
Solution to the Final Exam
17 January 2025
PHYS-101(en)

1. Block on an inclined surface

a. (2.0 points) The diagram may look as follows, where CM indicates the center of mass of the block:

b. (4.0 points) First, apply Newton’s second law to solve for the acceleration of the block:∑
Fy : NA +NB −mg cos(θ) = 0 ⇒ NA +NB = mg cos(θ) (1)∑
Fx : mg sin(θ)− FkA − FkB = max (2)

max =mg sin(θ)− µkNA − µkNB = mg sin(θ)− µk(NA +NB) (3)

Substituting in the result from equation 1 to equation 3, we find:

max = mg sin(θ)− µk mg cos(θ) (4)
ax = g [sin(θ)− µkcos(θ)] (5)

The block therefore experiences constant acceleration in the x-direction, so the following equations
apply:

vx(t) = v0 + ax t (6)

x(t) = x0 + v0 t+
1

2
ax t

2 (7)

After traveling some distance d, we can express equations 6 and 7 as:

d = x(td)− x0 = v0 td +
1

2
ax t

2
d (8)

vf = vx(td) = v0 + ax td ⇒ td =
1

ax
(vf − v0) (9)
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Substituting the result for td into equation 8, we find:

d = v0
1

ax
(vf − v0) +

1

2
ax

1

a2x
(vf − v0)

2 (10)

d =
v0
ax

(vf − v0) +
1

2ax
(v2f − v20) =

1

2ax
(v2f − v20) (11)

Rearranging and introducing the value for ax found in equation 5, we arrive at an expression for vf :

v2f = v20 + 2d ax (12)

|v⃗f | =
√
v20 + 2dg [sin(θ)− µkcos(θ)] (13)

c. (3.0 points) For |v⃗f | to be less than |v⃗0|, the second term inside the radical (2dg [sin(θ) − µkcos(θ)])
must be negative, as d and g are both positive. This gives us the condition:

2dg [sin(θ)− µkcos(θ)] < 0 ⇒ sin(θ)− µkcos(θ) < 0 (14)

µk >
sin(θ)
cos(θ)

= tan(θ) (15)

A full stop occurs when the terms inside the radical cancel out. To avoid that, it must be the case
that:

v20 + 2dg [sin(θ)− µkcos(θ)] > 0 ⇒ v20 > −2dg [sin(θ)− µkcos(θ)] (16)

v20
2dg

> µkcos(θ)− sin(θ) = cos(θ) [µk − tan(θ)] (17)

This gives us the following condition for µk to ensure that the block does not come to a stop:

µk < tan(θ) +
v20

2dg cos(θ)
(18)

The two conditions for µk from equations 15 and 18 can then be written as a single expression in the
form provided in the problem statement:

tan(θ) < µk < tan(θ) +
v20

2dg cos(θ)
(19)

d. (4.0 points) To solve for the normal force acting on point B (N⃗B), you can use the fact that the
rotational state of the block does not change around any choice of pivot point, i.e., τ⃗net = 0. By
choosing the CM as the pivot point, τ ̸= 0 for frictional forces. Note that, due to its uniform density,
the CM of the block is at the center of the rectangle. We can then write the following, where the
subscripts FkA and FkB correspond to the kinetic friction at points A and B:

τ⃗net,CM = τ⃗NA
+ τ⃗FkA + τ⃗NB

+ τ⃗FkB + τ⃗mg (20)

We can then write expressions for the components of τ⃗net,CM. As the weight acts on the pivot, τ⃗mg = 0.
For the rest, we have:

τ⃗NA
= r⃗CM,A × N⃗A = (l x̂− h ŷ)× (NA ŷ) = l NA ẑ (21)

τ⃗FkA = r⃗CM,A × F⃗kA = (l x̂− h ŷ)× (−FkA x̂) = hFkA (ŷ × x̂) = −hµk NA ẑ (22)

τ⃗NB
= r⃗CM,B × N⃗B = (−l x̂− h ŷ)× (NB ŷ) = −l NB ẑ (23)

