
Cours de physique générale I – Mécanique – Dr. Ph. Müllhaupt

Exemple Supplémentaire

1. Bille sur tige qui roule ou patine sur le sol

Enoncé du problème Une bille pleine de masse m est reliée par une tige à l’origine O. La bille
repose sur le sol et peut ainsi se mouvoir en patinant sur le sol mais est toujours en contact avec
celui-ci. L’angle entre la verticale (axe x3) et l’axe de la tige (axe x′′

3) est de π
3 . La distance entre

le centre de masse G et l’origine est de 2a. La masse de la tige est négligeable vis-à-vis de la bille.
Le tenseur d’inertie au point O et d’axes confondus avec les axes principaux d’inertie est connu.
On désignera par A le point de contact avec le sol. On demande les équations du mouvement et on
prendra les angles d’Euler ψ, θ, φ (rotations 3-1-3) comme angles de référence.

Choix des repères : Le repère (O, x̂1, x̂2, x̂3) est fixe et le repère (O, x̂
′
1, x̂

′
2, x̂

′
3) est obtenu après

une rotation du repère fixe autour de l’axe x3 d’un angle ψ afin de faire coïncider le plan générer par
x̂

′
2 et x̂′

3 avec le plan perpendiculaire au sol et contenant la tige et le centre de masse de la bille. Le
repère (O, x̂

′′
1 , x̂

′′
2 , x̂

′′
3) est ensuite obtenu à partir du repère ′ par une rotation d’angle θ autour de

l’axe Ox′
1 afin que l’axe Ox′′

3 s’aligne avec l’axe de la tige. Finalement, le repère lié au solide ′′′ est
obtenu à partir du repère ′′ par une dernière rotation autour de l’axe Ox′′

3 (qui est l’axe de la tige)
d’angle φ.

Figure 1 – Les quatres repères : en haut à gauche (O, x̂1, x̂2, x̂3), en haut à droite (O, x̂
′
1, x̂

′
2, x̂

′
3),

en bas à gauche (O, x̂
′′
1 , x̂

′′
2 , x̂

′′
3), et finalement en bas à droite (O, x̂

′′′
1 , x̂

′′′
2 , x̂

′′′
3 )
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Résolution : Le vecteur instantané de rotation a deux composantes qui sont initialement exprimées
dans deux repères distincts, le repère lié au référentiel

(O, x̂1, x̂2, x̂3)

et le repère orienté avec le solide mais pas lié à lui (ce repère ne tourne pas selon l’axe de la tige avec
la vitesse φ̇)

(O, x̂
′′
1 , x̂

′′
2 , x̂

′′
3)

Ω = ψ̇x̂3 + φ̇x̂
′′
3

Le tenseur d’inertie selon le repère (O, x̂
′′
1 , x̂

′′
2 , x̂

′′
3) et (O, x̂

′′′
1 , x̂

′′′
2 , x̂

′′′
3 ) est identique et diagonal

IO =

 I 0 0
0 I 0
0 0 I3


Pour justifier ceci, on part du repère diagonal lié au solide et on effectue un changement de base de
matrice de passage P en tournant autour de l’axe Ox′′′

3 et on se rend compte que la matrice ne change
pas par transformation de similarité PIOP−1. Une autre façon de justifier ceci est de constater que
l’inertie ne change pas lors d’une rotation autour de l’axe de la tige.
Dans une large classe de problèmes similaires dont celui-ci fait partie, on se retrouve à utiliser les
formules de la dynamique exprimées dans le repère inertiel (repère fixe). C’est la dérivée du moment
cinétique qui est lié au moment de force extérieur. Le moment cinétique est exprimé à partir de la
vitesse instantanée de rotation en utilisant le tenseur d’inertie. Cependant, le tenseur d’inertie est
toujours lié au solide (les axes du tenseur étant fixes par rapport au solide). Ainsi, il faut d’abord
ramener la vitesse angulaire dans le repère pour lequel le tenseur d’inertie est connu, puis soit ramener
le tout dans le repère inertiel, soit exprimer le moment cinétique dans le repère mobile. C’est cette
dernière option qui est appliquée ici.
Commençons par exprimer le vecteur de vitesse instantané de rotation dans le repère unique

(O, x̂
′′
1 , x̂

′′
2 , x̂

′′
3)

On constate que le repère (O, x̂1, x̂2, x̂3) subit deux rotations successives (le repère tourne, le point
reste fixe), d’abord selon l’axe Ox3, puis selon l’axe Ox′

1. Il est important de remarquer que les
matrices respectives apparaissent dans le sens contraire de gauche à droite (sens de la lecture), on
aura d’abord la matrice de la rotation selon x′

1 puis celle de la rotation selon x3. C’est normal car la
seconde matrice agit en premier sur le vecteur ψ̇x3 :

Ω =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 0
0

ψ̇

+

 0
0

φ̇

 =

 0

sin θψ̇

cos θψ̇ + φ̇


Ainsi

Ω = sin θψ̇x̂
′′
2 + (cos θψ̇ + φ̇)x̂

′′
3

A ce stade, introduisons un nouveau vecteur de rotation ω qui est la vitesse instantanée de rotation
du repère mobile

