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1. Circular motion
* Polar, cylindrical, and spherical coordinate systems

e Centripetal acceleration and centripetal force



Circular motion in auto racing o

* \WWhen a car goes around a curve, there must be a net
force towards the center of the curve




Circular motion in auto racing o

* \WWhen a car goes around a curve, there must be a net
force towards the center of the curve

e |f the road is flat, this force is supplied by friction

What if the frictional force is insufficient?
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Circular motion in auto racing o

* \WWhen a car goes around a curve, there must be a net
force towards the center of the curve

e |f the road is flat, this force is supplied by friction

What if the frictional force is insufficient?



Circular motion in auto racing

e [f friction is insufficient, the car will tend to move in a
straight line (see skid marks)
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e [f friction is insufficient, the car will tend to move in a
straight line (see skid marks)

 |f tires roll without slipping,
the friction is static
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e [f friction is insufficient, the car will tend to move in a
straight line (see skid marks)

 |f tires roll without slipping,
the friction is static

e |f they slip, it is bad:

1. Kinetic friction is
smaller than static

2. Static friction can point
inwards (i.e. opposing FasEEvis
the impending motion), .= 4
while kinetic friction £
only opposes the
direction of motion
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A particle moves with constant speed along the circular path

shown on the right. Its velocity vector at two different times is
also shown.

What is the direction of the acceleration when the particle is
at point x?

A. — B. — \
C. I D. l X;
E. ® (outofthe page) f
F. @ (into of the page)
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A poorly drawn golf cart moves around a circular path on a
level surface with decreasing speed.

Which arrow could indicate the direction of the car’s
acceleration while passing the point P?

11
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* Even when the origins are identical, there are many ways
to specify the location of a point

e Some can be very useful and save you much algebra!

12
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* Even when the origins are identical, there are many ways
to specify the location of a point

e Some can be very useful and save you much algebra!

Cartesian (x, y)
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Polar coordinates = guiss

Center

* Even when the origins are identical, there are many ways
to specify the location of a point

e Some can be very useful and save you much algebra!
Cartesian (x, y) Polar (p, ¢)

>

¢
1,
P
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* Even when the origins are identical, there are many ways
to specify the location of a point

e Some can be very useful and save you much algebra!

Cartesian (x, y) Polar (p, ¢)
y A . 0 < p <0
t NP |
0 < ¢ < 2z radians
7 or
¢ 0 < ¢ <360°
: : = X
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* Even when the origins are identical, there are many ways
to specify the location of a point

e Some can be very useful and save you much algebra!

Cartesian (x, V) Polar (p, ¢)
0<p<

0 < ¢ < 2z radians

or
0 < ¢ < 360°
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* Even when the origins are identical, there are many ways
to specify the location of a point

e Some can be very useful and save you much algebra!

Cartesian (x, V) Polar (p, ¢)
0<p<

0 < ¢ < 2z radians

or
0 < ¢ < 360°
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Polar coordinates o

* Even when the origins are identical, there are many ways
to specify the location of a point

e Some can be very useful and save you much algebra!

Cartesian (x, V) Polar (p, ¢)
0<p<

0 < ¢ < 2z radians

or
0 < ¢ < 360°

COS X + sin @y

= — sin QX + CoSs ¢y
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Polar coordinates = suis.

* Even when the origins are identical, there are many ways
to specify the location of a point

e Some can be very useful and save you much algebra!
Cartesian (x, y) Polar (p, ¢)

0<p<

0 < ¢ < 2z radians
or

0 < ¢ < 360°

COS X + sin @y

= — sin QX + CoSs ¢y

19



Cylindrical coordinates o

» Just like polar, but adding the Cartesian axial direction 2
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Cylindrical coordinates o

» Just like polar, but adding the Cartesian axial direction 2

o At different locations, the radial ﬁ and azimuthal qg
directions change

Cylindrical (p, ¢, 2) .
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Cylindrical coordinates o

» Just like polar, but adding the Cartesian axial direction 2

o At different locations, the radial ﬁ and azimuthal qg
directions change

Cylindrical (p, ¢, 2) .

