
IV. Travail, Energie, Puissance

Force et déplacement. Energie potentielle et cinétique. La

puissance est la variation de l’énergie dans le temps (dérivée).

Ph. Müllhaupt



Programme — IV. travail, énergie, puissance

1. le travail

2. puissance instantanée et travail d’une force

3. potentiel

potentiel du ressort (énergie potentielle élastique)

potentiel de la gravité (énergie potentielle gravifique)

gradient et potentiel

4. énergie

énergie cinétique

5. unités [mksa]

6. conservation de l’énergie pour un point matériel avec potentiel

7. force de liason parfaite

8. stabilité

critère de stabilité fondé sur l’énergie

masse-ressort

pendule simple
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le travail



le travail d’une force constante sur un déplacement rectiligne

ŷ
x̂

O

A

B

~AB

~F
α

W , ~F • ~AB = ‖~F‖ ‖ ~AB‖ cosα

si α = π
2 , pas de travail ! (exemple: liaison du sol)
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plusieurs segments, foces constantes par morceaux

~F0

~F1

~F2

A0

A1

A2

A3

An

W , ~F0 •
−−−→
A0A1 + ~F1 •

−−−→
A1A2 + . . .

+ . . .+
−−→
Fn−1 •

−−−−→
An−1An

W ,
n−1∑
i=0

~Fi •
−−−−→
AiAi+1
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segments infinitésimaux (courbe régulière), forces variables

A
B

WAB ,
∫ B

A

~F • ~dr [Joules]

constant par morceaux dans infiniments petits:

somme → intégrale
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puissance instantanée et travail

d’une force



puissance instantanée pour un point matériel et une force

Pour un point matériel sur lequel une force agit, le travail est la somme

de la puissance instantanée multipliée par la durée durant laquelle elle

s’exerce. La puissance est ainsi exprimée comme la dérivée temporelle du

travail.

W =

∫ B

A

dW =

∫ B

A

~F • d~r =

∫ B

A

(
~F •

~dr

dt

)
dt =

∫ B

A

P dt

P =
dW

dt

P = ~F •
~dr

dt
= ~F • ~v [Watts]

Pour un point matériel, la puissance mécanique est donnée par le produit

scalaire entre la force et la vitesse. Elle est exprimée en [Watts].
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puissance instantanée

définition de la puissance instantanée

produit scalaire

P = ~F • ~v

P(t) = ~F (t) • ~v(t)
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travail d’une force

On considère connu l’équation horaire ~r(t) = ~OP(t)

définition du travail de la force

W12 =

∫ t2

t1

P(t)dt =

∫ t2

t1

~F (t) • ~v(t)dt

la relation

~v =
d~r

dt

conduit à

W12 =

∫ t2

t1

~F (t) • d~r(t)

avec

d~r(t) =
d~r

dt
(t)dt
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travail d’une force

On désigne par Γ, la trajectoire

lorsque la force dépend de la position ~F (~r)...

W =

∫
Γ

~F (~r) • d~r

remarque

• La composante normale de ~F par rapport à la trajectoire ne travaille

pas !
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travail infinitésimal

variation infinitésimale du travail

δW = ~F • d~r = ‖~F‖‖d~r‖ cos θ
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potentiel



potentiel

Lorsque le travail ne dépend pas du chemin emprunté lors d’un

déplacement d’un point matériel d’un point A vers un point B, il est

possible d’introduire une fonction génératrice de la force appelée

potentiel.

A

B

1

2

1

∫ B

A

~F• ~dr = 2

∫ B

A

~F• ~dr = WAB

pour tout chemin entre A et B
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autrement dit, la force ~F est issue d’un potentiel lorsque, pour tout cycle

C (on note également ∀C pour indiquer, pour tout cycle C , et l’intégrale

sur un chemin fermé par le symbole
∮

au lieu de
∫

)∮
C

~F • ~dr = 0 ∀C

définition

Le potentiel, noté V , à un point P associé à une force dont le travail

exercé ne dépend pas du chemin emprunté, est défini par l’opposé du

travail pour amener le point de l’origine vers le point P. Il est donné par

la formule

V = −
∫ P

O

~F • ~dr

Le signe négatif est une convention. Le parcours entre O et P est

arbitraire.
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exemples de potentiel

la force de gravité est issue du potentiel:

V = mg h

avec h la hauteur du point P, la masse m et la constante de gravité

g = 9.81

la force du ressort est issu du potentiel:

