor that we are trying to determine). Plugging this into equation
(4) produces
L} = Rpf x mpvpd = Rpmpvss, (5)

where the ¢ unit vector points counter-clockwise (when viewed from above) and the 2 unit vector points
upwards.

Next we must determine the final angular momentum of the track (which is a continuous system). We know
that the moment of inertia of a thin uniform ring about an axis passing through its center is

IT = mTR% (6)
This can also be calculated from the definition of the moment of inertia according to

mr
27TRT

) R321 = my R%
(7)
using the linear mass density A = my/(2nRr) = dm/dls and the arc length along the track I, = p¢. Using

the definition of the angular momentum of a continuous system, we know that the final angular momentum
of the track is

27
Iy = / prdm = p*Adly = / p*Apdo = )\p?’/ dp = A\R3. (2m — 0) = <
ring ring ring 0

L = Ipay, (8)

where @y is the final angular velocity of the track. The angular velocity can be related to the tangential
velocity of any point on the track through

ﬁXU¢:RTﬁX(—UT¢):71)Tﬁ><g£:7’l)lé (9)
p? RZ Rr Rr™’

W =

where v is the final tangential speed of the track relative to the ground and we have deduced its direction
from imagining the physical situation (i.e. by Newton’s third law, if the locomotive goes one way, the track
must go the other). Substituting this and equation @ into equation gives

B o) (~222) = e o

Unfortunately, we do not know the tangential speed of the track vy. However, we can find it from information
given in the problem statement. Specifically, we know the speed of the locomotive relative to the track v.
The formula for converting velocities between different reference frames is

Q_thL :'UgT'i'ﬁTL = ’Ufé: _'UT(£+U(£ = vr =v—Uuvy, (11)

where ¥y, = fuquS is the velocity of the locomotive in the reference frame of the ground, tyr = —UTQB is the
velocity of the track in the reference frame of the ground, and ¥y, = v¢ is the velocity of the locomotive in
the reference frame of the track. Plugging this into equation gives

I_;{,i = —mrRr (v —vy) 2, (12)

which is now composed exclusively of known quantities and the parameter we are trying to find vy.
Finally, we can substitute equations , , , and into equation to find the final answer of

0=L +L{, = 0=Rrmpvsz—mpRr(v—vp)2 = vp= T (13)

—_—.
mr, +mr



PHYS-101(en) Angular momentum - Solutions to Problem Set 12

3. Particle-rod collision revisited

1. The motion of any rigid body can be represented as the motion of the center of mass, plus a rotation
about the center of mass. In problem set 6, we found the position of the center of mass after the
collision to be

3 Vo,. L.
RCM(t) = —tr+ —y. (1)
2 4
However, to completely specify the motion of the particle-rod system, we must also calculate the
angular velocity of rotation of the system about its center of mass.

To calculate the rotation after the collision from the information just before the collision, we will use
conservation of angular momentum about the center of mass (as there are no external torques acting
on the particle-rod system). This is expressed as

Ly =L, (2)

where the subscript “b” indicates that the quantity is evaluated just before the collision and the subscript
“a” indicates just after. Just before the collision, the angular momentum of the system about the center
of mass is the sum of the angular momenta of all the objects 7 in the system. This is

Ly = E Ly = E Tib X MUy = Tpp X Mipp, (3)
R R

where the subscript “p” indicates the particle. Note that there is no contribution to the angular
momentum from the rod as it is completely stationary before the collision. From inspecting the
problem statement we see that, just before the collision, the particle is moving with v, = Vo2 at a
position 7, = —(£/4)y relative to the center of mass of the particle-rod system at ¢ = 0. Substituting
these values, equation becomes

-

M
Ly = —(Vps. (4)
4
After the collision, the rod and particle form a combined object that rotates at a common angular
velocity & about its center of mass. The angular momentum of such an rotating extended object is
Lo =Icua, (5)

where Iy is the momentum of inertia of the particle-rod system about its center of mass. Substituting
this and equation into equation allows us to find