22



Spherical coordinates

 One radial coordinate and two angles
Spherical (7,0, @)

23



Conversions between coordinates!
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Transformation Coordinate variables

Unit vectors

Vector components

Cartesian to
cylindrical

Cylindrical to
Cartesian

Cartesian to
spherical

Spherical to
Cartesian

Cylindrical to
spherical

Spherical to
cylindrical

p=q/x"+’

¢ = tan~'(y/x)

1=z

X = pCcosq¢
y=psing

2=z

r= xz+yz+z2

0 = tan™! <\ [ x> + y2/z>

¢ = tan~'(y/x)
x =rsinfcos ¢
y = rsinfsin ¢

7z =rcos@

p = COS X + sin @y

¢ = — sin px + cos P

1=z

X = cos ¢p — sin qﬁgﬁ

$ = singp + cos p¢p

1=z

7 = sin @ cos ¢x

X +sin @ sin ¢y + cos 67
6 = cos 6 cos px

X +cos @ sin ¢y — sin 62
¢ = —sin¢gy + cos @2

sin @ cos @7

+cos @ cos gbé — sin g[)qg
y = sin @ sin ¢7
+cos @ sin q’)é + cos 4543

X

2 = cos OF — sin 00
r = sinp + cos 02
6 = cosfp — sin b7
¢ =9

p = sin 07 + cos 00
b=9 A
Z =cosOr —sin 00

A,=A,cos¢+A,sing
A, =—Asing +A cos¢
A, =A,
A, =A,co8¢ —Aysing
A, =A,sing +A,cos¢
AZZAZ
A, =A,sindcos @
+A,smésing + A, cost
Ap=A,cos0cos ¢
+A,cosfsing — A sind
Ay =—A;sing +A,cos¢p
A . =A.sinfcos @
+Aycosfcosgp —A,sing
A, =A,sinfsing
+AgcosOsing +A,cos @
A, =A,cos0—Aysind
A, =A,sin0d +A, cost
Ag=A,cos0 —A_ sind

Ap =4y
A,=A,sm0+Aycosd

A, =A,cos0—Agsind 24



Example: Cylindrical coordinates

Write the following in Cartesian and cylindrical coordinates:

A. The equation of a sphere of radius r; centered at the
origin.

25
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Write the following in Cartesian and cylindrical coordinates:

A. The equation of a sphere of radius r; centered at the
origin.

B. The equation of a cylinder parallel to the 7 axis with a
radius py and length L, whose center is at the origin.

26



Motion in cylindrical coordinates

* Derive the expressions for the velocity and acceleration of
an object in cylindrical coordinates

27



Motion in cylindrical coordinates

* Derive the expressions for the velocity and acceleration of
an object in cylindrical coordinates
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Motion in cylindrical coordinates

* Derive the expressions for the velocity and acceleration of
an object in cylindrical coordinates
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Motion in spherical coordinates

* Derive the expressions for the velocity and acceleration of
an object in spherical coordinates

30
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* Derive the expressions for the velocity and acceleration of
an object in spherical coordinates

e Just kidding, it's quite horrible:

V = i + r00 + rd sin O

. 2 . 2
a = (7‘—1"(6’) —7'(¢) Siﬂ2@>i’\'
) . N2 n
+<r6’+21>«9—r<q§> sianosH) 0
+ (rqb sin 6 + 21’fq§ sin 6 + 2rgbé’COS 6’) €$

31
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Flexible spinning rings
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e The period 1T is the time the object takes to complete one
full revolution; units of [s]
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=PrL
Quantifying speed in uniform circular motion= s

