
Aborder et résoudre un problème

de mécanique newtonienne

Notre expérience d’enseignement de la mécanique classique nous a montré qu’il est difficile
pour certains étudiants d’appliquer une méthode systématique pour la résolution des problèmes
en séance d’exercices. Les énoncés leur paraissent hermétiques, sans aucun indice apparent
pour le démarrage, renforçant l’idée qu’il faut trouver “l’astuce” qui permette d’arriver à la
solution, et que cette astuce est différente pour chaque problème. Ceci peut laisser l’étudiant
démuni, qui feuillette alors désespérément les transparents du cours en quête de la formule
miracle qui va pouvoir le sauver (une parmi des centaines !), chaque fois une formule différente
et totalement imprévisible. Il sait bien que ça ne le mènera pas très loin, et son ultime recours
est alors d’implorer le tuteur (ou bien le camarade du groupe qui sait déjà tout) de voler à
son secours et de bien vouloir lui distiller au moins la première partie ou même la totalité
de la solution. C’est alors le soulagement de voir cette solution finalement écrite sur la feuille
blanche : le but est atteint ! Car le but, c’est bien d’obtenir la solution, non ?

L’espace de phase des problèmes de mécanique semble immense, il est vrai, et chaque nou-
veau problème peut surprendre et faire penser qu’il sera impossible, avant le jour de l’examen,
de maîtriser une quelconque technique de résolution. En réalité, tous les problèmes de méca-
nique se ressemblent, et la seule “astuce” qui soit est l’application des lois de la dynamique.
Autrement dit, la formule à utiliser est la deuxième loi de Newton et le théorème du moment
cinétique. Le reste n’est que corollaire, définition, modélisation, ou mathématiques.

1. Appréhender l’ énoncé
2. Définir le(s) système(s) ; faire un dessin 
3. Choisir un référentiel (= observateur)
4. Identifier et dessiner les forces extérieures  

subies par chaque système
5. Lister les lois applicables dans ce contexte ;  

choisir la stratégie de résolution
6. Choisir les variables de position (= coordonnées) 
7. Ecrire les équations du mouvement ; les résoudre
8. Vérifier la(les) solution(s) (dimension et cas limites)
9. Passer à l’application numérique
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Il est donc bien sûr possible de dé-
velopper une approche systématique
pour la résolution des problèmes. C’est
ce que ce document essaie de présen-
ter : une démarche en 9 étapes, qui per-
mette à l’étudiant d’apprendre à abor-
der un problème, à le résoudre, et à
examiner la solution obtenue de façon
critique. En effet, il ne suffit pas d’ob-
tenir la solution, il faut encore s’assu-
rer qu’elle ait des chances d’être cor-
recte, car même si le point de départ
est solide, les étourderies mathéma-
tiques, maladresses algébriques, inad-
vertances de signe, ou autres pièges ont malheureusement vite fait de rendre le résultat inepte.

Ce document est un essai. Il ne peut pas être parfait. Il y aura sûrement des exemples
de problèmes pour lesquels la démarche proposée ne sera pas la meilleure. Avec le feedback
des étudiants, ce document pourra être amélioré. Pour l’heure il aura déjà atteint son but s’il
permet à quelques-uns d’apprendre à naviguer dans les eaux de la mécanique et de pratiquer
l’“abordage” des problèmes sans couler à tous les coups. Bon vent !