V3. (6)

YT dom

This is almost the final solution, but we don’t yet know Ic-ps. To calculate it, we start from the
definition of the center of mass

Icym = / dem7 (7)
M

where the integral is taken over the entire mass of the combined object. Because integrals are just
summations of infinitesimally small differential elements, we can separate it into the contributions from
the two objects

IC]V[ = / p2dm +/ dem = lrod + Iparticle- (8)
rod particle
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Since the particle is well represented by a point mass, all of its mass is located at the same distance
p = £/4 from the center of mass. Thus,

(O Y O RESE T WS
icle = m = 7 m=_= m=16 '
particte particle P particle \ 4 16 Jparicie 0

There are two ways to find the contribution to the moment of inertia from the rod. This first is simpler
and uses the parallel axis theorem. From the table of moments of inertia presented in lecture, we know
that a uniform thin rod rotated about its center of mass (i.e. its geometric center) has a moment of
inertia of I¢nter = M (2 /12. However, we are interested in the rotation of the rod about the center of
mass of the particle-rod system, not the center of mass of the rod alone. From equation , we see
that the center of mass of the rod (which is at (¢/2)3) is a distance of h = £/4 away from the center of
mass of the particle-rod system at ¢ = 0. Thus, we will use the parallel axis theorem to see that

Tyoa = IEMT 4 MR = “ape2 + g2 = Tagpe (10)

rod = froa ¥ T 12 16° 487

The second way to find the moment of inertia of the rod is to directly evaluate the integral in equation
(8). This approach is more challenging, but applies to a wider variety of situations. To convert from
an integral over mass to an integral in space, we use the linear mass density A = dm/dp and the fact
that the density is uniform A = M// to see that dm = (M /€)dp. Substituting this we see that

M
Ir0q :/ Pde = 7/ pde' (11)
rod ¢ rod

To determine the bounds of the integral, we must think about the geometry of the problem. Here p
represents the distance from the center of mass of the particle-rod system, which is at y = ¢/4. Thus,
to integrate over the full object we must consider the part of the rod above and below the center of
mass, which is tricky as some of these points have the same value of p. This can be handled by splitting
the integral into the contributions above and below, which are given by

Irod = 7/ PZdP =+ 7/ ,02dp. (12)
¢ Jo ¢ Jo

respectively. Evaluting the integrals is straightforward and yields

p = M) M (2 M s N M1
T\, c\3|_, 3\4 3¢ \4 ) 3

(27 N 1 > M2 — lMez,
P P

64 64

which is identical to the solution using the parallel axis theorem (i.e. equation (10)).

Substituting equation @ and into equation gives the total moment of inertia of the particle-rod
system around its center of mass, which is

7 1 5
Toy = — MO + — M = = M2, 14
on = gME + gME = 5 ME (14)

Substituting this into equation @ gives the final answer of
b=—-—2 (15)

Importantly, since there are no additional forces acting at later times, we have conservation of angular
momentum. Thus, the angular velocity of the particle-rod system remains the same at all times ¢ > 0.
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2. We know that the particle-rod system moves based on the combination of two types of motion. Its
center of mass translates, which has been calculated in equation . Additionally, in the center of
mass reference frame, all points in the system rotate about the center of mass with a constant angular
velocity & = (6/5)(Vp/€)Z. This rotation is uniform circular motion, so the angular velocity corresponds
to a velocity of

T=0 X p=wiXpp=pwo. (16)
We are asked about the position of the particle, which is located at a distance p = £/4 away from the
center of mass. Thus, it has a velocity of

U= Ew(ﬁ (17)

after the collision. Note that if we substitute the value for w, we find @ = (6/20)Vy, which shows that
the particle is slowed down substantially as a result of the collision.