Center

e The period 1T is the time the object takes to complete one
full revolution; units of [s]

e The frequency f = 1/T is the number of revolutions the
object completes per second; units of [1/s]
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Quantifying speed in uniform circular motion= s

Center

e The period 1T is the time the object takes to complete one
full revolution; units of [s]

e The frequency f = 1/T is the number of revolutions the
object completes per second; units of [1/s]

e The average angular frequency @ = 2n/T = 2xf (i.e. the
average angular speed) is the number of radians the
object completes per second; units of [radians/s]
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Center

e The period 1T is the time the object takes to complete one
full revolution; units of [s]

e The frequency f = 1/T is the number of revolutions the
object completes per second; units of [1/s]

e The average angular frequency @ = 2n/T = 2xf (i.e. the
average angular speed) is the number of radians the
object completes per second; units of [radians/s]

» Since the distance traveled per revolution is 2zp,, we can
calculate the speed

_ 2mpy

V= = 27mpnf = pr
T Pot = Po

36



Velocity in circular motion o

 Find the velocity of an object moving in a circle with a
radius p,.

‘_/) v /": -
1 - ~
7

37



Quantifying velocity in circular motion
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e The angular speedis w = gb = —

dt

e |ike velocity, the angular velocity is

a vector @, but defined given an
axis of rotation

e To find the direction of @ we need to
introduce cross (vector) products

38



Review: Cross (or vector) product
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 Two vectors are multiplied in a cross
product to produce another vector

axXb=c

39



Review: Cross (or vector) product " S,
 Two vectors are multiplied in a cross f axb
product to produce another vector
aXb=c $a
e Magnitude: |¢| =c =absin b

* Direction: Use right hand rule

40



Review: Cross (or vector) product

Two vectors are multiplied in a cross * axb
product to produce another vector

ixb=7C -
Magnitude: |¢| =c¢ = absind b
Direction: Use right hand rule

fd||b, thendx b =0orifd L b, then |G X b| = ab

Not commutative: @ X b = — b X a@
Distributive: @ X (b + &) = d X b +ad X C

- d . - da - _ db
Derivative product rule: —(a@a X b) = — X b+ a X —

dt dt dt 41



Review: Cross (or vector) product e

. How to Compute a >< b component by oomponent

!. axb—(ab —ab)x+(ab —ab)y+(ab —abx)z

where Zi—ax+ay+az

b=bXx+by+Db2Z

42



Review: Cross (or vector) product

e How to compute aXxb component-by-component




Quantifying velocity in circular motion

d

e The angular speedis w = gb = —

dt

e |ike velocity, the angular velocity is

a vector @, but defined given an
axis of rotation

e To find the direction of @ we need to
introduce cross (vector) products

e Points along the axis of rotation
according to the right-hand rule

__PXVy
a =

44



Quantifying velocity in circular motion
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Ay

q A ‘ Right
Directicgn\'oA ¢ ¢ ha%d
of rotation o4

‘———-‘* &
S
:0 Direction
of rotation

o Alternatively, there's a different right hand rule that shows
the direction of @

 Often (but not always!) @ is in the =7 direction, due to the
way we often define our cylindrical coordinate systems

* \We can also use this to reinterpret some past results:
dpldt = w¢p = @ X p and doldt = —wp = @ X ¢p

45
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 Find the acceleration of an object moving in a circle with a
radius p,.

v, = -~
1 -~ ~
/7

46
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 The magnitude of the angular
d2¢
ar

accelerationis a = ¢ =

47
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Quantifying acceleration in circular motlo - g,

 The magnitude of the angular

. d* w
sccetratonisa = =205, 1T
dt? g
» Defined analogously to @ such that @4 ™. s ;
L . pXa,
CZ¢ == d Xp and o =
2
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Quantifying acceleration in circular motlon o

 The magnitude of the angular

d2¢
| FO

dt2 A T

e Defined analogously to @ such that . |

D o _, pXa,
a,= a Xp and a = 2

* |f the direction of the rotation axis * a
does not change, the angular ,5
acceleration vector points along it

accelerationis a = ¢ =

49



Centripetal force in circular motion o

* Find the force required to maintain an object moving in a
circle with a radius p,,.

