
Section STI - année 2022-2023 Daniele Mari & Nicolas Grandjean 

 

Page 1/4 

Physique Générale « Mécanique » 
 

Examen du 20 janvier 2023, 9:15 – 12:45 

Veuillez rédiger vos réponses dans le cahier ci-joint.  
Le cahier ne doit pas être dégrafé. Seul le cahier est ramassé et corrigé. 
 
Dans tous les exercices, sauf indication contraire, les résultats sont à exprimer en fonction des données fournies 
et des constantes physiques connues. 

Chaque réponse doit être justifiée dans le cadre prévu à cet effet (une page blanche supplémentaire est 
disponible à la fin de chaque exercice si nécessaire). 

Le sujet de l’examen comprend 4 exercices. 

Seul document autorisé : une page de notes A4 recto/verso. Pas de calculatrice ; pas de téléphone. 

 

 
 

 

Exercice 1 (0,9 point) : Le cône et le ressort 

Un cône de demi-angle au sommet α peut tourner autour d’un axe principal d’inertie 
∆ passant par son sommet et son centre de masse.  Au sommet du cône, une tige (de 
longueur négligeable) permet de fixer au point O un ressort sans masse, de constante 
de raideur k, et de longueur l0 au repos. A l’autre extrémité du ressort est attachée 
une masse m, comme sur le schéma ci-contre. Cette masse sera considérée comme 
un point matériel. La masse m peut glisser sans frottement dans un rail qui guide son 
déplacement. Le système est soumis au champ de pesanteur.   

Le cône est immobile (pas de rotation).  

1a Calculez la position d’équilibre 𝑥𝑥𝑒𝑒𝑒𝑒 de la masse m par rapport au point d’attache du ressort (O).  
1b Exprimez l’énergie mécanique du système « ressort + masse » en fonction de 𝑥𝑥 et 𝑥̇𝑥. 
1c Déterminez l’équation du mouvement de la masse m et donnez la forme générale des solutions. 

Le cône est maintenant en rotation à la vitesse angulaire Ω��⃗  constante. La masse m étant guidée par le rail, elle tourne 
aussi à la vitesse Ω��⃗ .    

Dans un premier temps, la masse reste au contact avec le rail et atteint une nouvelle position d’équilibre sous l’effet 
de la rotation. 

1d Calculez le déplacement selon Ox de la masse m par rapport à sa position d’équilibre (𝑥𝑥𝑒𝑒𝑒𝑒).  

Dans un second temps, la vitesse de rotation du cône est telle que la masse m n’est plus en contact avec le cône.  

1e Déterminez Ω0 la vitesse angulaire maximale pour que la masse reste au contact du cône. On considèrera pour 
calculer Ω0 que l’allongement selon Ox est négligeable (𝑥𝑥 ≈ 𝑥𝑥𝑒𝑒𝑒𝑒). 
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On fixe la vitesse angulaire à une valeur inférieure à Ω0 et on déplace la masse m hors de sa position d’équilibre. On 
la lâche et elle se met à osciller.    

1f Faites un schéma du système où vous indiquerez les forces de Coriolis et centrifuge au cours d’une période 
d’oscillation de la masse m, c’est-à-dire quand la masse se déplace suivant 𝑒𝑒𝑥𝑥����⃗  et suivant −𝑒𝑒𝑥𝑥����⃗ .  
 
 

Exercice 2 (1,4 points) : Bowling 

On veut analyser le mouvement d’une boule de bowling de masse m de rayon R et ayant un moment d’inertie I, avec 
I = 2

5
𝑚𝑚𝑅𝑅2 = 𝛽𝛽𝛽𝛽𝑅𝑅2. 

La boule est initialement lancée sur la piste avec une vitesse initiale 𝑣𝑣0����⃗  sans rebond. Elle glisse sans frottement 
jusqu’au point A. A partir de A, elle continue à glisser mais avec un frottement avec la piste qui la met en rotation. 
On pose 𝑡𝑡 = 0 en A. La boule arrive ensuite en B à un temps 𝑡𝑡𝐵𝐵 où elle se met à rouler sans glissement avec une 
vitesse angulaire 𝜔𝜔𝐵𝐵.  

 

On suppose dans un premier temps que la boule est un point matériel qui glisse avec un frottement sec entre A et B. 
Le coefficient de frottement est 𝜇𝜇𝑑𝑑. 

2a Exprimez 𝑣𝑣𝐵𝐵 en prenant soin de faire apparaître le temps 𝑡𝑡𝐵𝐵 dans l’expression.  
2b Calculez le travail de la force de frottement entre A et B. 
 
On considère maintenant le cas réaliste de la phase de « glissement – roulement » entre A et B. La boule n’est plus 
considérée comme un point matériel. 

