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Physique générale : mécanique 
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L'examen comporte 4 exercices, numérotés de 1 à 4. 
 
L’énoncé contient 5 pages numérotées. 
 
Seul document autorisé :  

une fiche de notes manuscrites sur l’équivalent d’une feuille A4 recto verso. 
 
Calculatrice interdite. 
 
Tout doit être rédigé au stylo. 
 
Inscrivez votre nom sur chacun des feuillets et au début de chaque exercice sur l’énoncé. 
 
Un exercice par feuillet (page double A4 pliée) seulement. 
Les réponses finales à chaque question doivent être reportées sur l'énoncé dans les cases 
prévues à cet effet. 
Les justifications détaillées et propres doivent être rendues sur les feuillets fournis. 
 

Ne pas retourner cette feuille avant le début 
de l'épreuve 

   



 
 
   



Nom :     Prénom :    Section :     No :   

Exercice 1: Cylindre creux qui roule puis décolle (1,4 point) 

Un cylindre creux de masse 𝑚, de longueur 𝐿, de rayon 𝑅, et d’épaisseur négligeable repose sur un support dont la forme est un 
demi‐cylindre de rayon 𝑙, comme indiqué sur le schéma ci‐dessous. Les deux axes de symétrie des cylindres sont parallèles. Le 
cylindre creux est initialement immobile au sommet du support (𝜃 ൌ 0), puis il se met à rouler sans glisser le long du support. 
La position du cylindre creux est repérée par l’angle 𝜃, tel qu’indiqué sur la figure ci‐dessous. On néglige les frottements de l’air. 
On note 𝑔 l’accélération de la pesanteur. 

 
 
a) Démontrez que le moment d’inertie 𝐼௖௠ du cylindre creux pour une rotation autour de son axe de symétrie est 𝐼௖௠ ൌ 𝑚𝑅ଶ. 

   

b) Indiquez les forces qui s’exercent sur le cylindre creux. On prendra soin de préciser leur point d’application. Dessinez ces 
forces sur le schéma de droite, pour la position 𝜃 ൐ 0 . 

     

Le cylindre creux roule sans glisser jusqu’à un angle critique 𝜃஼, puis il « décolle ». Il n’est alors plus en contact avec le support. 

c) Quel est le type de trajectoire du cylindre creux après avoir quitté le support ? 

   

d) Calculez l’angle critique de décollage 𝜃஼  . 

𝜃஼ ൌ   

e) Déterminez l’équation différentielle du mouvement du cylindre creux selon 𝜃, pour 𝜃 ൏ 𝜃஼  (pendant qu’ il roule sans glisser 
sur le support). Exprimez cette équation en fonction de 𝑅, 𝑙, et 𝑔. 

   

f) Si le cylindre creux glissait sans frottement (pas de rotation), l’angle critique de décollage 𝜃஼  serait‐il plus grand ou plus petit ? 
Argumentez sans calcul. 
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Exercice 2: La balance de Cavendish (1,4 point) 

La balance de Cavendish est un instrument permettant de déterminer expérimentalement la constante de gravitation 𝐺. Elle est 
constituée de deux points matériels 𝑃ଵ et 𝑃ଶ de même masse 𝑚 reliés par une tige sans masse à un fil, formant un pendule de 
torsion. Deux grosses sphères de masse 𝑀, 𝑆஺ et 𝑆஻, peuvent être placées de manière à faire dévier le pendule dans un sens ou 
dans l'autre par l'effet de la gravitation. 

 

Partie 1 : Étude du pendule de torsion.  

 

Les masses 𝑃ଵ et 𝑃ଶ sont reliées par une tige sans masse de longueur 2𝑑, 
et contraintes de tourner autour de 𝑂 dans le plan horizontal ሺ𝑂, 𝑥, 𝑦ሻ . 

 

 

 

a) Calculez le moment d’inertie 𝐼ை du pendule de torsion par rapport à 
l’axe (Oz) 

𝐼ை ൌ   

Le fil est caractérisé par deux constantes, 𝜅 et 𝑏, définies comme suit : 

‐ le fil exerce un moment élastique dépendant de l’angle de déviation 𝜃, donné par ℳሬሬሬ⃗ ଴
௘௟ ൌ െ𝜅𝜃𝑒௭ , 

‐ et les frottement internes du fil exercent le moment ℳሬሬሬ⃗ ଴
௙ ൌ െ𝑏𝜃ሶ𝑒௭ . 

