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Programme — XI. Lagrange II

1. contraintes (liaisons) parfaites

2. principe de d’Alembert

déplacement virtuel

travail virtuel

3. exemple du pendule simple

déduction de l’équation différentielle du pendule

équations de Lagrange

expression du travail virtuel des forces cinétiques

4. exemple : glissière hémisphérique
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contraintes (liaisons) parfaites



contraine (liaison) parfaite

définition de la liaison parfaite

C’est une contrainte entre les coordonnées telle que les forces
nécessaires pour les faire respecter n’effectue aucune travail lors
d’un déplacement compatible avec la contrainte.
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exemples de contraintes parfaites

fil surface plane (O ∈ surface)

glissière en rotation uniforme bille sur sphère
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expression mathématique d’une laison parfaite

expression de la contrainte (liaison) parfaite : C(x , y , z, t) = 0

O ∈surface plane c1 x + c2 y + c3z = 0 avec ci ∈ R, i = 1,2,3

bille sur sphère x2 + y2 + z2 − R2 = 0

pendule simple x2 + y2 − L2 = 0

glissière hémisphérique x2 + y2 + z2 − R2 = 0 et x
cos(Ωt) = y

sin(Ωt)
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principe de d’Alembert



déplacement virtuel

La contrainte parfaite est fixée dans le temps. Ainsi C(x , y , z, t) = 0
où t n’est plus considéré comme variable.

définition

Un déplacement virtuel infinitésimal est noté δ~r = δx x̂ + δy ŷ + δz ẑ Il
est tel que

∂C
∂x

δx +
∂C
∂y

δy +
∂C
∂z

δz = 0
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exemple de liaison parfaite : la glissière hémisphérique

x2 + y2 + z2 = R2

x sin(Ωt)− y cos(Ωt) = 0

on a 1 degré de liberté car 3 coordonnées x , y et z et 2 contraintes.

2x δx + 2y δy + 2z δz = 0

δx sin(Ωt)− δy cos(Ωt) = 0

le temps est figé et tout déplacement infinitésimal tel que δx , δy et δz
satisfaisant ces deux équations est un déplacement virtuel.
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travail virtuel

définition

C’est le travail effectué par une force quelconque lors d’un
déplacement virtuel

δW = ~F • δ~r
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principe de d’Alembert

Une force responsable du maintien de d’une contrainte parfaite
n’effectue aucun travail virtuel.

exemple : glissière

~T = Tx x̂ + Ty ŷ + Tz ẑ
~T • δ~r = 0

Txδx + Tyδy + Tzδz = 0

pour tout δx , δy , δz qui satisfont à

x δx + y δy + z δz = 0

sin(Ω t) δx − cos(Ω t) δy = 0
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exemple du pendule simple



Le pendule simple

~eφ

ŷ

~er
x̂

l sin θ ŷ

l cos θ x̂

m~g

θ ~T

~R

O

P,m
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Le pendule simple revisité

équations dynamiques

mẍ = mg + Tx

mÿ = Ty

remarque

L’hypothèse que la force de liaison (réaction de la tige) est alignée
avec la tige n’est pas nécessaire avec la méthode proposée. Ainsi,
aucune structure apparente concernant les forces de réactions Tx et
Ty n’est assumée
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Le pendule simple revisité

liaison

Les coordonnées x et y sont liées par le fait que le point matériel est
contraint de se déplacer sur un cercle

x2 + y2 = l2

coordonnée généralisée

On a 2 coordonnées cartésiennes x et y et une liaison indépendante
x2 + y2 = l2. On peut alors choisir une seule coordonnée généralisée
θ

expressions des coordonnées cartésiennes

x = l cos θ

y = l sin θ 11



le pendule simple revisité

déplacement virtuel

C’est un déplacement infinitésimal δx , δy des coordonnées x et y
compatible avec la contrainte x2 + y2 = l2. Dans notre cas, la
contrainte ne dépend pas du temps. Il n’est pas nécessaire de la figer
dans le temps. Le déplacement virtuel δx , δy doit ainsi satisfaire