\_} <) —
1 - ~
7

50
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Circular motion summary o

* \WWhen an object moves in a circular orbit,
the direction of the velocity changes )
(and the speed may change as well)

52



Circular motion summary

* \WWhen an object moves in a circular orbit,
the direction of the velocity changes )
(and the speed may change as well)

* |Instantaneous velocity is always
tangent to the circle

53



Circular motion summary o

When an object moves in a circular orbit,
the direction of the velocity changes )
(and the speed may change as well)

Instantaneous velocity is always
tangent to the circle

The acceleration will always have a
radial component (ap) due to the

change in direction of velocity, which is
called the centripetal acceleration

.
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Circular motion summary o

When an object moves in a circular orbit,
the direction of the velocity changes )
(and the speed may change as well)

Instantaneous velocity is always
tangent to the circle

The acceleration will always have a
radial component (ap) due to the

change in direction of velocity, which is
called the centripetal acceleration

.

The acceleration may have a tangential component (a,) if the
speed changes

When a, = 0, the speed of the object remains constant
95



Uniform circular motion summary "

e Motion in a circle of constant —_ \D)
. // ".\
radius p, at constant angular / :

velocity @ (radians per second) /

e |Instantaneous velocity is still
always tangent to the circle \

 The acceleration will only have a \
radial component (ap) due to the N
change in direction of velocity

56



Uniform circular motion summary M e
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N . -
|\/|01.2I0n in a circle of constant T T——
radius p, at constant angular / a

velocity @ (radians per second) /

Instantaneous velocity is still
always tangent to the circle \

The acceleration will only have a \
radial component (ap) due to the N
change in direction of velocity

Centripetal acceleration always points to the center of the circle

-

_ 2 A
Aeent = — Po® P

—>

. . - _ 2/\

Must be a centripetal force F ., = ma.,,, = — mpyw“p
57
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Ball on a rotating slide
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Ball on a rotating slide

o Find the equilibrium position 6, of the ball

59
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An object moves counter-clockwise along the circular path
shown below. As it moves along the path, its acceleration
vector continuously points towards S. P

The object...

speeds up at P, Q, and R.

slows down at P, Q, and R. R
. speeds up at P and slows down at R.

. slows down at P and speeds up at R.

No object can execute such motion.

Mmoo w»

60
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A ladybug sits at the outer edge of a z
merry-go-round that is turning and ‘-
slowing down. | <
T
| .
At the instant shown in the figure, the T
radial component of the ladybug'’s / \

(Cartesian) acceleration is... \ @%

——
e —

in the 4y direction.
in the — direction.
. in the —X direction.

. in the +7Z direction.
Zero.

mo O x »
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Session ID: epflphys101en Center

A ladybug sits at the outer edge of a z
merry-go-round that is turning and

slowing down. <
o
~_ | 7

At the instant shown in the figure, the — -
tangential component of the Iadybug’s/ \

(Cartesian) acceleration is... \ @%

——
e —

in the 4y direction.
in the — direction.
. in the —X direction.

. in the +7Z direction.
Zero.

mo O x »
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| EPFL
Conceptual question e ronys01n o
A bead is given a small push at the top of a hoop (position 1)
and is constrained to slide around a frictionless circular wire

(in a vertical plane). Which arrow best describes the direction
of the acceleration when the bead is at the position 27

T

position 1

N ‘ lg
position 2

63
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EPFL
Conceptual question Session ID: epfphys10ten Gkt

Consider a horse pulling a buggy. Is the following statement
true?

The weight of the horse and the normal force exerted by the
ground on the horse constitute an interaction pair that are
always equal and opposite according to Newton's third law.

A. Yes
B. No

64
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