Cours de physique générale I — Mécanique — Dr. Ph. Miillhaupt

Exemple Supplémentaire

1. Bille sur tige qui roule ou patine sur le sol

Enoncé du probléme Une bille pleine de masse m est reliée par une tige a l'origine O. La bille
repose sur le sol et peut ainsi se mouvoir en patinant sur le sol mais est toujours en contact avec
celui-ci. L’angle entre la verticale (axe x3) et axe de la tige (axe x3) est de 7. La distance entre
le centre de masse G et l'origine est de 2a. La masse de la tige est négligeable vis-a-vis de la bille.
Le tenseur d’inertie au point O et d’axes confondus avec les axes principaux d’inertie est connu.
On désignera par A le point de contact avec le sol. On demande les équations du mouvement et on
prendra les angles d’Euler ¢, 0, ¢ (rotations 3-1-3) comme angles de référence.

Choix des repéres : Le repére (O, &1, &2, &3) est fixe et le repére (O, 3%'1, 5:'2, :f:;;) est obtenu apres
une rotation du repére fixe autour de 'axe x3 d’un angle v afin de faire coincider le plan générer par
:E'z et ﬁ:;, avec le plan perpendiculaire au sol et contenant la tige et le centre de masse de la bille. Le
repére (O, ci:ll',:fc’zl, zﬁg) est ensuite obtenu a partir du repére / par une rotation d’angle 6 autour de
I’axe O{L‘,l afin que l'axe Oxg s’aligne avec l’axe de la tige. Finalement, le repére li¢ au solide ’ est
obtenu & partir du repére ” par une derniére rotation autour de 'axe Oazg (qui est I'axe de la tige)

d’angle ¢.
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FIGURE 1 — Les quatres repéres : en haut a gauche (O, &1, &2, £3), en haut a droite (O, &1, &4, £3),
NN AN 7N A///)

en bas a gauche (O, &, &4, &5), et finalement en bas a droite (O, &, , &y , &g



Résolution : Le vecteur instantané de rotation a deux composantes qui sont initialement exprimées
dans deux repéres distincts, le repére lié au référentiel

(0,21, 22, 3)

et le repére orienté avec le solide mais pas lié a lui (ce repére ne tourne pas selon I'axe de la tige avec
la vitesse ¢)
NN/
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Le tenseur d’inertie selon le repére (O, &4, &4, &5) et (O, &7 , T4 , &5 ) est identique et diagonal

I 0 0
Ipo=| 0 I 0
0 0 I3
Pour justifier ceci, on part du repére diagonal lié au solide et on effectue un changement de base de
matrice de passage P en tournant autour de l'axe Oa:g/ et on se rend compte que la matrice ne change
pas par transformation de similarité PIoP~!. Une autre facon de justifier ceci est de constater que
I'inertie ne change pas lors d’une rotation autour de ’axe de la tige.
Dans une large classe de problémes similaires dont celui-ci fait partie, on se retrouve a utiliser les
formules de la dynamique exprimées dans le repére inertiel (repére fixe). C’est la dérivée du moment
cinétique qui est lié au moment de force extérieur. Le moment cinétique est exprimé & partir de la
vitesse instantanée de rotation en utilisant le tenseur d’inertie. Cependant, le tenseur d’inertie est
toujours lié au solide (les axes du tenseur étant fixes par rapport au solide). Ainsi, il faut d’abord
ramener la vitesse angulaire dans le repére pour lequel le tenseur d’inertie est connu, puis soit ramener
le tout dans le repére inertiel, soit exprimer le moment cinétique dans le repére mobile. C’est cette
derniére option qui est appliquée ici.
Commengons par exprimer le vecteur de vitesse instantané de rotation dans le repére unique

(0,1, &5, &5)

On constate que le repére (O, &1, &2, &3) subit deux rotations successives (le repére tourne, le point
reste fixe), d’abord selon l'axe Ox3, puis selon I'axe Ol‘ll. Il est important de remarquer que les
matrices respectives apparaissent dans le sens contraire de gauche a droite (sens de la lecture), on
aura d’abord la matrice de la rotation selon x; puis celle de la rotation selon x3. C’est normal car la
seconde matrice agit en premier sur le vecteur ¢w3 :

1 0 0 cosy siny 0 0 0 0 '
Q=] 0 cosf sinf —siny cosy 0 O + 0 = sin v
0 —sinf cosf 0 0 1 ) & cos 0y + ¢

