Aborder et résoudre un probléme
de mécanique newtonienne

Notre expérience d’enseignement de la mécanique classique nous a montré qu’il est difficile
pour certains étudiants d’appliquer une méthode systématique pour la résolution des problémes
en séance d’exercices. Les énoncés leur paraissent hermétiques, sans aucun indice apparent
pour le démarrage, renforcant 1'idée qu’il faut trouver “’astuce” qui permette d’arriver a la
solution, et que cette astuce est différente pour chaque probléme. Ceci peut laisser I’étudiant
démuni, qui feuillette alors désespérément les transparents du cours en quéte de la formule
miracle qui va pouvoir le sauver (une parmi des centaines!), chaque fois une formule différente
et totalement imprévisible. Il sait bien que ¢a ne le ménera pas tres loin, et son ultime recours
est alors d’implorer le tuteur (ou bien le camarade du groupe qui sait déja tout) de voler a
son secours et de bien vouloir lui distiller au moins la premiére partie ou méme la totalité
de la solution. C’est alors le soulagement de voir cette solution finalement écrite sur la feuille
blanche : le but est atteint! Car le but, c¢’est bien d’obtenir la solution, non ?

L’espace de phase des problémes de mécanique semble immense, il est vrai, et chaque nou-
veau probléme peut surprendre et faire penser qu’il sera impossible, avant le jour de I’examen,
de maitriser une quelconque technique de résolution. En réalité, tous les problémes de méca-
nique se ressemblent, et la seule “astuce” qui soit est I’application des lois de la dynamique.
Autrement dit, la formule a utiliser est la deuxiéme loi de Newton et le théoréme du moment
cinétique. Le reste n’est que corollaire, définition, modélisation, ou mathématiques.

Il est donc bien stir possible de dé-
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1 Appréhender I’énoncé

Avant de faire quoi que ce soit d’autre (par exemple regarder son camarade résoudre le
probléme), il est essentiel de lire trés attentivement ’énoncé du probléme, du début a la fin.
Si nécessaire on le relira plusieurs fois, afin de le décortiquer pour

— comprendre la situation décrite, qui doit alors apparaitre comme cohérente ;

— visualiser (par la pensée) le mouvement possible ou tous les mouvements possibles dans
I’espace, en pensant aux trois dimensions ;

— relever les approximations ou hypothéses simplificatrices, explicitement mentionnées ou
indirectement suggérées ;

— si I’énoncé en laisse la liberté, modéliser la situation décrite (par exemple, considérer
qu'une planéte est un point matériel, qu'une poulie a une masse négligeable, qu'un
haltére est formé de deux point matériels reliés par une tige rigide sans masse, . ..)

— identifier les paramétres du probléme, c’est-a-dire les quantités constantes apparaissant
dans le probléme et supposées étre connues (par exemple une masse m, un rayon R,
une accélération de pesanteur g, un coefficient de frottement g, une vitesse initiale vy,
un moment d’inertie I, ...);

— identifier les variables mentionnées dans I’énoncé, c’est-a-dire les quantités qui peuvent
dépendre du temps (par exemple un angle «(t), une altitude z(¢), une force de liaison
F(t), ...), méme si la dépendance temporelle n’est pas explicitée;

— établir la liste des quantités ou fonctions connues, ainsi que la liste des quantités ou
fonctions qu’il s’agit de déterminer;

— reformuler le plus concrétement possible les objectifs a atteindre (par exemple, et le plus
souvent, exprimer les quantités inconnues en fonction des paramétres du probléme, ou
les fonctions inconnues en fonction du temps et des parameétres).

Il se peut qu’on ait immédiatement une intuition de la solution ou, plus généralement,
qu’une intuition apparaisse en cours de résolution. Ceci est trés bien, mais il faut aussi savoir se
méfier des intuitions, car elles peuvent n’étre que de simples préjugés qui se révélent incorrects
(c’est par exemple faux de penser que la force de réaction d’un sol horizontal sur un objet qui
le touche est nécessairement de méme norme que le poids de cet objet). Il est donc préférable,
dans un premier temps, de laisser I'intuition de co6té, et d’appliquer une méthode qui s’appuie
toujours sur les lois de la physique, comme celle proposée ci-dessous. Une fois la solution
obtenue, on pourra évidemment la confronter a I'intuition . . . et peut-étre comprendre pourquoi
I'intuition s’est trompée, ou bien s’émerveiller devant son excellente intuition physique.

2 Définir le(s) systéme(s) ; faire un dessin

Les lois de la physique s’appliquent toujours & un certain systéme physique, qu’il s’agit
donc de définir. Le systéme peut étre un point matériel ou un ensemble de points matériels
(par exemple un ou plusieurs solides). Le systéme est souvent un objet ou un ensemble d’objets
mentionnés dans I’énoncé. Si le systéme est bien défini, il doit étre possible de dire, pour chaque
point matériel de I’Univers, s’il fait partie du systéme ou non.

Il peut étre nécessaire ou utile de définir plusieurs systémes. On pourra ainsi appliquer
des lois physiques & chacun d’eux. Si on définit deux systémes A et B, on peut aussi penser a
définir un troisiéme systéme C formé de A et B. Parfois, il est alors plus pratique de travailler
avec les systémes A et C, plutdt que A et B.