τ⃗FkB = r⃗CM,B × F⃗kB = (−l x̂− h ŷ)× (−FkB x̂) = hFkB (ŷ × x̂) = −hµk NB ẑ (24)
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Substituting into τ⃗net,CM:

τ⃗net,CM = l NA ẑ − hµk NA ẑ − l NB ẑ − hµk NB ẑ = [NA (l − hµk)−NB (l + hµk)] ẑ (25)

Since τ⃗net,CM = 0, we can set equation 25 equal to zero:

0 = NA (l − hµk)−NB (l + hµk) (26)

We can then use equation 1 to find that NA = mg cos(θ) − NB . Plugging this into equation 26 and
solving for NB :

0 = (l − hµk) [mg cos(θ)−NB ]− (l + hµk)NB = (l − hµk)mg cos(θ)− 2 l NB (27)

NB =
1

2
(1− h

l
µk)mg cos(θ) ⇒ |N⃗B | =

1

2
mg cos(θ) |1− h

l
µk| (28)

e. (2.0 points) For the block to always remain in contact with the surface, NB > 0. Since cos(θ) ≥ 0 for
0 ≤ θ ≤ π

2 , the requirement is satisfied if 1 − h
l µk > 0. Solving for µk, the block remains in contact

with the surface if:

µk <
l

h
(29)

f. (2.0 points) If the block does not slide, friction is static. The forces acting on the block are then as
follows, where FsA and FsB are the forces of static friction acting on the block at points A and B,
respectively: ∑

Fy : NA +NB −mg cos(θ) = 0 ⇒ NA +NB = mg cos(θ) (30)∑
Fx : mg sin(θ)− FsA − FsB = max (31)

We know that FsA + FsB ≤ µs NA + µs NB , and from equation 30 that µs (NA +NB) = µs mg cos(θ).
The maximum value of the sum of friction forces is then:

(FsA + FsB)max = µs mg cos(θ) (32)

According to equation 30, the block will start sliding down the inclined surface (i.e., ax > 0), only
when:

mg sin(θ)− (FsA + FsB)max > 0 ⇒ mg sin(θ) > µs mg cos(θ) ⇒ tan(θ) > µs (33)
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2. Curling

a. (1.0 points) The diagram may look something like what is shown below. The forces acting on the
stone after it is released are also indicated at right:

b. (3.0 points) Applying Newton’s second law to solve for the acceleration of the stone:∑
Fy : N −mg = 0 ⇒ N = mg (1)∑
Fx : −Fk = max ⇒ max = −µk N = −µk mg ⇒ ax = −µk g (2)

This tells us that the stone has a constant acceleration up to the moment it stops, ts. We can then
describe the velocity of the stone before it stops as:

vx(t) = v0 + ax t = v0 − µk g t (3)
v⃗(t) = (v0 − µk g t) x̂ (4)

Note that, if t > ts, then v⃗(t) = 0. To find ts, we solve equation 4 for t = ts:

vx(ts) = 0 = v0 − µk g ts ⇒ ts =
v0
µk g

(5)

c. (3.0 points) Since acceleration is constant for 0 ≤ t ≤ ts, we can describe the position of the stone in
the x-direction as a function of time using:

x(t) = x0 + v0 t−
1

2
µk g t

2 (6)

In our given choice of reference frame, x0 = 0. To stop on the target, we need x(ts) = d. Substituting
this condition into equation 6:

d = x(ts) = v0 ts −
1

2
µk g t

2 = v0

(
v0
µk g

)
− 1

2
µk g

(
v0
µk g

)2

(7)

d =
1

µk g
(v20 −

1

2
v20) =

1

2µk g
v20 (8)

Finally, solving for the required initial velocity v0 of the stone:

v0 =
√
2µk g d (9)
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d. (3.0 points) To find the work done on the stone by friction, we first recognize that the friction force
(F⃗k) is constant over the entire trajectory of the stone. Therefore, we can apply the expression of work
done by a constant force:

Wf = F⃗k · l⃗ = (−Fk x̂) · (d x̂) = (−Fk d) (x̂ · x̂) = −Fk d = −µk mg d (10)

Here, it is important to recognize that Wf < 0.