Ultimately, we want to express the position in Cartesian coordinates, so we will convert the cylindrical
unit vector ¢ according to

U= gw (— sin ¢Z + cos ¢f) (18)

(using the table of coordinate system conversions given in lecture 4a). Given that w is constant, we
can integrate the definition of the angular speed ¢ = w to find

é(t) = wt + C, (19)

where C' is an integration constant. Since ¢ is the angle from the +x-axis and increases towards the
+y-axis, at t = 0 the particle is at ¢(0) = —x/2. Using this initial condition, we find that C = —7 /2.
Substituting this and equation into equation gives

o(t) = Ew (7 sin (wt - g) Z + cos (wt - g) gj) = Ew (cos (wt) & + sin (wt) §) , (20)

where in the second step we have used trigonometric identities that one can find in a table. This result
is consistent with our intuition — the bottom of the rod should start rotating to the right, in the same
direction the particle strikes it.

To find the position, we simply integrate equation to find
4
7(t) = 1 (sin (wt) & — cos (wt) ) . (21)

However, we must remember that the position 7(¢) is in the reference frame moving with the center
of mass of the particle-rod system. Thus, we must change back to the reference frame given in the
problem statement using R, (t) = Roar(t) + 7(t). This yields the final answer of

R,(t) = Roam(t) + g (sin(wt)Z — cos(wt)g) . (22)
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4. Elliptic Orbit

1. As in problem 1, the motion of the satellite will conserve both angular momentum and mechanical
energy according to

Ly =L (1)

Epnfr = Epe. (2)

We will choose to evaluate angular momentum about the center of the planet and take the reference

point for the gravitational potential energy to be infinitely far away. Thus, conservation of angular
momentum and mechanical energy become

7:}' X msﬂf = FC X msﬁ’c (3)

Kf+Ugf=KC+UGC (4)

respectively. Taking a cylindrical coordinate system and substituting the forms of the kinetic and
gravitational potential energy gives

R N v
(ref) x myg (quS) = (ref) X Mg (vc¢> = MTUPE = MT Ve = Te = —frf (5)
v,
%v% ~ Gmgmy _ %vf ~ Gmgmy N 2Gm,  2Gm, _to v]%. (6)
2 ry 2 Tc Tc Ty

Substituting equation (5 into equation (6]) gives

2Gmy, v 2Gm 2G'm. 2G'm
P p:'US—'U?' = p(vc—vf):(vc+vf)(vc—vf) = V.= p—vf. (7)
Ty vy rf rfvs rrvs
We can plug this into equation to find
2G o
vf m
e = Sgm, —Tf=Tf < . v2p — 1) . (8)
T‘f’l}f - vf f f

2. Since the satellite is not burning any fuel, the gravitational attraction to the planet must be causing
the centripetal acceleration enabling the uniform circular motion. This condition is expressed through
Newton’s second law for the satellite as

FG = ms(_icent~ (9)

The centripetal acceleration is given by Geent = —row?F = —1ro(vo/10)*F = —(v3/r0)?, where w is the

angular speed of the satellite. Substituting this and the form of the gravitational force into equation

(9) gives

2
7GmsmpA Vg . N Gmy, 9

o1 = —msg—T7 =v; = Y= . (10)
o To To To

Gmy,

This solution can be checked by taking the circular case in our solution to part 1. If we let 7y = r. = ro,
vy = v, = Vg, and substitute equation , we find that both equations and are satisfied.

Now let’s compare vy with v., given that ro = r.. Even though we have a solution for both, given by
equations and , this turns out to be surprisingly tricky. To make the comparison easier, we
want to eliminate the velocity vy from equation . Thus, we rearrange equation to find
T
vf = =, (11)
rf
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We substitute this into equation @ to get

2Gm, r 2Gm, r e+ 2Gm Gm 2r
vo= M _Te, 2 p_ e (f+6> L N L s
TeUe  Tf Te ry ry Te Te T+ Te
(12)

We can now evaluate equation (10)) at ro = r. to get

Gm,,

vy = (13)

Te
and compare with equation (12). Since r. < rf, we know that \/2r;/(ry + r.) > 1. Thus, we find that
Ve > Vg (14)

and the speed throughout the circular orbit is less than the speed at the point of closest approach in
an elliptical orbit.