O. Schneider, F. Blanc, J.M. Fürbringer
20 septembre 2016
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1 Appréhender l’énoncé

Avant de faire quoi que ce soit d’autre (par exemple regarder son camarade résoudre le
problème), il est essentiel de lire très attentivement l’énoncé du problème, du début à la fin.
Si nécessaire on le relira plusieurs fois, afin de le décortiquer pour

— comprendre la situation décrite, qui doit alors apparaître comme cohérente ;
— visualiser (par la pensée) le mouvement possible ou tous les mouvements possibles dans

l’espace, en pensant aux trois dimensions ;
— relever les approximations ou hypothèses simplificatrices, explicitement mentionnées ou

indirectement suggérées ;
— si l’énoncé en laisse la liberté, modéliser la situation décrite (par exemple, considérer

qu’une planète est un point matériel, qu’une poulie a une masse négligeable, qu’un
haltère est formé de deux point matériels reliés par une tige rigide sans masse, . . . )

— identifier les paramètres du problème, c’est-à-dire les quantités constantes apparaissant
dans le problème et supposées être connues (par exemple une masse m, un rayon R,
une accélération de pesanteur g, un coefficient de frottement µ, une vitesse initiale v0,
un moment d’inertie I, . . . ) ;

— identifier les variables mentionnées dans l’énoncé, c’est-à-dire les quantités qui peuvent
dépendre du temps (par exemple un angle ↵(t), une altitude z(t), une force de liaison
F (t), . . . ), même si la dépendance temporelle n’est pas explicitée ;

— établir la liste des quantités ou fonctions connues, ainsi que la liste des quantités ou
fonctions qu’il s’agit de déterminer ;

— reformuler le plus concrètement possible les objectifs à atteindre (par exemple, et le plus
souvent, exprimer les quantités inconnues en fonction des paramètres du problème, ou
les fonctions inconnues en fonction du temps et des paramètres).

Il se peut qu’on ait immédiatement une intuition de la solution ou, plus généralement,
qu’une intuition apparaisse en cours de résolution. Ceci est très bien, mais il faut aussi savoir se
méfier des intuitions, car elles peuvent n’être que de simples préjugés qui se révèlent incorrects
(c’est par exemple faux de penser que la force de réaction d’un sol horizontal sur un objet qui
le touche est nécessairement de même norme que le poids de cet objet). Il est donc préférable,
dans un premier temps, de laisser l’intuition de côté, et d’appliquer une méthode qui s’appuie
toujours sur les lois de la physique, comme celle proposée ci-dessous. Une fois la solution
obtenue, on pourra évidemment la confronter à l’intuition . . . et peut-être comprendre pourquoi
l’intuition s’est trompée, ou bien s’émerveiller devant son excellente intuition physique.

2 Définir le(s) système(s) ; faire un dessin

Les lois de la physique s’appliquent toujours à un certain système physique, qu’il s’agit
donc de définir. Le système peut être un point matériel ou un ensemble de points matériels
(par exemple un ou plusieurs solides). Le système est souvent un objet ou un ensemble d’objets
mentionnés dans l’énoncé. Si le système est bien défini, il doit être possible de dire, pour chaque
point matériel de l’Univers, s’il fait partie du système ou non.

Il peut être nécessaire ou utile de définir plusieurs systèmes. On pourra ainsi appliquer
des lois physiques à chacun d’eux. Si on définit deux systèmes A et B, on peut aussi penser à
définir un troisième système C formé de A et B. Parfois, il est alors plus pratique de travailler
avec les systèmes A et C, plutôt que A et B.
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La définition d’un ou plusieurs systèmes résulte d’un choix. On fait ce choix, bien évidem-
ment, en fonction des questions à résoudre. Si, au cours de la résolution, le choix s’avère peu
commode ou inefficace, il ne faut pas hésiter à recommencer avec un meilleur choix.

On fera un dessin de chaque système défini et on y indiquera les données du problème (en
particulier les paramètres), en utilisant les mêmes notations que dans l’énoncé. Ce dessin peut
évidemment (et doit souvent) représenter aussi des éléments extérieurs au système. Il pourra
être complété (voir refait, si nécessaire) lors des étapes suivantes. De façon générale, il est
vivement conseillé de faire ce dessin pour une position quelconque du système, c’est-à-dire à
un temps t quelconque. Un dessin représentant une position “remarquable” du système à un
instant bien particulier peut être utile dans certaines circonstances, mais risque d’induire en
erreur s’il est ensuite utilisé de façon générique.

