l1l. oscillateur harmonique |

le ressort, 'oscillateur a ressort, le pendule simple, le
mouvement harmonique
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Programme — Ill. oscillateur harmonique |

1. loi de Hooke
2. équations différentielles du mouvement
3. intégration des équations différentielles

4. le pendule simple
premiere méthode: repeére fixe
deuxieme méthode: repére mobile
3 eéme méthode: les moments
approximation des petits angles

autre méthode pour obtenir la solution de |'oscillateur harmonique



loi de Hooke



loi de Hooke
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loi de Hooke
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formule de la force du ressort

On note
'EAHB

la force dont "la cause” se trouve au point A
la force est liée au point B et agit ainsi au point B.

pour le ressort

I_?A%B _

une force apparait toujours aux deux extrémités du ressort et on a

'EA—>B _ _,EB—>A
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La méme formule est valable en compression également
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marque: 8it 3 roisiem i wton ion-réaction r
Remarque: FB—A obéit a la troisieme loi de Newton (action-réaction) ca
la formule donne

FB—A _ — _FA-B




équations différentielles du
mouvement



équation différentielles du mouvement

En 1D:

x FO—P
F = ma
FO—)P — moO

les X se simplifient et en divisant par m:



changement de variable

[e2x—4)

é = x car Iy est constant

on a obtenu une équation homogene, qui comprend que la variable e et

ses dérvées é, € dans chaque terme (il n'y a plus le terme —|—§/0).



oscillateur harmonique

Définition de I'oscillateur harmonique
Tout systeme équivalent a un point matériel astreint a se déplacer en
ligne droite et soumis a une force de rappel proportionnelle a la distance

a un point fixe sur cette droite.



intégration des équations
différentielles




solution de I’équation différentielle




démonstration
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les conditions initiales

(i cos (\/ kO) + Gsin (\/k0> = G
m m
fCH/ﬁsin (\/k0> +C2\/kcos< kO) = Czy/ﬁ
m m m m m
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solution complete

e(t)=x—1l = e(0)cos (\/zt> + \/Té(O)sin <\/§t>
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les parametres du m ment oscillatoire masse-ressort

la pulsation

la fréquence

la période
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le pendule simple



1 ére méthode de modélisation
repere fixe



1. référentiel et repere

le référentiel est le plan fixe (ou en translation uniforme)
repere fixe et centré en O

0

I'axe x est dirigé vers le bas et O est fixé sur le centre de rotation



2. coordonnées et liaison

coordonnées:
OP =

liaison:
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3. modele de force

force gravifique:
force de liaison:

dirigée dans le sens du fil:
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4. lois de Newton

my
Il
3
v
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. équations différentielles du mouvement

il faut également dériver la liaison 2 fois:

X2y = P
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my =

systeme différentiel algébrique
inconnues: Ty, T,, X, y, 4 inconnues et 4 équations
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cela devient plus clair ... avec ¢

une coordonnée libre 0 au lieu des coordonnées liées x et y

la liaison est automatiquement satisfaite

4y = (Jcosb) + (1sin0)? = F( ) =1
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On introduit la variable T (incon-
nue pouvant étre négative) de telle
sorte que

Tx
Iy =
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exprimons x et y en fonction de f...
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en remplacant dans les équations différentielles...

mx = mg+ T,=mg-+ Tcosf

my = T,=Tsin0
= mg+ T cosf (1)
= Tsinf (2)

effectuons: (1) xsinf — (2) x cosf :

en simplifiant par m et en utilisant cos? 6 + sin>6 = 1, on a:
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2 eme méthode de modélisation
repere mobile



1. référentiel et repere

le référentiel est le plan fixe (ou en translation uniforme)
on ajoute un repere mobile

0]
y
& =
& =
e‘; —
0 & =
X
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2. coordonnées et liaisons

coordonnée: 0

liason du fil de longueur constante donne une force de liaison, mais pas
de liaison sur la coordonnée 6

si on consideére deux coordonnées 6 et r, alors la liaison s’exprime comme
r =1, la longueur du fil
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3. modele de force

<>
|

gravité:

0q
1

force de liaison (dans la direction du fil, T inconnu)

T=
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4. lois de Newton

oP
OP =

op =
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5. équations différentielles du mouvement

= [ O:‘P

on trouve la force de liaison

et I'équations différentielle pour 6
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remarque...

on trouve la méme force avec le repere fixe, a condition d’effectuer

(1) x cos@ + (2) x siné
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3 eme méthode de modélisation
méthode des moments



1. référentiel et repere

le référentiel est le plan fixe (ou en translation uniforme)

29



données et liaison, cinématique

coordonnée:

liaison du fil, donne une force mais pas déquation de liason sur la
coordonnée 6

cinématique
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formule de Poisson

& = 606 =0(—sinfk+cosby)=—0 )A(
y
X cos 6
& 3% sinf | =W A e
z 0

cos 6
sin 0
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3. modele de force

force gravifique:

force de liaison:
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moment de force My
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calcul du moment de force avec un déterminant

OP A (mg+T)
lé; N (mgxk — Té€;)
le; A mgXk

I(cos 0% + sin09) A mgX

X y z
lcos@ Isinf O
mg 0 0
[cosf® Isinf | .
z
mg 0
—mglsin6z
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moment cinétique Lo

remarque: inertie du pendule m /? [kg m2]
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4. loi de Newton

remarque: la méthode des moments ne permet pas de calculer la tension
T dans le fil !
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appr ation des petits angles

Lorsque 0 est petit et exprimé en [rad] on a

de telle sorte que I'équation différentielle devient analogue a celle de la
masse muni d’'un ressort (méme structure de I'équation, donc solution de
méme structure, il faut juste remplacer les variables x — 0, k — g,
m—[):
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comparaison avec l'oscillateur masse-ressort

L'équation différentielle du pendule masse-ressort:

. k
B===0
m

dont la solution est avec e = x — Iy

e(t) = e(0) cos (\/Et) + \/Té(O) sin (\/Et)

est analogue a celle du pendule simple pour les petits angles 6:
. g
0=-=0
/

Ainsi la solution du pendule pour des petits angles 0 est par analogie:

o(t) = 6(0) cos( ?t)—k\/Zé(O) sin( fr)
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Les parametres du pendule simple a petits angles

la pulsation
la fréquence

la période
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avec les nombres complexes...



soit a résoudre

. k
X=——X
Posons x(t) = Ce™ avec s € C
.k
X+ —Xx
m

k
C52 est 4+ = Cest
m

<s2 + k> Ce*t
m
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conditions

Comme et £ 0 on a soit C = 0 (inutile) soit C # 0 et

|k
s ==%i\/—
m

Ainsi, par principe de superposition (linéarité de I'équation différentielle)
x(t) = CelVrt 4 Gem iVt

avec 51, 62 e C.
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paramétrisation réelle des constantes d’intégration

= a+ib
G = 5
= a—ib
G = 5

avec a,b e R
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le ressort linéaire avec une masse

regroupement
() = aJ; "bei\/%t @ ; "be—i\/%t
e’.\/gt =+ ef"\/%t e"\/gt — ef’.\/gt
= —b
? 2 2
solution
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