xδx + yδy = 0

expression du déplacement virtuel en fonction de θ et δθ

δx = −l sin θδθ

δy = l cos θδθ
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le pendule simple revisité

le principe de d’Alembert

Les liaisons dites parfaites sont celles qui engendrent des forces qui
ne travaillent pas lors d’un déplacement virtuel. Le principe stipule
ainsi que pour un acroissement virtuel compatible avec les
contraintes, le travail de ces forces est nul. Dans le cas du pendule
simple, cela implique

Txδx + Tyδy = 0
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le pendule simple revisité

travaux virtuels de toutes les forces

travail f. inertielles = travail f. gravifique + travail f. réaction de liaison

mẍδx + mÿδy = mgδx + Txδx + Tyδy

travaux virtuels après application du principe de d’Alembert

mẍδx + mÿδy = mgδx
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le pendule simple revisité

dérivées des coordonnées cartésiennes

x = l cos θ

y = l sin θ

ẋ = −l sin θθ̇

ẏ = l cos θθ̇

ẍ = −l cos θθ̇2 − l sin θθ̈

ÿ = −l sin θθ̇2 − l cos θθ̈
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le pendule simple revisité

travaux virtuels en fonction de θ et δθ

mẍδx +

mÿδy = mgδx

m(−l sin θθ̈ − l cos θθ̇2)(−l sin θ)δθ+

m(l cos θθ̈ − l sin θθ̇2)(l cos θ)δθ = −mgl sin θδθ

(ml2 sin2 θθ̈ + ml2 cos2 θθ̈)δθ = −mgl sin θδθ

ml2θ̈δθ = −mgl sin θδθ
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le pendule simple revisité

déduction de l’équation du pendule

Soit
ml2θ̈δθ = −mgl sin θδθ

le bilan des travaux virtuels.
Comme l’acroissement δθ est toujours compatible avec la contrainte
du cercle, on peut choisir δθ complètement librement ainsi

ml2θ̈ = mgl sin θ

doit être satisfait quel que soit δθ, ce qui fourni l’équation bien
familière d’un pendule

θ̈ = −g
l

sin θ
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le pendule simple revisité

plan pour la déduction des équations de Lagrange

• le travail virtuel est évalué (forces inertielles et potentielles)

• grâce au principe de d’Alembert, le travail virtuel de la force de
réaction ne contribue pas

• on applique la règle de Leibniz (dans le sens inverse) afin de
faire apparaître l’énergie cinétique

T =
1
2

mẋ2 +
1
2

mẏ2

à partir du travail virtuel des forces cinétiques

• le travail virtuel des forces potentielles est intégré pour obtenir
l’énergie potentielle

V = mgl cos θ + Cte
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le pendule simple revisité

plan pour la déduction des équations de Lagrange (suite)

• comme il n’y a pas de frottement et pas de force non
conservative, il n’est pas nécessaire de déterminer la force
généralisée Qθ

• Le Lagrangien est constitué L = T − V

• Les équations de Lagrange sont obtenues en récapitulant les
étapes

d
dt

(
∂L
∂θ̇

)
− ∂L
∂θ

= 0
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le pendule simple revisité

travail virtuel des forces cinétiques

mẍ δx + mÿ δy = mẍ(−l sin θ)δθ + mÿ(l cos θ)δθ

concentrons-nous sur le terme en bleu et appliquons la règle de
Leibniz (dans le sens contraire)

mẍ(−l sin θ) =
d
dt

(mẋ(−l sin θ))−mẋ(−l cos θθ̇)

