Solutions to Problem Set 10

Collisions
PHYS-101(en)

1. A collision

1. In an elastic collision, both the mechanical energy and momentum are conserved. Conservation of
momentum in one dimension is

M1V1; + MaV2; = M1V1f + MaV2y, (1)

where the subscripts ¢ and f indicate the state just before and just after the collision respectively and
the subscripts 1 and 2 indicate the first or second ball respectively. Since the first ball has an initial
speed of v1; = vy and the second ball starts at rest vo; = 0, equation becomes

mivy = M1v1f + MaVU2f. (2)

Solving this equation for the final velocity of the first ball gives
meo
= Uy — —2 005, 3
VIj = Vo = vy 3)

We chose to solve for v; ¢, rather than voy because we are searching for vy and substituting equation
into the conservation of energy equation will allow us to eliminate vy ;.

Since the collision is elastic, mechanical energy is conserved during the collision and we can write

my o ma o my o ma o
B U1f+ B) 'UQf (4)

5 Vi + 5 V2 =

Given the initial velocities of the two balls, this becomes

mi mi
B) ’1)[2) D) U%f‘*‘ B ’sz (5)

Substituting equation into equation allows us to eliminate vi¢ and gives

2
ma mi mo ma
- vy = > (Uo — m1U2f> + 3 —v3; (6)
m2
mi mi ma ma
71}3 = 7 ( — 21}07’02]0 + 1'Ugf> + B ’Ugf (7)
mi m1 mo mo Mo mao
> Ug =5 ’UO — 21}0—2 vos + o m, vgf + 5 Ugf (8)
- ma mo ma o
0 = —21)071)2‘]“ =+ <7’n1 + 1) 9 '02}( (9)
mq + mo
-9 10
< - ) vy = 2vg (10)
2m1
= " 11
VS o (11)
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To calculate the maximum height attained by the second ball after the collision, we can use conservation
of mechanical energy. Since there are no non-conservative forces doing work, we have

K2f + U2f = Komaz + U2mas, (12)

where Kopar and Uspq, are the kinetic and gravitational potential energies at the maximum height.
Given that it is the maximum height, we know that Ko, = 0. Additionally, we can define the
reference point for the gravitational potential to be at the height of the collision. Thus, Usy = 0,
implying that equation becomes

1

ma
Koy +0=0+Usmaz = TUSf =m29hmaz =  Pmaz = %Ugf (13)

Substituting equation gives

2 2
1 2 2
hmae = =— LUO = - L U3~ (14)
2g mi + mo g \mi + mo
Plugging in numbers, we find that
hmaz = 2.22 cm. (15)

2. In this case momentum is still conserved, but mechanical energy is not. Thus, equation still remains
valid. However, since the objects stick together after the collision, we know that viy = vor = vy.
Substituting this constraint into equation gives

mi
mivg = M1V + mov = vf=— . 16
10 10§ QU f . 0 (16)
Even though mechanical energy is not conserved by the collision (due to the non-conservative frictional
forces involved in two objects sticking together), it is conserved after the collision. Thus, we have

Kf + Uf = Koz + Unaz (17)

for the combined object with mass mi 4+ msy. As before, we can define the reference point for the
gravitational potential to be at the height of the collision and find

1
Kf +0=04+Unaz = wvﬁ = (ml + m2)ghmaz = hmaw = @U]% (18)

Substituting equation produces

1 m 2
Pmas = <1> 02, (19)

% mi +me

Plugging in numbers gives
hmaz = 0.56 cm, (20)

which is a factor of 4 lower than for the elastic collision. This is due to the negative work that non-
conservative forces do on the system during the inelastic collision. Ultimately, this lost energy becomes
heat.
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2. Bouncing balls

For this problem, we will decompose the situation into four successive parts: the projectile motion of the
descent, then the collision between ball 1 and the ground, then the collision between ball 1 and ball 2, and
finally the projectile motion of the ascent.

1.a) Projectile motion of the descent: Before the first collision, both balls experience projectile motion.
By conservation of mechanical energy during the entire fall, we have

0+mlgh— v1f+0 and 0+ mogh = 2v2f+0 (1)

2
where we will define y = 0 to be the ground and let § point upwards (as shown in the problem
statement). Solving both these equations for the velocity just before impact with the ground

vif =vor = £/ 2gh = —\/2gh=—v = v=+/2gh (2)

reveals that it is the same for both balls (which is expected as we know that objects fall at the same rate
regardless of their mass). We chose the negative sign as we know that both balls are falling downwards
in the —¢ direction. Additionally, we chose to define a new parameter v such that it is positive.