3 Choisir un référentiel ( = observateur)

Le mouvement de chaque système défini à l’étape 2 va toujours être décrit par rapport à un
certain objet, appelé référentiel. Il faut choisir ce référentiel. Techniquement, un référentiel est
un ensemble d’au moins 4 points non-coplanaires immobiles les uns par rapport aux autres :
un référentiel est donc un solide indéformable. Des exemples de référentiels sont : la Terre, un
avion, une table tournante, un wagonnet sur un grand huit, . . .

Pour bien comprendre la notion de référentiel, il faut toujours s’imaginer que l’observateur
(c’est-à-dire la personne qui décrit le mouvement du système) fait partie intégrante du réfé-
rentiel. Une fois que le référentiel est choisi, il faut absolument se mettre dans ce référentiel,
de façon à devenir soi-même immobile par rapport à ce référentiel. Par exemple : s’ancrer
avec les pieds sur Terre, entrer dans l’avion, se mettre sur la table tournante, s’asseoir dans
le wagonnet du grand huit, . . .). L’observateur décrit ensuite le système physique comme il le
voit de ce référentiel.

Le choix d’un référentiel est important, car l’application des lois de la dynamique dépend
du type de référentiel choisi. On classe les référentiels en deux catégories :

— les référentiels d’inertie, dans lesquels la loi d’inertie (1ère loi de Newton) est valable ;
— les référentiels “accélérés”, dans lesquels la loi d’inertie n’est pas valable.

Les référentiels d’inertie sont tous en mouvements rectilignes uniformes les uns par rapport
aux autres. C’est pour cela que les autres référentiels sont dit accélérés.

Le référentiel choisi est souvent un référentiel suffisamment peu accéléré pour qu’on puisse
faire l’approximation qu’il s’agit d’un référentiel d’inertie (par exemple la Terre). Cependant
la validité d’une telle approximation n’est pas universelle et dépend de ce qui est demandé
dans l’énoncé.

4 Identifier et dessiner les forces extérieures subies par

chaque système

Pour cette étape on se limite à l’identification des forces exercées sur le système par des
corps extérieurs au système, appelées forces “extérieures”. En effet, seules les forces extérieures
(ou leurs moments) interviennent dans le théorème du centre de masse (ou du moment ci-
nétique). Toutefois les forces “intérieures” exercées entre les points matériels d’un système ne
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peuvent pas être ignorées dans toutes les situations, en particulier lorsqu’on discute d’énergie
(voir les étapes 5.2 et 5.3).

Pour chaque système défini à l’étape 2, on procédera aux 4 sous-étapes décrites ci-après.

4.1 Enumération des forces extérieures

On dressera la liste des forces extérieures s’exerçant sur le système, c’est-à-dire s’exerçant
sur un point matériel appartenant au système ou définies comme la résultante de forces s’exer-
çant sur des points matériels appartenant au système. Il faut également prendre en compte les
forces d’inertie, qui sont considérées comme des forces extérieures appliquées sur le système
par le reste de l’Univers. Si on travaille avec un référentiel d’inertie, les forces d’inertie sont
nulles par définition.

L’énoncé ne mentionne pas forcément toutes les forces. L’existence des forces de liaison et
des forces d’inertie est très souvent implicite. L’existence d’autres forces peut aussi être impli-
cite (par exemple les poids, les forces de frottement statiques, . . . ), en fonction du contexte.
D’autres forces non mentionnées peuvent être supposées négligeables (par exemple les forces
de frottement de l’air), si le problème ne perd pas sa cohérence avec cette approximation.

4.2 Identification du point d’application de chaque force extérieure

Ceci est très important dans le cas d’un système formé de plusieurs points matériels (par
exemple un solide), car il faudra très probablement travailler avec des moments de force. Dans
le cas d’un système formé d’un unique point matériel, le point d’application des forces est le
point matériel lui-même.