V =
1

2
k(l − l0)2

avec l0 la longueur à vide du ressort et l la longueur du ressort au point

P et k la constante de rigidité du ressort

le potentiel est toujours une fonction scalaire
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force du ressort et potentiel associé

l0

O

O

O

P = P0, ε = 0

P 0 < ε < 1

P = Q, ε = 1

−−→
OP0 = l0 x̂
−−→
P0Q = (l − l0) x̂

P̂0Q = x̂ = ÔP

paramétrisation du déplacement:

−→
OP =

−−→
OP0 + ε

−−→
P0Q ε ∈ [0; 1]
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~F = −k
(−−→
OP0 + ε

−−→
P0Q − l0 x̂

)
= −k (l0 x̂ + ε (l − l0) x̂ − l0 x̂)

~F = −k ε (l − l0) x̂

~dr

dε
=

d ~OP

dε
=
−−→
P0Q = (l − l0) x̂

~dr = d~r = (l − l0)x̂ dε
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V = −
∫ ε=1

ε=0

~F • ~dr

=

∫ ε=1

ε=0

k ε (l − l0)2 dε

=

[
1

2
ε2

]1

0

k(l − l0)2

V =
1

2
k(l − l0)2
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force de gravité et potentiel associé

y

ŷ ~g

O

P

Q

h

V = −
∫ P

O

m~g • ~dr

paramétrisation du trajet de Q :

pour ε = 0, le point Q = O

pour ε = 1, le point Q = P

~OQ = ε ~OP

‖ ~OP‖ = h
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~OP = h ŷ

~r = ~OQ = ε ~OP = ε h ŷ

d~r

dε
= h ŷ

~dr = d~r = hŷ dε

~g = −g ŷ

m~g • ~dr = −mgh dε

V = −
∫ P

O

m~g • ~dr

= −
∫ 1

ε=0

(−mgh) dε

= − [−mgh]1
0

V = mg h
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gradient et potentiel

Un repère cartésien (O, x̂ , ŷ , ẑ) est donné

Définition
Soit ~∇ l’opérateur différentiel suivant (qui prend une fonction scalaire

comme argument et produit un vecteur):

~∇ :=


∂
∂x
∂
∂y
∂
∂z


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critère pour le potentiel

si ∀C
∮
C

~F • ~dr = 0 alors il existe V (x1, x2, x3)

tel que

~F = −


∂V
∂x1

∂V
∂x2

∂V
∂x3


(O,x̂1,x̂2,x̂3)

Le symbole ∂V
∂x1

signifie la dérivée partielle de V par rapport à x1, ce qui

signifie que la dérivée est prise par rapport à x1 en considérant les autres

variables x2 et x3 comme des constantes.
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gradient et potentiel

Soit un potentiel V (~r) donné

théorème (force issue du potentiel)

La force
~F = −~∇V

satisfait∮
C

~F · ~dr = 0 ∀Cdans un ensemble simplement connexe
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gradient et potentiel

~dr = dxx̂ + dy ŷ + dzẑ ~F = −∂V
∂x

x̂ − ∂V

∂y
ŷ − ∂V

∂z
ẑ

démonstration∮
C

~F · ~dr =

∫ 2

1

~F · ~dr +

∫ 1

2

~F · ~dr

=

∫ 2

1

−∂V
∂x

dx − ∂V

∂y
dy − ∂V

∂z
dz

+

∫ 1

2

−∂V
∂x

dx − ∂V

∂y
dy − ∂V

∂z
dz

= −
∫ 2

1

dV −
∫ 1

2

dV

= −(V2 − V1)− (V1 − V2) = 0
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gradient et potentiel

théorème

~F = −~∇V

⇔
∂Fi

∂xj
=
∂Fj

∂xi
∀i 6= j
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gradient et potentiel

démonstration ⇒

∂Fi

∂xj
=

∂

∂xj
Fi = − ∂

∂xj

∂V

∂xi
= − ∂

∂xi

∂V

∂xj
=

∂

∂xi
Fj =

∂Fj

∂xi

démonstration ⇐
cf. cours d’Analyse
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énergie



énergie cinétique

énergie cinétique d’un point matériel

T =
1

2
m~v • ~v
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changement d’énergie cinétique

