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Programme — XI. Lagrange Il

1. contraintes (liaisons) parfaites

2. principe de d’Alembert
déplacement virtuel

travail virtuel
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déduction de I'équation différentielle du pendule
équations de Lagrange

expression du travail virtuel des forces cinétiques

4. exemple : glissiere hémisphérique



contraintes (liaisons) parfaites



contraine (liaison) parfaite

définition de la liaison parfaite

C’est une contrainte entre les coordonnées telle que les forces
nécessaires pour les faire respecter n’effectue aucune travail lors
d’'un déplacement compatible avec la contrainte.



exemples de contraintes parfaites

fil surface plane (O € surface)

glissiére en rotation uniforme bille sur sphéere



expression mathématique d’une laison parfaite

expression de la contrainte (liaison) parfaite : C(x, y,z. 1) =0

O esurface plane CiX+cy+cz=0avecc eR,i=1,2,3
bille sur sphere x2+y?+2z2-R*=0

pendule simple X +y?—12=0

glissiére hémisphérique x> +y?+ 22 -R?=0et wan = saan



principe de d’Alembert



déplacement virtuel

La contrainte parfaite est fixée dans le temps. Ainsi C(x,y.z, ) =0
ou t n’est plus considéré comme variable.

définition
Un déplacement virtuel infinitésimal est noté or = dx X +dy y+dz z |l
est tel que

oC oC aC

— X+ —0y+ —0z=0

)X oy 0z



exemple de liaison parfaite : la glissiere hémisphérique

X*+y?+22 = R?

X sin(Qt) — y cos(Qt) = 0
on a 1 degré de liberté car 3 coordonnées x, y et z et 2 contraintes.

2X0X +2y oy +2z6z =

0
0x sin(Qt) — oy cos(Q2t) = 0

le temps est figé et tout déplacement infinitésimal tel que dx, dy et 6z
satisfaisant ces deux équations est un déplacement virtuel.



travail virtuel

définition
C’est le travail effectué par une force quelconque lors d’'un
déplacement virtuel

SW =F eor



principe de d’Alembert

Une force responsable du maintien de d’'une contrainte parfaite
n’effectue aucun travail virtuel.

exemple : glissiere

Tedf = 0
Txéx + T,0y + T,z =0

pour tout dx, dy, dz qui satisfont a

XOX+ydy+z6z=0
sin(Qt) 0x — cos(Qt) oy =0



exemple du pendule simple



Le pendule simple
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Le pendule simple revisité

équations dynamiques

remarque
Lhypothése que la force de liaison (réaction de la tige) est alignée
avec la tige n’est pas nécessaire avec la méthode proposée. Ainsi,
aucune structure apparente concernant les forces de réactions T et
T, n’est assumée



Le pendule simple revisité

liaison
Les coordonnées x et y sont liées par le fait que le point matériel est
contraint de se déplacer sur un cercle

X2 4 y2 = 2

coordonnée généralisée

On a 2 coordonnées cartésiennes x et y et une liaison indépendante
x2 + y2 = [2. On peut alors choisir une seule coordonnée généralisée
0

expressions des coordonnées cartésiennes

= Jcosf

y = /SinH 11



le pendule simple revisité

déplacement virtuel

C’est un déplacement infinitésimal ¢x, 0y des coordonnées x et y
compatible avec la contrainte x> 4+ y? = 2. Dans notre cas, la
contrainte ne dépend pas du temps. Il n’est pas nécessaire de la figer
dans le temps. Le déplacement virtuel dx, oy doit ainsi satisfaire

X0X + yoy =0
expression du déplacement virtuel en fonction de 6 et 66

o0x = —[sinfo0

oy = Ilcosfdl



le pendule simple revisité

le principe de d’Alembert
Les liaisons dites parfaites sont celles qui engendrent des forces qui
ne travaillent pas lors d’'un déplacement virtuel. Le principe stipule
ainsi que pour un acroissement virtuel compatible avec les
contraintes, le travail de ces forces est nul. Dans le cas du pendule
simple, cela implique

Txox + T,6y =0



le pendule simple revisité

travaux virtuels de toutes les forces
travail f. inertielles = travail f. gravifique + travail f. réaction de liaison

mxox + mydy = mgox + Txox + T,0y

travaux virtuels aprés application du principe de d’Alembert

mXox + myédy = mgox



le pendule simple revisité

dérivées des coordonnées cartésiennes

= Icosf

= Isinf

= —/sin6f

| cos 66

= —/cosf? — [sin 06
= —[sin06? — | cos 66

< X< X <X
I



le pendule simple revisité

travaux virtuels en fonction de 6 et 66

mxox +
mydy = mgéx

m(—1sin 06 — | cos 86%)(—1sin 0)50+
m(/ cos 66 — I'sin 86%)(I cos 066 = —mgl sin 659