Ainsi
. N . NN
Q = sin OyY&, + (cos 6y + @) &g
A ce stade, introduisons un nouveau vecteur de rotation w qui est la vitesse instantanée de rotation
du repére mobile
NN/
(O,w1,332,1133)
par rapport au repére fixe
(0,21, 22, 23)
qui s’exprime comme
0
. : . Nz s
w=| sinfy | =sinbPy + cosbps
cos 6y



Soit Lo le moment cinétique au point O qui s’obtient en multipliant le tenseur d’inertie au point O

par le vecteur de rotation instantané du solide £2. On obtient un moment cinétique exprimé dans le
\ 144

repére

Lo = IoQ = Isin Oy + I3(cos 0 + o)y (1)

Comme le point O est un point fixe, on peut appliquer la loi de la dynamique sous la forme

dLO — ext
dt o
Dans cette formule, le moment cinétique Lo et le moment de force extérieur Mg Tt sont tous deux

des quantités qui peuvent s’exprimer selon plusieurs repéres. Nous allons les exprimer dans le repére
14

Remarque importante : L’opérateur de dérivée % est relatif au référentiel. Le mouvement de

chaque point laisse "une trace différente" dans chaque référentiel. Soit le référentiel R* dans lequel le
repére (0,91, Y2, Ys3) est lié. Ainsi

d
—| v
dt |
désigne la dérivée de v dans le référentiel en mouvement R’. Si v s'exprime dans le repére mobile
comme
v =v1Y1 + v2y2 + v3Ys
alors
d R N L
| UV =01Y1 + V2Y2 + U3Y3
dt R/
au lieu de J
dtv = 0191 + V2Y2 + U3Y3 + v1y1 + Ug’yz + v3y3
et la formule de Poisson 'gz = wAP;, i = 1,2,3 permet de connecter ces deux dérivées (w est la

vitesse de rotatlon instantanée du repére (O, g1, yz, 93) par rapport au repére fixe). En désignant le
référentiel R celui dans lequel le repére (O, &, &4, 25) est attaché, nous avonc

dLo  d

=—| L AL
dt dt | o+w ©

et en développant

d d d

0t | Lo = pm —(Isinf)@y + pn — (I3(cos 0 + ¢))dg
et

B, 0 0 YsinO[(I3 — I)epcos O + I3

wALo = | &, sinfy I sin 6y = 0
&y cos I3(cos By + @) 0

= osinf[(I3 — I cos O + [30]&
En conséquence, la dérivée du moment cinétique est déterminée

dL M . M ” d M ” d . M ”
TtO = ¢ sinb[(I3 — ) cosb + I30|E, + £(1¢ sinf)&q + %13(1[) cost + ¢)&5
Il reste l'effet du moment de force extérieur & déterminer qui s’obtient en remarquant que les forces

extérieures appliquées au solide sont le poids —mg&s appliqué au point GG et la réaction au plan



TZ3 qui s’applique au point de contact avec le sol A. Toutes deux engendrent des moments de forces
orientés selon &7,

Mgt = OG A (—mgds) +OAN (Tis)
—\/gmgazlell + \/gaT:ﬁll'

En mettant ensemble ce que nous avons obtenus, I’équation de la dynamique

dLo |  cwt
cdt 9
s’écrit
Ysinf[(Is — DipcosO + I3¢] = aV3(T —myg) (2)
Ipsind = constant (3)
I3(fcosf +$) = constant (4)

En utilisant la deuxiéme et la troisiéme équation (3) et (4), on déduit que 1) et ¢ demeurent constants
(égaux aux conditions initiales 1y et ¢y respectivement) tout au long du mouvement. Le mouvement
est ainsi un mouvement circulaire uniforme. En conséquence, La vitesse du centre de masse est

OG = —aV/3vi,

et I'accélération .
OG = —aV/3yii,

En désignant par Tp la réaction au point d’attache qui s’exerce sur la tige, on a en en appliquant le
théoréme du centre de masse
mOG =To + (T — mg)Zs

et on obtient la réaction au point O d’attache de la tige
To = —maV3yi iy + (mg — T)ds

Cette réaction est maintenant déterminée en fonction des conditions initiales en utilisant I’équation

2).

(N.B. ce probléme est adapté d’un probléme de Henri Cabannes, "Problémes de Mécanique Générale",
Dunod, 1965)