On notera que le point d’application d’une force peut
— ne pas être un point matériel du système (par exemple le point d’application du poids

d’une bouée) ;
— être une inconnue du problème (par exemple le point d’application de la force qu’un

plan incliné exerce sur une brique posée sur ce plan et immobilisée grâce à une force de
frottement statique).

Les forces d’inertie s’appliquent toujours au centre de masse du système.

4.3 Détermination de la direction de chaque force extérieure

Quelques rappels :
— Une force de liaison, c’est-à-dire une force qui résulte de l’imposition d’une certaine

contrainte géométrique sur le mouvement du système, est toujours perpendiculaire à
n’importe quel déplacement du système qui respecte la contrainte.

— Une force de frottement cinétique est toujours de direction opposée à la vitesse de son
point d’application par rapport au corps qui exerce le frottement.

— Une force de frottement statique est toujours opposée à la direction dans laquelle son
point d’application bougerait sans elle par rapport au corps qui exerce le frottement.

— Une force exercée par un fil souple à son point d’attache au système est toujours dans
la direction de l’autre point d’attache, le long du fil, à condition que le fil soit tendu
(sinon la force est nulle).

— Une force exercée par une tige rigide à son point d’attache au système peut avoir une
direction quelconque.
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— Une force gravifique est toujours dans la direction du corps extérieur au système qui
exerce cette force.

— Le support de la force d’un ressort élastique est donné par la droite qui lie les deux
extrémités du ressort ; la direction de cette force de rappel est opposée à l’allongement
du ressort (elle a donc pour intention de ramener le ressort à sa longueur à vide, où la
force est nulle).

4.4 Représentation des forces extérieures sur un dessin

Il est bien évidemment possible de compléter le dessin commencé à l’étape 2, mais il est
parfois préférable de refaire un dessin. Pour le cas d’un ensemble de forces non-coplanaires, la
visualisation en trois dimensions peut présenter des difficultés. Il peut alors être utile de faire
également des dessins en plusieurs projections, généralement sur des plans perpendiculaires à
certaines forces ou contenant certaines forces.

Une force perpendiculaire au plan du dessin se représente par le symbole
� si la force sort du dessin (c’est-à-dire pointe en direction du lecteur), ou
⌦ si la force entre dans le dessin (c’est-à-dire pointe dans la direction opposée au lecteur).

On peut facilement mémoriser cette convention en considérant un vecteur comme une fléchette
avec sa pointe vue par l’avant (�) ou son empennage vu par l’arrière (⌦).

Un dessin correct doit contenir toutes les forces extérieures appliquées à un seul système,
avec leurs directions et leurs points d’application. Dans la mesure du possible les normes
relatives des forces doivent être telles que la résultante de toutes les forces soit réaliste (par
exemple, résultante nulle pour un système à l’équilibre, ou résultante centripète pour un
mouvement circulaire uniforme, . . . ). Il est recommandé de définir une notation pour les forces
qui ne sont pas déjà explicitement baptisées dans l’énoncé et d’utiliser ces notations sur le
dessin.

Il se peut qu’une force soit une inconnue du problème, en particulier sa direction ou cer-
taines de ses composantes peuvent être inconnues. Dans ce cas on représente quand même la
force sur le dessin en choisissant arbitrairement les composantes inconnues. Quand on projet-
tera ces forces (voir étape 7), on prendra garde de considérer que ces composantes (y compris
leurs signes) sont des inconnues.

5 Lister les lois applicables ; choisir une stratégie de réso-

lution

5.1 Les lois fondamentales de la dynamique

Un système mécanique obéit toujours aux lois fondamentales de la dynamique, c’est-à-dire
au théorème du centre de masse et au théorème du moment cinétique (à condition d’inclure les
forces d’inertie quand elles existent). Lorsque le système est formé d’un unique point matériel,
le théorème du centre de masse est simplement la deuxième loi de Newton, et le théorème du
moment cinétique, bien que valable, n’apporte rien de plus que la deuxième loi de Newton
(car toutes les forces ont le même point d’application).