To now solve for the change in kinetic energy, we use:

∆K = Kf −Ki =
1

2
mv2f − 1

2
mv20 (11)

Since vf = 0, we find:

∆K = −1

2
mv20 (12)

Substituting in the expression found for v0 in equation 9:

∆K = −1

2
m(

√
2µk g d)

2 = −mµk g d (13)

This is the same expression found for Wf in equation 10, so ∆K = Wf . This result should be expected
from the "Work-Kinetic energy" theorem, as friction is the only force doing work on the stone.

e. (3.0 points) The work done by friction can be separated into the part of the stone’s trajectory with
sweeping and the part without, denoted by subscripts s and ns, respectively:

Wf =

∫
d

F⃗k · d⃗l =
∫
s

F⃗k · d⃗l +
∫
ns

F⃗k · d⃗l (14)

The force is constant in each part, so:∫
s

F⃗k · d⃗l =F⃗k,s ·
∫
s

d⃗l = F⃗k,s · l⃗s (15)∫
ns

F⃗k · d⃗l =F⃗k,ns ·
∫
ns

d⃗l = F⃗k,ns · l⃗ns (16)

From the problem statement, we know that:

F⃗k,ns = −µk mg x̂ F⃗k,s = −1

2
µk mg x̂ (17)

l⃗ns = lns x̂ l⃗s =
d

3
x̂ (18)

where lns is the total distance without sweeping. We can then find an expression for the work done by
friction:

Wf = F⃗k,s · l⃗s + F⃗k,ns · l⃗ns = −(
1

2
µk mg)

(
d

3

)
− (µk mg) (lns) (19)

Wf = −
(
lns +

d

6

)
µk mg (20)
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From the "Work-Kinetic energy" theorem, we then have:

∆K =
1

2
mv2f − 1

2
mv20 = −1

2
mv20 = −mµk g d = Wf (21)

Equating the result from equation 20 and solving for lns:

∆K = Wf ⇒ −mµk g d = −
(
lns +

d

6

)
µk mg (22)

d = lns +
d

6
⇒ lns = d− d

6
=

5d

6
(23)

The total distance then traveled by the stone is:

ltot = ls + lns =
d

3
+

5d

6
=

7d

6
(24)

f. (3.0 points) Using the impulse approximation, we can say that the total momentum is conserved
between right before and right after the collision. The use of the impulse approximation is necessary
because the presence of an external force during the collision (friction) tells us that momentum is
not conserved during the collision. The impulse approximation, however, allows us to simplify the
calculations and proceed as if momentum is conserved.
To show that the velocity of the sticking stones after the collision is in the same direction and has
half the speed as your stone’s velocity right before the collision, we use conservation of momentum,
as implied by the impulse approximation. The subscripts 1 and 2 correspond to the moving stone
(your stone) and the target stone (your opponent’s stone), respectively. The subscript c denotes the
combined stones immediately following the collision.

p⃗i = mv⃗1,i +mv⃗2,i (25)
p⃗f = 2mv⃗c,f (26)

Since v⃗2,i = 0, we have:

p⃗i = p⃗f ⇒ mv⃗1,i = 2mv⃗c ⇒ v⃗c =
1

2
v⃗1,i (27)

g. (2.0 points) To stop at the target, which is 1
10d away from the location of the collision, the object of

mass 2m must undergo a change in kinetic energy of:

∆K = 0− 1

2
(2m) v2c (28)

As friction is the only force doing work on the stones, this change in kinetic energy must be equal to
the work done by friction. This allows us to solve for vc:

Wf = F⃗k · l⃗ = −µk (2m) g

(
1

10
d

)
= ∆K = −1

2
(2m) v2c (29)

v2c =
1

5
µk g d ⇒ vc =

√
1

5
µk g d (30)

h. (2.0 points) From part (f), the speed of your stone immediately before the collision must be twice vc.
To find vn, we can then use the change in kinetic energy from the moment you release the stone to
right before the collision:

∆K =
1

2
m (2 v2c )−

1

2
mv2n =

1

2
m

[
4

5
µk g d− v2n

]
(31)
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As before, this change in kinetic energy must be equal to the work done by friction over the path of
the stone:

Wf = F⃗k · l⃗ = −µk mg

(
9

10
d

)
(32)

Equating Wf and ∆K, we can solve for vn:

∆K = Wf ⇒ 1

2
m

[
4

5
µk g d− v2n

]
=− µk mg

(
9

10
d

)
(33)

v2n − 4

5
µk g d =

g

5
µk g d ⇒ vn =

√
13

5
µk g d (34)
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3. Dumbbell, pulley and block

a. (2.0 points) The diagrams may look as follows for the suspended mass, pulley, and dumbbell:

The "no slipping" condition suggests that static friction (Fs) is acting on point C2. This force acts in
the negative x direction, opposing the tension force of the rope (TH).

b. (5.0 points) To find the acceleration of the dumbbell’s CM, first apply Newton’s second law to the
dumbbell; ∑

Fy : md g −N = 0 ⇒ N = md g (1)∑
Fx : TH − Fs = md aCM ⇒ Fs = TH −md aCM (2)

We also need to consider the torques about the axis of the dumbbell, as the dumbbell can rotate about
its axis. The net torque can be described as:

τ⃗net = τ⃗md g + τ⃗N + τ⃗Fs
+ τ⃗TH

(3)

Since the weight is applied at the pivot, τ⃗md g = 0. Breaking out the other individual components of
τ⃗net, we have:

τ⃗N = (r2 ŷ)× (N ŷ) = r2 N (ŷ × ŷ) = 0 (4)

T⃗Fs
= (r2 ŷ)× (−Fs x̂) = −r2 Fs (ŷ × x̂) = r2 Fs ẑ (5)

T⃗TH
= (r1 ŷ)× (TH x̂) = r1 TH (ŷ × x̂) = −r1 TH ẑ (6)

Substituting these values into equation 3, we find:

τ⃗net = (r2 Fs − r1 TH) ẑ (7)

A net torque will cause an angular acceleration α⃗d in the ẑ direction:

τ⃗net = Id α⃗d ⇒ r2 Fs − r1 TH = Id αd (8)
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The "no-slipping" condition at C2 implies that αd = aCM

r2
. Replacing this and Fs (from equation 2) in

equation 8, gives:

r2 (TH −md aCM )− r1 TH = Id
aCM

r2
⇒ (r2 − r1)TH =

1

r2
Id aCM +md r2 aCM (9)

aCM = TH (r2 − r1)
r2

Id +md r22
(10)

Since TH > 0 and r2 > r1, aCM > 0. This tells us that the dumbbell will accelerate to the left (in the
positive x direction).

c. (4.0 points) As seen from the dumbbell axis (i.e., from a reference frame whose origin coincides with
the dumbbell axis but does not rotate), for the rope to not slip at C1, it must have the same tangen-
tial velocity as the dumbbell at that point. The tangential speed (with respect to the axis) is simply
|vax,C1 | = r1 |ω|, where ω is the angular speed. Keep in mind that |vax,C2 | = r2 |ω| = |vCM | and
|vax,C1 | = r1

∣∣∣ vCM

r2

∣∣∣ = r1
r2
|vCM | from the no-slip condition on the table.

To find the direction, we notice that since aCM > 0 (the dumbbell moves to the left), the dumbbell
must rotate counterclockwise. Therefore, because vCM > 0:

v⃗ax,C1
=

r1
r2

|vCM | (−x̂) = −r1
r2

vCM x̂ (11)

In the original reference frame, the dumbbell axis has a translational motion with velocity v⃗ax = vCM x̂
because the axis contains the CM. If r⃗ax is the position of the axis in the original reference frame and
r⃗ax,C1

is the position of C1 with respect to the axis, then the position of C1 in the original reference
frame is:

r⃗C1 = r⃗ax + r⃗ax,C1 (12)

After differentiating equation 12, we can express the velocity at C1 in the original frame as:

v⃗C1
= v⃗ax + v⃗ax,C1

= vCM x̂− r1
r2

vCM x̂ (13)

v⃗C1 =

(
1− r1

r2

)
vCM x̂ (14)