=
d
dt

(
mẋ

∂ẋ
∂θ̇

)
−mẋ

∂ẋ
∂θ

=
d
dt

{
∂

∂θ̇

(
1
2

mẋ2
)}
− ∂

∂θ

(
1
2

mẋ2
)
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le pendule simple revisité

travail virtuel des forces cinétiques

mẍ δx + mÿ δy = mẍ(−l sin θ)δθ + mÿ(l cos θ)δθ

concentrons-nous sur le terme en rouge et appliquons la règle de
Leibniz (dans le sens contraire)

mÿ(l cos θ) =
d
dt

(mẏ(l cos θ))−mẏ(−l sin θ)θ̇

=
d
dt

(
mẏ

∂ẏ
∂θ̇

)
−mẏ

∂ẏ
∂θ

=
d
dt

{
∂

∂θ̇

(
1
2

mẏ2
)}
− ∂

∂θ

(
1
2

mẏ2
)
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le pendule simple revisité

... faisons apparaître l’énergie cinétique ...

m ẍ δx + m ÿ δy =

[
d
dt

{
∂

∂θ̇

(
1
2

mẋ2
)}
− ∂

∂θ

(
1
2

mẋ2
)]
δθ

+

[
d
dt

{
∂

∂θ̇

(
1
2

mẏ2
)}
− ∂

∂θ

(
1
2

mẏ2
)]
δθ

=

[
d
dt

{
∂

∂θ̇

(
1
2

(mẋ2 + mẏ2)

)}
− ∂

∂θ

(
1
2

(mẋ2 + mẏ2)

)]
δθ

=

[
d
dt

(
∂T
∂θ̇

)
− ∂T
∂θ

]
δθ
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le pendule simple revisité

travail virtuel de la force potentielle

mg δx = −mgl sin θ δθ
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le pendule simple revisité

intégration pour obtenir le potentiel

Comme −mgl sin θ est une fonction qui s’intègre, on peut définir le
potentiel

V = −mgl cos θ + Cte

de telle sorte que le travail virtuel de la force gravifique s’écrive

mgδx = −∂V
∂θ

δθ
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le pendule simple revisité

comme mẍδx + mÿδy = mgδx , pour tout δθ...

[
d
dt

(
∂T
∂θ̇

)
− ∂T
∂θ

]
δθ = −∂V

∂θ
δθ ∀δθ

⇓
d
dt

(
∂T
∂θ̇

)
− ∂T
∂θ

= −∂V
∂θ

définition du Lagrangien

L := T − V

équation de Lagrange (cas conservatif)

d
dt

(
∂L
∂θ̇

)
− ∂L
∂θ

= 0
25



exemple : glissière
hémisphérique



exemple : glissière hémisphérique

sphérique 1

x = r sin θ cosφ

y = r sin θ cosφ

z = r cos θ

sphérique 2

x = r cos θ cosφ

y = r cos θ sinφ

z = r sin θ
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avec les coordonnées sphérique 1

ar = r̈ − r θ̇2 − r φ̇2 sin2 θ = −r θ̇2 − r Ω2 sin2 θ

aθ = r θ̈ + 2 ṙ θ̇ − r φ̇2 cos θ sin θ = r θ̈ − r Ω2 cos θ sin θ

aφ = r φ̈ sin θ + 2 r φ̇ θ̇ cos θ + 2 ṙ φ̇ sin θ = 2 r Ω θ̇ cos θ

car
φ̇ = Ω φ̈ = 0 ṙ = 0

Equations dynamiques :

m ar = Tr −mg cos θ

m aθ = Tθ + mg sin θ

m aφ = Tφ
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déplacement virtuel

δφ = 0

δr = 0

et δθ est quelconque
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principe de d’Alembert

Tr δr + Tθ r δθ + Tφ r sin θ δφ = 0

mais comme δr = 0 et δφ = 0 on a r Tθ δθ = 0 quel que soit δθ 6= 0.
Ainsi

(m aθ −mg sin θ)δθ = 0 ∀δθ 6= 0

ce qui entraîne
aθ − g sin θ = 0

et donc l’équation dynamique

r θ̈ − r Ω2 cos θ sin θ − g sin θ = 0
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