Ces lois sont vectorielles et elles seront initialement écrites sous cette forme. A l’étape 7 elles
donneront, après projection sur les trois axes d’un repère, 6 équations différentielles dans le
cas d’un système de points matériels (ou seulement 3 équations différentielles dans le cas d’un
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point matériel). Ces équations peuvent être résolues (en tout cas en théorie) pour déterminer
les mouvements possibles du système ainsi que les forces de liaison inconnues. Cette résolution
implique l’intégration d’équations différentielles de deuxième ordre (au moins).

5.2 Les lois de conservation

Dans certains cas, il est possible d’identifier des intégrales premières du mouvement, c’est-à-
dire des formes déjà intégrées (une fois) des équations du mouvement. Ces intégrales premières
prennent la forme Q(t) = Q0, où Q(t) une quantité conservée et Q0 une constante d’intégration
déterminée par les conditions initiales. Les intégrales premières expriment donc des lois de
conservation. Si des lois de conservation existent pour un système donné, il est important de
le savoir, car la résolution du problème peut souvent être accélérée par l’application de ces
lois.

Pour chaque système, on déterminera lesquelles des lois de conservation suivantes sont
applicables.

— Si la résultante des forces extérieures n’a pas de composante selon une certaine direction
û, la composante u de la quantité de mouvement totale est conservée.

— Si la résultante des moments des forces extérieures par rapport à un certain point O
n’a pas de composante selon une certaine direction û, la composante u du moment
cinétique total par rapport à O est conservée.

— Si chacune des forces extérieures et intérieures est conservative (ou bien ne travaille pas,
ou bien compense le travail d’une autre force), l’énergie mécanique totale est conservée ;
son expression doit contenir l’énergie potentielle dont dérive chaque force conservative.

En particulier :
— Si le système ne subit aucune force extérieure (système isolé), les trois composantes de

la quantité de mouvement totale et les trois composantes du moment cinétique total,
par rapport à n’importe quel point du référentiel, sont conservées.

— Si le système ne subit que des forces extérieures centrales de même centre O, les trois
composantes du moment cinétique total par rapport à O sont conservées.

5.3 Le théorème de l’énergie

Si l’énergie mécanique n’est pas conservée, on peut penser de façon plus générale à utiliser le
théorème de l’énergie, ou bien le théorème de l’énergie cinétique. Ces théorèmes sont toujours
applicables, mais nécessitent le calcul de travaux de forces extérieures et intérieures. Le reste
de ce document n’y fait plus explicitement référence, mais il est clair qu’ils peuvent être utilisés
au même titre que la loi de conservation de l’énergie (qui est un cas particulier du théorème
de l’énergie).

5.4 Choix des lois à utiliser

Si aucune loi de conservation n’est applicable, on utilisera les lois de la dynamique.
Si des lois de conservation sont applicables, il est en principe utile d’en faire usage. Mais ces

lois de conservation ne fournissent pas toujours toutes les équations nécessaires à la résolution
du problème. On peut bien sûr décider d’ignorer les lois de conservation et utiliser uniquement
les lois de la dynamique.

De façon générale, les lois de conservation sont
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— utiles lorsque l’énoncé demande de déterminer une position, une vitesse, une vitesse
angulaire, une quantité de mouvement, un moment cinétique ;

— inutiles lorsque l’énoncé demande de déterminer un temps, une pulsation, ou bien une
force de liaison inconnue.

Dans ce dernier cas, il faut utiliser les lois de la dynamique.
Le théorème du moment cinétique est valable par rapport à n’importe quel point de ré-

férence pour le calcul des moments de force et du moment cinétique total. Si on décide de
résoudre le problème en utilisant ce théorème, il faut alors aussi choisir un point de référence
(en effet, appliquer le théorème du moment cinétique plusieurs fois en changeant de point de
référence n’apporte rien de plus). Ce choix donne une possibilité intéressante : celle d’annuler
le moment de certaines forces, ce qui est particulièrement utile dans le cas de forces inconnues.
Il est fortement recommandé d’utiliser un point de vitesse nulle ou bien le centre de masse
du système (sinon, le théorème du moment cinétique prend une forme plus compliquée queP

i
~

Mi = d

~

L/dt).