 
 
 
 
On  écarte  le  pendule  de  sa  position  d’équilibre  de  l’angle  𝜃଴  et  on  le  lâche  sans  lui 
communiquer de vitesse angulaire. On mesure l’angle de déviation en fonction du temps 
et on observe des oscillations décroissantes avec une pseudo période 𝑇  (voir ci‐contre). 

 

 
 
b) Établissez l’équation différentielle du mouvement sur la variable 𝜃 . 

   

c) Quelle est la pulsation propre du pendule de torsion ? 

Pulsation propre :   

d) Donnez la forme générale de la solution de l’équation différentielle sans calculer les constantes d’intégration. 
Explicitez la pseudo‐période et le facteur d’amortissement en fonction des données du problème. 

𝜃ሺ𝑡ሻ ൌ   

e) On suppose l’amortissement très faible (𝑏 ൎ 0) et on mesure 𝑇. Déterminez 𝜅 en fonction de 𝑇, 𝑚 et 𝑑. 

𝜅 ൌ   
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Partie 2 : Influence de la force de gravitation des 2 grosses sphères sur les deux masses ponctuelles 

 

 

 

On amène les deux grosses sphères (𝑆஺, 𝑆஻) de masse 𝑀, en regard 
des masses ponctuelles (𝑃ଵ, 𝑃ଶ) à une distance 𝑑 de l’axe 𝑂𝑥, et on 
laisse le pendule s’équilibrer avec l’angle de déviation 𝜃ଵ. On suppose 
l’angle 𝜃ଵ très faible (𝜃ଵ ≪ 1). 

 

 

 

 

a) Exprimez  (vectoriellement)  le  moment,  par  rapport  à 𝑂  sur  le 
pendule, lié à la force de gravitation de 𝑆஺ sur 𝑃ଵ et de 𝑆஻ sur 𝑃ଶ. 
 

ℳሬሬሬ⃗ ଴,ଵ
௧௢௧ ൌ   

b) Exprimez (vectoriellement) le moment lié à la force de gravitation de 𝑆஺ sur 𝑃ଶ et de 𝑆஻ sur 𝑃ଵ. 

ℳሬሬሬ⃗ ଴,ଶ
௧௢௧ ൌ   

c) Montrez que pour un calcul d’ordre de grandeur, on peut négliger ฮℳሬሬሬ⃗ ଴,ଶ
௧௢௧ฮ devant ฮℳሬሬሬ⃗ ଴,ଵ

௧௢௧ฮ 

   

d) Exprimez l’angle 𝜃ଵ à l’équilibre en fonction de 𝐺, 𝑀, 𝑚, 𝑑 et 𝜅 . 

𝜃ଵ ൌ   

e) Déduisez l’expression de 𝐺 en fonction de 𝑀, 𝑚, 𝑑, 𝑇 et 𝜃ଵ , grandeurs qui sont connues ou facilement mesurables. 

𝐺 ൌ   
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Exercice 3 : Voyage de Mike Horn sur un traineau à voile (1,1 point) 

On étudie le trajet de l’aventurier Mike Horn qui voyage sur un traineau à voile sur 
la banquise. Mike se déplace dans la même direction que le vent de vitesse 𝑉. Les 
patins du traineau subissent une force de frottement sec avec la banquise, avec des 
coefficients  statique et  dynamique 𝜇௦  et 𝜇ௗ  respectivement.  La  poussée  du  vent 
dans la voile correspond à une force de frottement fluide en régime laminaire, avec 
un coefficient de viscosité 𝜂  et un  facteur de  forme 𝐾. 𝜂, 𝐾  et 𝑉  sont  constants 
durant le trajet. On note 𝑚 la masse totale du traineau et de Mike, et 𝑔 l’accélération 
de la pesanteur. La banquise est parfaitement horizontale. Les frottements du vent 
ne s’exercent que sur la voile. 

a) Le traineau est initialement au repos. Au temps 𝑡 ൌ 0, Mike ouvre la voile. Le traineau ne se met en mouvement que si la 
vitesse du vent est supérieure à une valeur 𝑉௠௜௡ . Exprimez 𝑉௠௜௡ en fonction des données du problème. 

𝑉௠௜௡ ൌ   

b) La vitesse du vent étant suffisante (𝑉 ൐ 𝑉௠௜௡), le traineau se met en mouvement. Au bout d’un certain temps, la vitesse du 
traineau se stabilise à la valeur 𝑣଴௟. Exprimez 𝑣଴௟ en fonction des données du problème. 