(O, x̂
′′
1 , x̂

′′
2 , x̂

′′
3)

par rapport au repère fixe
(O, x̂1, x̂2, x̂3)

qui s’exprime comme

ω =

 0

sin θψ̇

cos θψ̇

 = sin θψ̇x̂
′′
2 + cos θψ̇x̂

′′
3
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Soit LO le moment cinétique au point O qui s’obtient en multipliant le tenseur d’inertie au point O
par le vecteur de rotation instantané du solide Ω. On obtient un moment cinétique exprimé dans le
repère ′′

LO = IOΩ = I sin θψ̇x
′′
2 + I3(cos θψ̇ + φ̇)x̂

′′
3 (1)

Comme le point O est un point fixe, on peut appliquer la loi de la dynamique sous la forme

dLO

dt
= M ext

O

Dans cette formule, le moment cinétique LO et le moment de force extérieur M ext
O sont tous deux

des quantités qui peuvent s’exprimer selon plusieurs repères. Nous allons les exprimer dans le repère
′′.

Remarque importante : L’opérateur de dérivée d
dt est relatif au référentiel. Le mouvement de

chaque point laisse "une trace différente" dans chaque référentiel. Soit le référentiel R′ dans lequel le
repère (0, ŷ1, ŷ2, ŷ3) est lié. Ainsi

d

dt

∣∣∣∣
R′

v

désigne la dérivée de v dans le référentiel en mouvement R′ . Si v s’exprime dans le repère mobile
comme

v = v1ŷ1 + v2ŷ2 + v3ŷ3

alors
d

dt

∣∣∣∣
R′

v = v̇1ŷ1 + v̇2ŷ2 + v̇3ŷ3

au lieu de
d

dt
v = v̇1ŷ1 + v̇2ŷ2 + v̇3ŷ3 + v1 ˙̂y1 + v2 ˙̂y2 + v3 ˙̂y3

et la formule de Poisson ˙̂yi = ω ∧ ŷi, i = 1, 2, 3 permet de connecter ces deux dérivées (ω est la
vitesse de rotation instantanée du repère (O, ŷ1, ŷ2, ŷ3) par rapport au repère fixe). En désignant le
référentiel R′′ celui dans lequel le repère (O, x̂

′′
1 , x̂

′′
2 , x̂

′′
3) est attaché, nous avonc

dLO

dt
=

d

dt

∣∣∣∣
R′′

LO + ω ∧LO

et en développant
d

dt

∣∣∣∣
R′′

LO =
d

dt
(I sin θψ̇)x̂

′′
2 +

d

dt
(I3(cos θψ̇ + φ̇))x̂

′′
3

et

ω ∧LO =

∣∣∣∣∣∣
x̂

′′
1 0 0

x̂
′′
2 sin θψ̇ I sin θψ̇

x̂
′′
3 cos θψ̇ I3(cos θψ̇ + φ̇)

∣∣∣∣∣∣ =
 ψ̇ sin θ[(I3 − I)ψ̇ cos θ + I3φ̇]

0
0


= ψ̇ sin θ[(I3 − I)ψ̇ cos θ + I3φ̇]x̂

′′
1

En conséquence, la dérivée du moment cinétique est déterminée

dLO

dt
= ψ̇ sin θ[(I3 − I)ψ̇ cos θ + I3φ̇]x̂

′′
1 +

d

dt
(Iψ̇ sin θ)x̂

′′
2 +

d

dt
I3(ψ̇ cos θ + φ̇)x̂

′′
3

Il reste l’effet du moment de force extérieur à déterminer qui s’obtient en remarquant que les forces
extérieures appliquées au solide sont le poids −mgx̂3 appliqué au point G et la réaction au plan
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T x̂3 qui s’applique au point de contact avec le sol A. Toutes deux engendrent des moments de forces
orientés selon x̂

′′
1 ,

M ext
O = OG ∧ (−mgx̂3) +OA ∧ (T x̂3)

= −
√
3mgax̂

′′
1 +
√
3aT x̂

′′
1

En mettant ensemble ce que nous avons obtenus, l’équation de la dynamique

dLO

dt
= M ext

O

s’écrit

ψ̇ sin θ[(I3 − I)ψ̇ cos θ + I3φ̇] = a
√
3(T −mg) (2)

Iψ̇ sin θ = constant (3)
I3(ψ̇ cos θ + φ̇) = constant (4)

En utilisant la deuxième et la troisième équation (3) et (4), on déduit que ψ̇ et φ̇ demeurent constants
(égaux aux conditions initiales ψ̇0 et φ̇0 respectivement) tout au long du mouvement. Le mouvement
est ainsi un mouvement circulaire uniforme. En conséquence, La vitesse du centre de masse est

˙OG = −a
√
3ψ̇0x̂

′
1

et l’accélération
ÖG = −a

√
3ψ̇2

0x̂
′
2

En désignant par TO la réaction au point d’attache qui s’exerce sur la tige, on a en en appliquant le
théorème du centre de masse

mÖG = TO + (T −mg)x̂3

et on obtient la réaction au point O d’attache de la tige

TO = −ma
√
3ψ̇2

0x̂
′
2 + (mg − T )x̂3

Cette réaction est maintenant déterminée en fonction des conditions initiales en utilisant l’équation
(2).

(N.B. ce problème est adapté d’un problème de Henri Cabannes, "Problèmes de Mécanique Générale",
Dunod, 1965)
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