6 Choisir les variables de position (= coordonnées)

6.1 Variables déterminant la position des systèmes

Un ensemble de variables doit être choisi de telle sorte que les valeurs de ces variables à un
certain temps t définissent sans ambiguïté la position de chacun des points matériels de chacun
des systèmes. Pour un solide, ces variables doivent définir à la fois la position du centre de
masse et l’orientation du solide autour de son centre de masse. Ces variables sont aussi appelées
“coordonnées”. Il peut s’agir de coordonnées usuelles, telles que coordonnées cartésiennes,
cylindriques ou sphériques, ou de coordonnées curvilignes absolument quelconques.

Un bon choix de variables tient souvent compte des contraintes auxquelles sont soumis les
systèmes, en simplifiant l’expression de ces contraintes (voir point suivant). Par exemple, si
un point matériel est contraint à rester

— sur un cylindre de rayon R, on utilisera les coordonnées cylindriques (⇢, �, z) avec
⇢(t) = R,

— sur une sphère de rayon R, on utilisera les coordonnées sphériques (r, ✓, �) avec r(t) =

R,
— sur un cône de révolution de demi-angle d’ouverture ↵, on utilisera les coordonnées

sphériques (r, ✓, �) avec ✓(t) = ↵,
— sur un plan, on utilisera les coordonnées cartésiennes (x, y, z) ou cylindriques (⇢, �, z),

où l’axe z est perpendiculaire au plan, avec z(t) = z0,
— sur un cercle de rayon R, on utilisera les coordonnées cylindriques (⇢, �, z), où l’axe z est

perpendiculaire au plan du cercle, avec z(t) = z0 et ⇢(t) = R, ou bien les coordonnées
sphériques (r, ✓, �) avec ✓(t) = arctan(R/z0) et r(t) =

p
R

2
+ z

2
0 ,

— sur le parcours d’un grand huit, on utilisera la coordonnée curviligne s définie comme
la distance parcourue depuis le point de départ.

6.2 Contraintes dues aux forces de liaison

Les forces de liaison donnent lieu à des conditions sur les variables de position et/ou leur
dérivées par rapport au temps. Ces conditions permettent, le cas échéant, de supprimer des
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variables inutiles (cas d’une variable constante, ou bien d’une variable qui dépend d’une autre).
Par exemple, les positions de deux corps reliés par un fil tendu, passant éventuellement par
des poulies, ne sont pas indépendantes. Un autre exemple plus compliqué est une roue verti-
cale roulant sur un plan horizontal, dont les coordonnées de position et d’orientation doivent
satisfaire des conditions imposées par le non-glissement de la roue. Il peut être avantageux
(parfois même inévitable) de garder des variables qui ne sont pas indépendantes, mais il faut
alors tenir compte de leurs relations lors de la résolution du problème. Lorsqu’on a un jeu de
variables (non constantes) toutes indépendantes les unes des autres, le nombre de ces variables
est égal au nombre de degrés de liberté de l’ensemble des systèmes définis.

7 Ecrire les équations du mouvement ; les résoudre

7.1 Choix de repères

On va partir des lois choisies à l’étape 5.4. S’il y a des lois vectorielles parmi elles, il va
falloir faire des projections sur les trois axes d’un repère. Ce repère doit être spécifié. On peut
a priori utiliser des repères différents pour les projections de chaque loi vectorielle appliquée
à chaque système. On donnera la préférence à un repère associé aux coordonnées utilisées
(variables de position), mais ceci n’est pas une obligation.

Dans le cas d’un solide, il est beaucoup plus simple de travailler avec un repère d’inertie,
c’est-à-dire un repère dont les axes sont des axes principaux d’inertie du solide (attention : ne
pas confondre repère d’inertie avec référentiel d’inertie).