• travail de ~F de ~r(t1) à ~r(t2) est équivalent au changement d’énergie

cinétique

théorème de l’énergie cinétique

T2 − T1 =

∫ t2

t1

~F • ~vdt = W12
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changement d’énergie cinétique

démonstration du théorème de l’énergie cinétique

1. Loi 2 de Newton ∫ t2

t1

~F • ~vdt =

∫ t2

t1

m~a • ~vdt

2. Leibniz (à l’envers) en remarquant que d~v
dt • ~v = ~v • d~v

dt∫ t2

t1

m~a • ~v dt =

∫ t2

t1

m
d~v

dt
• ~vdt =

∫ t2

t1

m
1

2

(
d~v

dt
• ~v + ~v • d

~v

dt

)
dt

=

∫ t2

t1

m
1

2

d

dt
(~v • ~v)dt

=

(
1

2
m~v • ~v

)∣∣∣∣t2

t1

= T2 − T1

26



unités [mksa]



Unités [mksa]

• longueur, [mètre], [m]

• temps, [seconde], [s]

• vitesse, [m/s]

• accélération, [m/s2]

• masse, [kilogramme], [kg]

• force, [Newton], [N] =
[

kg m
s2

]
• travail, énergie, [Joule], [J] =

[
kg m2

s2

]
• puissance, [Watt], [W] =

[
kg m2

s3

]
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conservation de l’énergie pour un

point matériel avec potentiel



conservation de l’énergie

théorème de la conservation de l’énergie

si la force est conservative, la grandeur

E = T + V

est une constante du mouvement.
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conservation de l’énergie (1ère méthode)

V est connu et produit la force

~F = −∂V
∂x

x̂ − ∂V

∂y
ŷ − ∂V

∂z
ẑ

montrons que l’énergie est constante en dérivant celle-ci par rapport au

temps

E = V + T = V +
1

2
m(ẋ2 + ẏ2 + ż2)

Ė =
d

dt
V +

d

dt
T

=
d

dt
V + mẋ ẍ + mẏ ÿ + mż z̈

=
d

dt
V + ẋFx + ẏFy + żFz

=
d

dt
V − ẋ

∂V

∂x
− ẏ

∂V

∂y
− ż

∂V

∂z

=
∂V

∂x
ẋ +

∂V

∂y
ẏ +

∂V

∂z
ż − ∂V

∂x
ẋ − ∂V

∂y
ẏ − ∂V

∂z
ż

= 0 29



remarque sur une étape du calcul infinitésimal...

l’équation

dV

dt
=

∂V

∂x
ẋ +

∂V

∂y
ẏ +

∂V

∂z
ż

=
∂V

∂x

dx

dt
+
∂V

∂y

dy

dt
+
∂V

∂z

dz

dt

devient plus claire en considérant chaque symbole d , ∂ comme une petite

variation ∆

∆V

∆t
=

∆V

∆x

∣∣∣∣
selon x

∆x

∆t
+

∆V

∆y

∣∣∣∣
selon y

∆y

∆t
+

∆V

∆z

∣∣∣∣
selon z

∆z

∆t

et en simplifiant les ∆ avec les mêmes variables

∆V = ∆V |selon x + ∆V |selon y + ∆V |selon z
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conservation de l’énergie (2 ème méthode)

démonstration

W12 =

∫ 2

1

~F • ~dr =

=

∫ rs

1

~F • ~dr +

∫ 2

rs

~F • ~dr

= V1 − V2

... en appliquant le théorème de l’énergie cinétique ...

W12 = T2 − T1

W12 = T2 − T1 = V1 − V2 = W12

T2 + V2 = T1 + V1

E2 = E1
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force de liason parfaite



force de liaison parfaite

Une force de laison parfaite est une force qui ne produit pas de travail sur

un déplacement infinitésimal (dit virtuel, ceci sera expliqué en détail dans

le chapitre sur Lagrange). Pour l’instant, et pour les force que nous

avons rencontrées comme la tension du fil dans le pendule et la liaison du

plan incliné il suffit d’envisager un petit déplacement du point

d’application de la force compatible avec la contrainte.

dW = T • d~r = 0
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liaison parfaite du plan incliné

x̂

ŷ

~T

liaison: y = − 2
5x

dy = −2

5
dx

d~r = dxx̂ + dy ŷ

= dxx̂ − 2

5
dxŷ

~T = Tx x̂ + Ty ŷ

~T • d~r = Txdx −
2

5
Tydx = 0

Tx =
2

5
Ty

la force de liaison est ainsi perpendiculaire au plan !
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liaison parfaite du pendule simple

~T

liaison: l2 = x2 + y2

0 = 2xdx + 2ydy

d~r = dxx̂ − x

y
dxŷ

~T = Tx x̂ + Ty ŷ

~T • d~r = Txdx −
x

y
Tydx = 0

Txy = Tyx

la force de liaison est ainsi toujours alignée avec le fil !
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stabilité



point d’équilibre d’un point matériel

définition

Un point ~̄r tel que

~v = ~0

~a = ~0

si la force est issue d’un potentiel...