(ml? sin® 66 + mi? cos® 06)60 = —mgl sin 656

ml?050 = —mgl sin 650



le pendule simple revisité

déduction de I’équation du pendule
Soit
mI2660 = —mgl sin 650

le bilan des travaux virtuels.
Comme l'acroissement §6 est toujours compatible avec la contrainte
du cercle, on peut choisir 66 compléetement librement ainsi

mil?0 = mglsin 6

doit étre satisfait quel que soit 06, ce qui fourni I'’équation bien

familiere d’'un pendule
6 = f% sin 6



le pendule simple revisité

plan pour la déduction des équations de Lagrange

« le travail virtuel est évalué (forces inertielles et potentielles)

* grace au principe de d’Alembert, le travail virtuel de la force de
réaction ne contribue pas

+ on applique la regle de Leibniz (dans le sens inverse) afin de
faire apparaitre I'énergie cinétique

1 . 1 .
T — — 2 o 2
sz +2my

a partir du travail virtuel des forces cinétiques

« le travail virtuel des forces potentielles est intégré pour obtenir
I'énergie potentielle

V = mgl cos 6 + Cte



le pendule simple revisité

plan pour la déduction des équations de Lagrange (suite)

« comme il n'y a pas de frottement et pas de force non
conservative, il n’est pas nécessaire de déterminer la force
généralisée @y

» Le Lagrangien est constitué £L =T — V

* Les équations de Lagrange sont obtenues en récapitulant les
étapes

d (oL oL 0
at \ 96 o0



le pendule simple revisité

travail virtuel des forces cinétiques

mxéx +mydy = mx(—Isin0)id + my(lcost)io

concentrons-nous sur le terme en bleu et appliquons la regle de
Leibniz (dans le sens contraire)

mx(—Ising) = % (mx(—1sin§)) — mx(—/I cos 66)

d . OXx . OX
= — | MX— | — MX—
at 00 00

T odt oo \2 90 \ 2
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le pendule simple revisité

travail virtuel des forces cinétiques

mxox +mydy = mx(—Isin0)560 + my(lcosd)o0

concentrons-nous sur le terme en rouge et appliquons la régle de
Leibniz (dans le sens contraire)

my(lcosf) = % (my(Icos8)) — my(—Isin6)8

_d .oy .oy
T dt <myg)e'> ~ ™5

= dt\ag \2™ a0 \ 2™
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le pendule simple revisité

... faisons apparaitre I’énergie cinétique ...

mxox+mysy = (9 [0 (1 e\ _ 2 (1]
tmyoy = L dt | 96 o0

2 2
d (o (1 ., o (1 .,
*Ma(z’”y)}‘ae(zmyﬂ”
( . 0 1
o/
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le pendule simple revisité

travail virtuel de la force potentielle
mg déx = —mglsin 6 66

23



le pendule simple revisité

intégration pour obtenir le potentiel
Comme —mglsin 6 est une fonction qui s’intégre, on peut définir le

potentiel
V = —mgl cos 6 + Cte

de telle sorte que le travail virtuel de la force gravifique s’écrive

magox = ()VW
gOX=""5g"
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le pendule simple revisité

comme mxdx + mydy = mgéx, pour tout 56...

{d <‘)T> ()q 00 = ﬂ(i/) Voo
dt \ 96 00 00
(!
d [oT or oV
dt (m> e 00

définition du Lagrangien
L=T-V

équation de Lagrange (cas conservatif)

d (0L oL .
dt \ 96 00 25



exemple : glissiere
hémisphérique




exemple : glissiere hémisphérique

sphérique 1 sphérique 2
= rsinf coso X = rcosf cosg
= rsinf cos ¢ Yy = rcosfsing
zZ = rcosf zZ = rsinf

26



avec les coordonnées sphérique 1

a = F—ré—r¢?sin®0=—r6>—rQ?sin’0
ap rd+2r0—r¢?cosfsinf =rb—rQ? cosd sinf
ag = résind+2r¢dcosd+2rdsing=2r00 cosd

car

Equations dynamiques :

ma, = T,—mg cosd
may = Ty+mgsinf
ma, = 1T,

27



déplacement virtuel

or =

et 50 est quelconque

28



principe de d’Alembert

T,6r+Tord0 + Tyrsin@dp =0

mais comme or = 0 et 5¢ = 0on ar Ty 60 = 0 quel que soit 46 # 0.
Ainsi
(mag — mgsin )06 = 0 V60 # 0
ce qui entraine
ap—gsind =0

et donc I'équation dynamique

ré—rQ2? cosf sinf —gsind =0

29
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