Dans tous les cas, il est fortement recommandé de travailler avec des repères orthonormés
droits et de les représenter sur les dessins.

7.2 Expression des grandeurs physiques apparaissant dans les lois en
fonction des variables choisies

On exprimera les grandeurs apparaissant dans les lois de la dynamique ou les lois de conser-
vation en fonction des variables choisies ainsi que de leurs dérivées par rapport au temps. Ces
grandeurs physiques sont des forces, des moments de force, des quantités de mouvement, des
moments cinétiques, des énergies cinétiques, et des énergies potentielles. Les quantités ciné-
matiques telles que vitesses et accélérations (linéaires ou angulaires) dépendent évidemment
aussi des variables et de leurs dérivées et servent à calculer les grandeurs physiques. Pour les
grandeurs vectorielles, on prendra soin d’exprimer chacune des trois composantes sur les axes
du repère choisi.

Pour chaque loi de conservation, on déterminera aussi la valeur initiale de la quantité
conservée à l’aide des conditions initiales sur les variables de position et leurs dérivées tempo-
relles.

7.3 Obtention du système d’équations

On écrira toutes les équations du mouvement, par projection des lois fondamentales de la
dynamique ou applications des lois de conservation sur tous les systèmes définis. Si toutes les
quantités physiques ont été exprimées en fonction des variables de position et de leurs dérivées
par rapport au temps, on doit obtenir un ensemble d’équation différentielles où les fonctions
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inconnues du temps sont les variables de position et des forces de liaison. On vérifiera qu’il y
a suffisamment d’équations pour les inconnues à déterminer.

La résolution des équations du mouvement n’est pas toujours demandée. Il est très utile
de savoir reconnaître les équations différentielles du mouvement uniformément accéléré et du
mouvement oscillatoire harmonique, et tout aussi utile de connaître par coeur leurs solutions.

Rappel : les équations différentielles données par les lois de la dynamique ont une infinité
de solutions, qui diffèrent par les valeurs de constantes d’intégration. Ces valeurs peuvent être
déterminées à l’aide de conditions initiales.

8 Vérifier la(les) solution(s) (dimension et cas limites)

Une fois le problème résolu, il est utile de procéder à un certain nombre de vérifications sur
la solution obtenue. Cette étape est très importante, car elle permet souvent de détecter les
erreurs (lorsqu’il y en a). La plupart des vérifications ne peuvent pas être faites si le résultat
est numérique. Il est donc essentiel de résoudre le problème jusqu’au bout de façon littérale, et
de ne passer aux applications numériques (lorsqu’elles sont demandées) qu’après avoir vérifié
la solution littérale.

8.1 Vérifications élémentaires

— La solution répond-elle précisément aux questions posées dans l’énoncé ?
— La solution est-elle exprimée de façon littérale, uniquement en fonction des quantités

données dans l’énoncé ? Si non, il se peut que la résolution ne soit par terminée (par
exemple substitutions manquantes).

8.2 Vérifications mathématiques

Si la solution contient des fonctions définies seulement sur une partie de l’ensemble des
nombres réels, il convient de porter une attention particulière à leurs arguments. Par exemple :

— L’argument d’une racine carrée est-il positif (ou nul) ?
— L’argument d’un logarithme est-il positif ?
— L’argument de la fonction arcsin ou arccos est-il compris entre �1 et +1 ?
— Le dénominateur d’une fraction est-il non nul ?
Si ce n’est pas le cas, il se peut que la solution soit correcte mais n’existe que pour certaines

valeurs des paramètres du problème, ou bien que la solution soit incorrecte. Par exemple, des
expressions du type

p
a

2
cos(3⇡) ou arccos(ln(1/2� a

2
)� 1) ne font pas de sens.