Collision between ball 1 and the ground: Next, ball 1 experiences an elastic collision with the
ground. We have the intuition that the ball will maintain its speed and reverse its direction as a result
of the collision, but this can be demonstrated rigorously. We start by writing requiring conservation
of momentum

miv1; + Mgve; = mviy + Mgvey, (3)
where the subscript E refers to the earth. We know that vg; = 0 (given that we have taken a laboratory

reference frame) and the velocity of ball 1 just before the collision is equal to its final velocity after
projectile motion (i.e. equation (2))). Thus, we can find

m
—-miv +0=miviy + Mpvgy = vEf:fM—l(ervlf). (4)
E

Since the collision is elastic, we can also enforce conservation of mechanical energy

mi e _ M q Mg ,

Substituting equation shows that

2
mi o m1 2 ME mi mi 2 2 m1 m1
71} = 5 1f+ 9 (ME (’U+U1f>> = 7 (U Ulf) M ) (’U+U1f) . (6)

Crucially, we see that the right-hand side of the equation has a factor of my /Mg, while the left-hand
side does not. Since the earth is much more massive than the ball, we know that m; /Mg < 1 and we
can neglect the right-hand side of the equation. Thus, we find that ball 1 has a velocity of

m
21 (v2—v1f) 0 = vff:U2:2gh = vy =EV29h =+/2gh =v (7)
after colliding with the ground, where we’ve used equation and chosen the plus sign (as the ball
must change direction to avoid passing through the earth). Thus, we’ve found that, before the two
balls collide, ball 1 has a velocity of v = y/2gh, while ball 2 still has a velocity of —v = —/2gh.

Collision between ball 1 and ball 2: Now the two balls collide elastically with one another. In
class, we derived the general formulas for the velocities that result from an elastic collision between two
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objects in one dimension. This derivation was streamlined to minimize the math, but was not intuitive.
You are free to simply use the formulas we found. Here we present a more intuitive derivation that, as
a result, is considerably more messy (even for the case considered here of identical initial speeds).

Enforcing conservation of momentum and using the final velocities from the previous part gives

mip —m2 ma

m1v1; +MaV2; = M1V1f +MoVl2f = MV —M2V = M1V1f +MaV2f = Vif = Tv— m—vgf
1 1

(8)

Since the collision is elastic, we enforce conservation of mechanical energy

my ma my my + My my ma
5 U%Z + 7'0%1 = T’U%f + B ’U2f = TU2 2 %f + 9 ’U%f (9)

Substituting equation and simplifying produces

2
mi + mo 9 M1 [(myp —mg mo mg o

—5 VT3 (m - m“2f> v (10)

2 (m1 — m2)2 2 mimg — m% 2 2
(my + ma) v =my 5 v° — 2 5 vUgs + UQf + mavyy (11)

mi my m3

(mi +mumz) v = (m} — 2mymy +m3) v* — 2 (mymy — m3) vvay + mjv3, +mimavs, (12)
0= (m% — 3m1m2) 2 =2 (mlmg - m%) VUgf + (mg + mlmg) vgf. (13)

Applying the quadratic formula gives

2 (mlmg — m%) v+ \/4 (mimg — m%)2 v2 — 4 (m2 + myima) (m2 — 3mima) v2

Vof = 14
2f 2 (m3 + myms) (14)
e = A2 — m2 £ \/(mIm3 — 2mym3 +m3) — (m3 + mym3 — 3mym3 — 3m3Im3) (15)
2f m3 + mima
mima — m3 £ 2mymo my — mo £ 2my (1+£2)my —ma
Vgp =V 3 =v =0 . (16)
ms + mpme mi + mo mi -+ mo

We see that the solution with the minus sign gives voy = —v, which is identical to the initial velocity

of ball 2. Thus, the physical solution must be the plus sign, which gives

3m1 — M2 /7377’111 — mo

() =) = 2 hi ].7
> my + mo g my + ma (7

using equation . Inserting this result into equation allows us to find the velocity of ball 1 to be

— 3my — 2-3

V1f = = m2 m2v _ M2 (vml mz) - <m1 —ma + L i m1m2> (18)

my m my + mg my my + mg
oo U <(m1—m2)(m1 + ma) m%—SmlmQ) 7Lm%—3m1m2 (19)

1/ mq mi + Mo mi + mo mi M1+ me

-3 3
vif = pr T oMz L (20)
my + ma my + mo
using equation .
1.b) In order for both balls to bounce off the ground upwards, we require that

vpr >0 and wvpp > 0. (21)
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1.d)

2.b)

2.d)

Using equations ([17)) and 7 this gives the conditions that
mq > 3my and 3mq > mo (22)

respectively. If the first is satisfied, the second will also be. Thus, for both balls to bounce upwards
we require that
my1 > 3mo. (23)

Ball 1 will end up immobile on the ground if vy = 0. From equation , we that this will occur
when my = 3meo. If m; < 3mo the first ball will travel downwards and collide with the ground again.

Projectile motion of the ascent: After the balls collide, they again experience projectile motion.
In the limit that m; > mo, equation shows that the initial velocity of ball 2 during this stage is

Vo; = 3v. (24)

There are no non-conservative forces, so we can apply conservation of mechanical energy. At its
maximum, ball 2 will have no kinetic energy and we can define the reference point for the gravitational
potential energy to be the ground. Thus, we have

ma o Lo

7”22’ +0=0+ m2.gh2maz = h2m,am = %UQT (25)

Substituting equations and give the final answer of

9
homaz = —v° = 9h. 26
2 290 ( )

The projectile motion of the descent and the collision between ball 1 and the ground remain
unchanged.