The rope must then have this same velocity:

v⃗rope = v⃗C1
=

(
1− r1

r2

)
vCM x̂ (15)

Since vrope < vCM , the axis of the dumbbell overtakes the rope. This implies that the rope winds up
around the handle.

d. (2.0 points) Looking at our diagram in part (a) and applying Newton’s second law to the block, we
find: ∑

Fy : mb g − TV = mb aby ⇒ aby = g − 1

mb
TV (16)

e. (4.0 points) From part (a), we can compute the net torque around the axis of the pulley as follows:

τ⃗net = τ⃗mp g + τ⃗sup + τ⃗TV
+ τ⃗TH

(17)

9
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Here, both τ⃗mp g = 0 and τ⃗sup = 0 because the forces act on the pivot point. The two remaining
non-zero components of the net torque are then:

τ⃗TV
= (R x̂)× (TV ŷ) = RTV ẑ (18)

τ⃗TH
= (−R ŷ)× (−TH x̂) = −RTH ẑ (19)

Substituting these into equation 17, we find that the net torque is:

τ⃗net = R (TV − TH) ẑ (20)

Since τ⃗net can also be expressed in terms of the angular acceleration (α⃗P ) and moment of inertia IP
of the pulley (τ⃗net = IP α⃗P ), we can then use the result from equation 20 to solve for the angular
acceleration:

IP α⃗P = R (TV − TH) ẑ ⇒ α⃗P =
R

IP
(TV − TH) ẑ (21)

f. (3.0 points) Since the rope does not slip on the pulley, it must accelerate with the tangential acceler-
ation:

αP =
arope

R
⇒ arope = RαP (22)

Then, because the rope is attached to mb and inextensible:

aby = arope = RαP (23)

Plugging the expression for αP into equation 23, we can write an expression for TH :

aby =
R2

IP
(TV − TH) ⇒ TH = TV − IP

R2
aby (24)

Then, rearranging the result from equation 16 to find an expression for TV , we can solve for TH with
the requested terms:

TH = mb g −mb aby −
IP
R2

aby ⇒ TH = mb g − aby

(
mb +

IP
R2

)
(25)

g. (3.0 points) To find the relation between the acceleration of the dumbbell’s CM and the acceleration
of the block, we can start with equation 15, which describes the relationship between the velocity of
the dumbbell’s CM and the velocity of the rope. We can then differentiate both sides of equation 15
with respect to time, to get an expression that relates the accelerations of the rope and dumbbell’s
CM:

d

dt
(vrope) =

(
1− r1

r2

)
d

dt
(vCM ) ⇒ arope =

(
1− r1

r2

)
aCM (26)

Since arope = aby as argued in part (e) (see equation 23), we can relate the vertical acceleration of the
block and the horizontal acceleration of the dumbbell’s CM:

aby = aCM

(
1− r1

r2

)
(27)
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Next, to solve for aCM in terms of the parameters of the problem, we can first revisit equation 25. By
substituting the result of equation 27, we can find an expression for TH that includes aCM :

TH = mb g − aby

(
mb +

IP
R2

)
⇒ TH = mb g − aCM

(
1− r1

r2

) (
mb +

IP
R2

)
(28)

TH = mb g − aCM
(r2 − r1)

r2 R2
(IP +mb R

2) (29)

We can then rewrite equation 10 as an expression for TH that includes aCM :

aCM = TH (r2 − r1)
r2

Id +md r22
⇒ TH = aCM

Id +md r
2
2

r2(r2 − r1)
(30)

This allows us to equate equations 29 and 30 and find an expression for aCM that includes only
parameters given in the problem statement:

aCM
Id +md r

2
2

r2(r2 − r1)
= mb g − aCM

(r2 − r1)

r2 R2
(IP +mb R

2) (31)

aCM

[
Id +md r

2
2

r2(r2 − r1)
+

(r2 − r1)

r2 R2
(IP +mb R

2)

]
= mb g (32)

aCM = mb g

[
R2 r2 (r2 − r1)

R2 (Id +md r22) + (r2 − r1)2 (IP +mb R2)

]
(33)
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