Si la solution n’existe que pour certaines valeurs des paramètres, il est très intéressant
d’expliciter ces valeurs et de discuter la solution en fonction des paramètres. Ceci peut être
fait même si l’énoncé ne le demande pas. On gagne souvent une meilleure compréhension
physique du problème après avoir fait une telle discussion.

8.3 Vérifications dimensionnelles

Il est important de vérifier que toute expression apparaissant dans la solution soit cohérente
du point de vue des dimensions (c’est-à-dire des unités). En réalité, cette cohérence doit
être maintenue au cours de toute la résolution, et les tests proposés ci-dessous peuvent être
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appliqués à tout résultat intermédiaire. Si la solution finale n’est pas cohérente du point de vue
des dimensions, on peut vérifier chaque étape intermédiaire et trouver à quel moment l’erreur
est survenue. Les règles de cohérence dimensionnelle sont les suivantes :

— deux expressions égalées, additionnées ou soustraites doivent avoir la même dimension
(c’est-à-dire les même unités) ;

— une expression apparaissant comme un exposant doit être sans dimension (sans unité) ;
— une expression utilisée comme argument d’une fonction mathématique (par exemple,

sin, cos, tan, exp, log, . . .) doit être sans dimension (sans unité).
Note : le “radian” n’est pas une unité comme les autres, dans le sens où il n’est pas une

unité proprement dite ; en effet, les angles (exprimés en radians) sont sans dimension.
Un excellent réflexe est de systématiquement procéder à une simplification de la solu-

tion du point de vue dimensionnel, c’est-à-dire une réécriture de la solution en fonction de
sous-expressions sans dimension. Ceci rend la dimensionnalité de l’expression beaucoup plus
explicite, ce qui simplifie les vérifications ainsi que la discussion de la solution. Par exemple,
une expression du type

p
R

2
1 � v

2
0t

2
0/
p

R

4
1 +R

4
2, où R1 et R2 sont des longueurs, v0 une vitesse

et t0 un temps, est beaucoup plus lisible (du point de vue des dimensions) si on la réécrit
comme (1/R1)

p
1� (v0t0/R1)

2
/

p
1 + (R2/R1)

4.

8.4 Cas limites

Il arrive souvent qu’on ait une intuition de la solution (ou que celle-ci devienne tout à fait
évidente) lorsque le problème est simplifié en considérant des “cas limites” correspondant à des
valeurs particulières de certains paramètres. En pratique

— on peut essayer de faire tendre chaque paramètre vers zéro ou vers l’infini, et vérifier
que, dans cette limite, la solution se réduise bien à ce qu’on attend (par exemple,
on peut faire tendre la constante élastique k d’un ressort vers zéro pour “enlever” ce
ressort ; on peut aussi faire tendre g vers zéro pour éliminer la pesanteur, un coefficient
de frottement vers zéro pour éliminer le frottement, ou un rayon de courbure vers l’infini
pour obtenir une surface place, etc.) ;

— si deux paramètres ont la même dimension, on peut considérer le cas limite où ces deux
paramètres sont égaux (par exemple poser que deux masses m1 et m2 sont égales, etc.) ;

— l’expression mathématique de la solution peut également suggérer des cas limites à
vérifier, par exemple celui où un terme additif s’annule, celui où l’argument d’une
racine s’annule, etc.

9 Passer à l’application numérique

C’est seulement lorsque la solution algébrique a été validée, qu’il est opportun d’effectuer
les applications numériques demandées.

On donnera les résultats numériques avec un nombre de chiffres significatifs raisonnable.
Suivant les cas, un ordre de grandeur suffira. Dans cette perspective, on pourra arrondir des
données, par exemple utiliser g = 10 ms

�2 au lieu de g = 9.81 ms

�2.
Dans la mesure du possible, on vérifiera l’ordre de grandeur de la solution en utilisant son

sens commun et des comparaisons en termes de poids, de longueur, et de vitesse des objets
courants. Un pois chiche de 20 kg ou une voiture roulant à 1000 km/h sont des indices qu’il
y a probablement une erreur quelque part.
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