2c Quelle est la relation entre 𝑣𝑣𝐵𝐵, vitesse du centre de masse de la boule, et 𝜔𝜔𝐵𝐵 = 𝜔𝜔(𝑡𝑡𝐵𝐵) au point B ? 
2d Déterminez l’expression de 𝜔𝜔(𝑡𝑡), avec comme condition initiale 𝜔𝜔(0) = 0 au point A.  
2e Quel est le temps 𝑡𝑡𝐵𝐵 au bout duquel la boule se met à rouler sans glissement ? 
2f Déterminez la vitesse 𝑣𝑣𝐵𝐵  en fonction de la vitesse initiale 𝑣𝑣0 et du coefficient 𝛽𝛽. 
2g Calculez l’énergie dissipée par la force de frottement entre A et B. 
 
 
Exercice 3 (1,6 points) : Mission DART  

En septembre 2022, la mission DART (Double Asteroid 
Redirection Test) a testé la possibilité de dévier la trajectoire 
d’un astéroïde. Le but de cette mission était de pouvoir vérifier 
qu’il est possible de dévier un "géocroiseur", c’est à dire un 
astéroïde dont la trajectoire intercepte celle de la Terre, en le 
percutant avec un satellite artificiel envoyé depuis la Terre.  
Nous allons étudier dans cet exercice certains aspects de cette 
mission. Le système choisi pour le test est constitué d’un 
astéroïde principal Didymos, appelé D1 de rayon R1 et de masse 
M1, autour duquel tourne un plus petit astéroïde Dimorphos, 
appelé D2 de rayon R2 et de masse M2. D2 tourne autour de D1 
sur une orbite circulaire de rayon r0 avec une période T0. 
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3a En utilisant la 2ème loi de Newton, trouvez l’expression de la masse M1 en fonction des données du problème. 
3b En supposant que la masse volumique des deux astéroïdes est identique, calculez la masse M2 en fonction de la 
masse M1 et des rayons R1 et R2. On suppose que les deux astéroïdes sont des sphères homogènes. 
 
Dans ce qui suit, on supposera les masses M1 et M2 connues (elles deviennent par conséquent des données de 
l’énoncé). Pour la suite des calculs, on se place dans le référentiel de l’astéroïde D1 avec un repère R dont l’origine 
est au centre de D1. 

3c Calculez la vitesse orbitale v0 de D2 dans R. 
 
Un satellite de masse ms est envoyé depuis la Terre et doit entrer en collision avec D2. Il arrive dans le référentiel de 
l’astéroïde D1 avec une vitesse 𝑣𝑣𝑠𝑠���⃗  tangentielle à l’orbite de D2. On suppose que le choc est parfaitement frontal (dans 
ce cas, on peut considérer les objets comme ponctuels) et que les deux vecteurs vitesses 𝑣𝑣𝑠𝑠���⃗  et 𝑣𝑣0����⃗  sont de sens 
opposé. 

3d Exprimez la nouvelle vitesse 𝑣𝑣1 de D2 après le choc, que l’on suppose parfaitement inélastique (choc mou). 
 
En fait, une hypothèse raisonnable est de supposer qu’une petite quantité de matière est éjectée lors du choc. Cette 
quantité de matière de masse me (avec me << M2 + ms) est éjectée à la vitesse 𝑣𝑣𝑒𝑒���⃗  (dans le repère R) dans une direction 
parfaitement opposée à 𝑣𝑣𝑠𝑠���⃗ .  

3e Calculez 𝑣𝑣2 la nouvelle vitesse de D2 après le choc dans ce cas. 
3f La vitesse 𝑣𝑣2 est-elle plus petite ou plus grande que 𝑣𝑣1? Justifiez. 
 
Le défi pour la mission DART est de réussir à mesurer 𝑣𝑣2 afin d’en déduire les caractéristiques du choc. Depuis la 
Terre, il est possible de mesurer la nouvelle période orbitale T2 de l’ensemble « D2 + Satellite ». L’orbite est 
maintenant elliptique. On appelle r2 la plus petite distance entre D2 et D1 sur cette orbite. On rappelle que la 3ème loi 
de Kepler énonce que le carré des périodes est proportionnel au cube des demi-grands axes. 

3g Tracez l’allure de la nouvelle trajectoire en indiquant le point correspondant au choc (dans ce schéma, vous 
dessinerez aussi la trajectoire circulaire avant le choc). 
3h Calculez r2 en fonction de r0, T0 et T2. 
3i Exprimez la vitesse 𝑣𝑣2′  lorsque D2 est à la distance r2 de D1. 
3j Déterminez v2 en fonction de G, r0, r2 et M1. 
3k Représentez sur un même schéma les diagrammes d’énergies potentielles effectives pour les trajectoires avant et 
après le choc. On indiquera aussi sur le schéma r0 et r2, ainsi que les niveaux d’énergie mécanique de chacune des 
deux orbites.  
 