Collision between ball 1 and ball 2: The difference only arises when the two balls collide as the
collision is now purely inelastic. This means that kinetic energy is not conserved. Momentum is still
conserved, but, since the two balls stick together, we know that vy = vay = vy. Thus, equation is
replaced by

mip — M2
—_—

MiV1; + MoV = MV +Mavy = MV —mov = (M1 +me)vy = v = (27)

my + ms

Substituting equation gives the final answer of

vp = m T me /2gh (28)

mi1 + mo

For the two balls to go upwards, the final velocity vy > 0 must be positive. Using equation , we
see that this occurs when m; > ms.

Ball 1 will end up immobile on the ground if v1; = vy = 0. From equation (28)), we that this will occur
when my = mo. If m; < mgy the first ball will travel downwards and collide with the ground again.

Projectile motion of the ascent: In the limit that m; > ms, equation becomes

vy = /2gh. (29)

Since the two balls undergo projectile motion together after the collision. We can apply conservation
of energy between the ground and the point of maximum height according to

mi+m
%U; +0=0+ (m1 -+ m2)gh2mam~ (30)
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Substituting equation gives the final answer of

homas = 2L = h 31
2max — — It ( )

3. Space collision

1. The initial speed of the projectile is equal to the magnitude of its escape velocity. Given the definition
of escape velocity, this can be found from the condition that

Ko+ Ugo =0, (1)

where the subscript 0 indicates the initial value and Ug indicates the general gravitational potential
(which is distinct from the gravitational potential near the earth’s surface U, = mgy). We can calculate
Ug from the form of the gravitational force between the two objects

- GmM,

Fg(’r‘) = — 2 . (2)

Choosing to use a spherical coordinate system, the change in the potential energy due to the force ﬁG
is

. - M, n n
AUqg = Ug(R) — U(;(OO) = —/ Fg-dl = —/ (— GT:L ef) . (d’l"ﬁ + rdff + rsin9d¢¢>
C C

— /C (GTZQJW6>dr, (3)

where the integration path C' is along any path from r = co to r = R. However, we see that, since the
force is purely radial, only the change in radial position matters. Thus, we can write

R
GmM,
AUG = Ug(R) - Ug(oo) = / 7“2 dr. (4)
Taking the integral gives a potential energy difference of
GmM, R GmM,
AUG = Ug(R) — Ug(oo) = (— r = — R . (5)

Since the reference point for the potential energy is at R = co (i.e. we define the potential energy such
that U(oco) = 0), equation implies that

Uc(R) = — G”;Me. (6)

Substituting this into equation (|1)) allows us to find the initial speed of the projectile when it is launched

mv2—GmMe—0 I 2G' M,
20 R, O~V R

(7)

where R = R, is the initial position.
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2. Since all the forces are conservative, mechanical energy is conserved and we have
K.+ Uge = Ko + Ugo, (8)

where the subscript ¢ indicates the value just before the collision. Therefore, we can use equations
and (6)) to write equation (§) as

GmME_O I GM,
2R. "V R,

K, 4Uc=0 = %vf— 9)

at the location just before the collision R. = 2R..

3. Drawing a free body diagram for the satellite and using the gravitational force given by equation ,
we see that Newton’s second law in the 7 direction is

GmM, v2
TRz " <2Re> ’ (10)

where we have used the form of the centripetal acceleration and vy is the speed of the satellite. Solving
this equation for the speed gives
GM,

2R,

(11)

Vg =

4. Given the the collision happens quickly, we can use the impulse approximation to ignore the effect of
gravity during the collision. Thus, momentum is conserved throughout the collision, so we can write

MUp; + MUg; = mUpf + mz_)'sf = Uy + U = ’Upf + 178]07 (12)

where the subscript p indicates the projectile, the subscript s indicates the satellite, the subscript
1 indicates the value just before the collision, and the subscript f indicates the value just after the
collision. Since the collision is purely inelastic and the objects stick together, instead of conservation
of energy, we require that the final velocities of the projectile and satellite be the same

Upg = Usy = Uy (13)

We will adopt a polar coordinate system, such that the projectile is moving in the 7 direction before
the collision and the satellite is moving in the ¢ direction before the collision. From our solutions to

parts 2 and 3 of this problem, we see that ¥,; = v.F = \/GM./R.7 and ¥y; = vsé = \/GMQ/(2R6)(£.
Substituting these initial values and equation into equation , we find the final velocity of the
combined projectile-satellite object to be

GM, GM, . . 1 ( [GM.  [GM. -
r = == ) 14
\/Re”\/me‘b 20 = U 2(\/36”\/23@“’) (14)

To get the speed, we simply take the magnitude according to
— |1 GM, . GM, - GM, . GM. -\ 1 |[GM. GM,
A A 4(\/Rer+\/2Re¢> <\/Rer+\/2Re¢>_2 R. ' 2R.

1 [3GM,
_— . 1
Y1 =35\ 2R, (15)