− ~∇V (~̄r) = ~F = m~a = ~0

35



stabilité

critère de stabilité (locale) basé sur l’énergie

Soit E = T + V , l’énergie mécanique du système. Le système est

localement stable s’il existe ε > 0 de telle sorte que les conditions

suivantes soient satisfaites:

1. V est minimum à l’équilibre. Soit ~̄r le point d’équilibre. On a

V (~r) > V (~̄r) ∀~r 6= ~̄r , ‖~r − ~̄r‖ < ε

2. Ė ≤ 0
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stabilité

esquisse de la démonstration

On ajoute une constante à l’énergie afin que l’énergie soit nulle au point

d’équilibre. Sous l’hypothèse que V est minimum à l’équilibre, l’énergie

est une forme définie positive E > Emin = 0 quel que soit la position et la

vitesse loin de l’équilibre. E = Emin = 0 à l’équilibre. Les courbes de

niveau de l’énergie finissent toujours par être des courbes de niveau

fermées lorsqu’on se rapproche de l’équilibre. Ainsi, quelle que soit la

boule (aussi petite que désirée) dans l’espace des positions et vitesses, on

peut toujours trouver un ensemble délimité par une courbe de niveau

contenu à l’intérieur du voisinage initial. Le système mécanique est piégé

dans cet ensemble et ne peut le quitter. Le système est stable.
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énergie du système masse-ressort

énergie cinétique T et potentielle élastique V

E = T + V =
1

2
mẋ2 +

1

2
kx2
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stabilité du système masse-ressort

ẍ = − k

m
x

... on applique le critère...

1. V = 1
2kx

2 est minimum à l’équilibre x̄ = 0

2.

E =
1

2
mẋ2 +

1

2
kx2

Ė = mẋẍ + kxẋ

= mẋ

(
− k

m
x

)
+ kxẋ

= 0

Le point d’équilibre x̄ = 0 est donc stable
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les courbes d’énergie constante

ẋ = ±

√
2

m

(
E − 1

2
kx2

)

.... sont les trajectoires du système

-2 -1 1 2

-1.5

-1.0

-0.5

0.5

1.0

1.5

x

ẋ
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énergie du pendule simple

Energie cinétique T et énergie potentielle gravifique V

E = T + V =
1

2
ml2φ̇2 + mgl(1− cosφ)
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stabilité du pendule simple

φ̈ = −g

l
sinφ

... on applique le critère...

1.

V = mgl(1− cosφ)

est minimum à l’équilibre φ̄ = 0

2.

E = T + V =
1

2
ml2φ̇2 + mgl(1− cosφ)

Ė = ml2φ̇φ̈+ mgl φ̇ sinφ

= ml2φ̇
(
−g

l
sinφ

)
+ mgl φ̇ sinφ

= 0

φ̄ = 0 est un point d’équilibre stable 42



Les courbes d’énergie constante

φ̇ = ±
√

2

ml2
(E −mgl(1 + cosφ))

.... sont les trajectoires du système

-5 5

-2

-1

1

2

φ

φ̇
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Système conservateur à un degré de liberté

équilibres

Les points d’équilibre s’obtiennent en cherchant les extremums du

potentiel (maximum, minimum, ou point selle). Il faut que la dérivée par

rapport à la coordonnée, notée φ, s’annule:

dV

dφ
= 0

Toute valeur φ = φ̄ pour laquelle cette expression est vraie sera un point

d’équilibre.

stabilité

L’équilibre sera stable si le points d’équilibre est à un minimum de

potentiel. On applique le critère d’analyse de fonction classique qui

affirme que V atteint un minimum lorsque dV
dφ = 0 et lorsque la deuxième

dérivée est positive au point d’équilibre

d2V

dφ2
≥ 0

∣∣∣∣
φ=φ̄
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