 

Exercice 4 (1,1 points) : Bras de levier 

Nous étudions dans ce problème la physique d’un système (voir schéma ci-dessous) composé d’un bras de levier, 
d’une poulie, et d’un poids. La position du bras de levier est repérée par l’angle θ  par rapport à l’horizontale. Le bras 
de levier est constitué d’une tige de longueur L et de masse m, à laquelle est fixée à l’une de ses extrémités une 
sphère métallique de rayon r (r est négligeable par rapport à L) et aussi de masse m. Ce bras de levier est soudé à 
l’axe d’une poulie de telle sorte qu’une rotation angulaire dθ  de la poulie entraine la même variation d’angle dθ  de 
la position du bras de levier par rapport à l’horizontale. La poulie est libre de tourner sans frottement autour d’un 
axe ∆  fixe porté par la direction 𝑒𝑒𝑥𝑥����⃗  et passant par O le centre de masse de la poulie. Le moment d’inertie de la poulie 
de rayon R selon cet axe est 𝐼𝐼𝑝𝑝. Un fil inextensible de masse négligeable est enroulé autour de la poulie de telle sorte 
qu’il ne glisse pas (il peut se dérouler ou s’enrouler). A l’une des extrémités du fil est accrochée une masse M, comme 
représenté sur le schéma ci-après. G est le centre de masse du bras de levier (tige + sphère) et il est situé à la distance 
d de l’axe de rotation de la poulie. 
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Remarque : dans les questions a-e, on ne tient pas compte des effets de l’air ambiant. 

 

4a Le schéma ci-dessus représente une position d’équilibre pour le système. Déterminez l’angle 𝜃𝜃𝑒𝑒𝑒𝑒 correspondant 
à cette position d’équilibre. 

4b Il existe en fait une deuxième position d’équilibre. Que vaut alors l’angle correspondant ? Démontrez que la 
première position obtenue pour 𝜃𝜃𝑒𝑒𝑒𝑒 correspond à un équilibre stable alors que la deuxième position correspond à 
un équilibre instable. On pourra utiliser pour la démonstration la relation 𝑐𝑐𝑐𝑐𝑐𝑐�𝜃𝜃𝑒𝑒𝑒𝑒 + 𝛼𝛼� = 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑒𝑒𝑒𝑒 cos𝛼𝛼 −
sin𝛼𝛼  𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑒𝑒𝑒𝑒 ≈ 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑒𝑒𝑒𝑒 − 𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑒𝑒𝑒𝑒, avec 𝛼𝛼 un petit angle. 

4c Déterminez la masse maximum M = Mmax que l’on peut suspendre tout en conservant une situation d’équilibre 
stable. 

4d Calculez le moment d’inertie 𝐼𝐼𝑂𝑂 du bras de levier, c’est-à-dire du solide « tige+sphère », pour une rotation autour 
de l’axe Δ. On rappelle que les moments d’inertie pour une rotation autour d’un axe passant par le centre de masse 
sont  2

5
𝑚𝑚𝑟𝑟2 pour la sphère et  1

12
𝑚𝑚𝐿𝐿2 pour la tige. Notez que pour ce calcul on considèrera le rayon r de la sphère 

négligeable devant L. 

4e Le système est à nouveau à sa position d’équilibre stable avec la masse M < Mmax (comme sur le schéma ci-dessus). 
On appuie légèrement sur le bras de levier et on le lâche à un angle 𝜃𝜃0 > 𝜃𝜃𝑒𝑒𝑒𝑒 . Déterminez l’équation du mouvement 
du bras de levier selon 𝜃𝜃. Simplifiez cette équation dans le cadre de l’approximation des petits angles. On posera 𝛼𝛼 =
𝜃𝜃 − 𝜃𝜃𝑒𝑒𝑒𝑒 avec 𝑐𝑐𝑐𝑐𝑐𝑐�𝜃𝜃𝑒𝑒𝑒𝑒 + 𝛼𝛼� ≈ 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑒𝑒𝑒𝑒 − 𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑒𝑒𝑒𝑒. Que pouvez-vous dire de ce mouvement ? 
 

L’air de l’atmosphère génère un frottement fluide qui reste faible mais non négligeable.  

4f Faites un graphique de l’évolution de la position du bras de levier 𝜃𝜃(t) en fonction du temps (en partant de t=0) 
sous l’effet du frottement fluide induit par l’air. On prendra comme conditions initiales 𝜃𝜃(0) ≈ 𝜃𝜃𝑒𝑒𝑒𝑒 et 𝜃̇𝜃(0) > 0. 

 

 

 