𝑣଴௟ ൌ   

c) On note 𝑣ሺ𝑡ሻ  la  vitesse  du  traineau.  Trouvez une  équation différentielle  sur 𝑣  décrivant  le mouvement  du  traineau,  en 
fonction de 𝑣଴௟, 𝑚, 𝐾 et 𝜂 . 

   

d) Exprimez la vitesse du traineau en fonction du temps et des paramètres 𝑣଴௟, 𝑚, 𝐾 et 𝜂 . 

𝑣ሺ𝑡ሻ ൌ   

e) Durant le trajet (alors que sa vitesse s’est stabilisée à 𝑣଴௟), Mike attrape et charge à bord, sans s’arrêter, un bloc de glace de 
masse 𝑀 posé sur la banquise. La vitesse du traineau chute brutalement à la valeur 𝑣ଵ , puis elle augmente et se stabilise à 
nouveau à la valeur 𝑣ଵ௟. Exprimez 𝑣ଵ et 𝑣ଵ௟ en fonction de 𝑣଴௟ , 𝑚, 𝑀, 𝑔, 𝜇ௗ, 𝐾 et 𝜂 . 

𝑣ଵ ൌ   

𝑣ଵ௟ ൌ   

f) Enfin, Mike ferme la voile pour s’arrêter. Exprimez la distance d’arrêt 𝐿 après la fermeture de la voile, en fonction de 𝑣ଵ௟ et 
des données du problème. 

𝐿 ൌ   

g) Complétez le graphe suivant pour décrire l’évolution de la vitesse du traineau durant le trajet (la vitesse du vent y est notée, 
rajoutez‐y au besoin les vitesses discutées dans les questions précédentes). 
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Exercice 4 : Vol vers la Station Spatiale Internationale (1,1 point) 

La station spatiale internationale est un satellite tournant autour de la Terre. Les spationautes sont ravitaillés périodiquement 
par une navette lancée par une fusée. On appellera 𝐺 la constante de gravitation universelle et 𝑀 la masse de la Terre. 

Après la libération par la fusée, la navette de masse 𝑚 est placée sur une orbite circulaire 𝐶ଵ de rayon 𝑅ଵ, qui est plus petite que 
l’orbite circulaire 𝐶ଶ de rayon 𝑅ଶ de la station spatiale. 
 
a) Démontrez que la vitesse d’un satellite sur une orbite circulaire est constante. 

   

b) Exprimez la vitesse 𝑣ଵ de la navette sur l’orbite circulaire 𝐶ଵ en fonction des données du problème. 

𝑣ଵ ൌ   

c) Donnez l’expression de l’énergie mécanique 𝐸ଵ sur l’orbite 𝐶ଵ en fonction de 𝐺, 𝑚, 𝑀, et 𝑅ଵ. 

𝐸ଵ ൌ   

La navette rejoint ensuite l’orbite 𝐶ଶ grâce à l’allumage d’un moteur.  

d) Calculer le travail 𝑊ଵଶ de la force de gravitation 𝐹⃗ qui s’exerce sur la navette quand celle‐ci passe de l’orbite 𝐶ଵ à l’orbite 𝐶ଶ.  

𝑊ଵଶ ൌ   

 

En pratique, pour atteindre l’orbite circulaire 𝐶ଶ,  il  faut d’abord passer par une orbite de transfert qui est elliptique, comme 
indiqué en pointillé sur le schéma ci‐dessous. 

 
e) La navette est sur l’orbite de transfert. Exprimez la vitesse 𝑣஻ de la navette au point 𝐵 en fonction de sa vitesse 𝑣஺ au point 

𝐴. 

𝑣஻ ൌ   

f) Déterminez l’expression de l’énergie mécanique 𝐸் sur l’orbite de transfert en fonction de 𝐺, 𝑚, 𝑀, 𝑅ଵ et 𝑅ଶ. 

𝐸் ൌ   

g) Exprimez  la vitesse 𝑣஺ ൌ 𝑣ଵ ൅ ∆𝑣஺ qu’il  faut communiquer à  la navette pour passer de  l’orbite circulaire 𝐶ଵ à  l’orbite de 

transfert. Le résultat sera exprimé en fonction de 𝐸், 𝐸ଵ, et 𝑚. 

𝑣஺ ൌ   

h) La variation de vitesse ∆𝑣஻ de la navette en 𝐵 est‐elle positive ou négative ? Justifiez votre réponse sans calcul. 
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