La définition d’un ou plusieurs systémes résulte d’un choix. On fait ce choix, bien évidem-
ment, en fonction des questions a résoudre. Si, au cours de la résolution, le choix s’avére peu
commode ou inefficace, il ne faut pas hésiter & recommencer avec un meilleur choix.

On fera un dessin de chaque systéme défini et on y indiquera les données du probléme (en
particulier les paramétres), en utilisant les mémes notations que dans ’énoncé. Ce dessin peut
évidemment (et doit souvent) représenter aussi des éléments extérieurs au systéme. Il pourra
étre complété (voir refait, si nécessaire) lors des étapes suivantes. De fagon générale, il est
vivement conseillé de faire ce dessin pour une position quelconque du systéme, c’est-a-dire a
un temps t quelconque. Un dessin représentant une position “remarquable” du systéme a un
instant bien particulier peut étre utile dans certaines circonstances, mais risque d’induire en
erreur s’il est ensuite utilisé de fagcon générique.

3 Choisir un référentiel ( = observateur)

Le mouvement de chaque systéme défini a I’étape 2 va toujours étre décrit par rapport a un
certain objet, appelé référentiel. Il faut choisir ce référentiel. Techniquement, un référentiel est
un ensemble d’au moins 4 points non-coplanaires immobiles les uns par rapport aux autres :
un référentiel est donc un solide indéformable. Des exemples de référentiels sont : la Terre, un
avion, une table tournante, un wagonnet sur un grand huit, ...

Pour bien comprendre la notion de référentiel, il faut toujours s’imaginer que 1’observateur
(c’est-a~dire la personne qui décrit le mouvement du systéme) fait partie intégrante du réfé-
rentiel. Une fois que le référentiel est choisi, il faut absolument se mettre dans ce référentiel,
de facon a devenir soi-méme immobile par rapport a ce référentiel. Par exemple : s’ancrer
avec les pieds sur Terre, entrer dans ’avion, se mettre sur la table tournante, s’asseoir dans
le wagonnet du grand huit, ...). L’observateur décrit ensuite le systéme physique comme il le
voit de ce référentiel.

Le choix d’un référentiel est important, car I’application des lois de la dynamique dépend
du type de référentiel choisi. On classe les référentiels en deux catégories :

— les référentiels d’inertie, dans lesquels la loi d’inertie (1ére loi de Newton) est valable;

— les référentiels “accélérés”, dans lesquels la loi d’inertie n’est pas valable.

Les référentiels d’inertie sont tous en mouvements rectilignes uniformes les uns par rapport
aux autres. C’est pour cela que les autres référentiels sont dit accélérés.

Le référentiel choisi est souvent un référentiel suffisamment peu accéléré pour qu’on puisse
faire I'approximation qu’il s’agit d’un référentiel d’inertie (par exemple la Terre). Cependant
la validité d’une telle approximation n’est pas universelle et dépend de ce qui est demandé
dans I’énoncé.

4 Identifier et dessiner les forces extérieures subies par
chaque systéme

Pour cette étape on se limite & I'identification des forces exercées sur le systéme par des
corps extérieurs au systéme, appelées forces “extérieures”. En effet, seules les forces extérieures
(ou leurs moments) interviennent dans le théoréme du centre de masse (ou du moment ci-
nétique). Toutefois les forces “intérieures” exercées entre les points matériels d’'un systéme ne



peuvent pas étre ignorées dans toutes les situations, en particulier lorsqu’on discute d’énergie
(voir les étapes 5.2 et 5.3).
Pour chaque systéme défini a ’étape 2, on procédera aux 4 sous-étapes décrites ci-apres.

4.1 Enumération des forces extérieures

On dressera la liste des forces extérieures s’exercant sur le systéme, c’est-a-dire s’exergant
sur un point matériel appartenant au systéme ou définies comme la résultante de forces s’exer-
cant sur des points matériels appartenant au systéme. Il faut également prendre en compte les
forces d’inertie, qui sont considérées comme des forces extérieures appliquées sur le systéme
par le reste de I’Univers. Si on travaille avec un référentiel d’inertie, les forces d’inertie sont
nulles par définition.

L’énoncé ne mentionne pas forcément toutes les forces. L’existence des forces de liaison et
des forces d’inertie est trés souvent implicite. L’existence d’autres forces peut aussi étre impli-
cite (par exemple les poids, les forces de frottement statiques, ... ), en fonction du contexte.
D’autres forces non mentionnées peuvent étre supposées négligeables (par exemple les forces
de frottement de 1'air), si le probléme ne perd pas sa cohérence avec cette approximation.

4.2 Identification du point d’application de chaque force extérieure

Ceci est trés important dans le cas d'un systéme formé de plusieurs points matériels (par
exemple un solide), car il faudra trés probablement travailler avec des moments de force. Dans
le cas d’un systéeme formé d’un unique point matériel, le point d’application des forces est le
point matériel lui-méme.

On notera que le point d’application d'une force peut

— ne pas étre un point matériel du systéme (par exemple le point d’application du poids
d’une bouée) ;

— étre une inconnue du probléme (par exemple le point d’application de la force qu'un
plan incliné exerce sur une brique posée sur ce plan et immobilisée grace a une force de
frottement statique).

Les forces d’inertie s’appliquent toujours au centre de masse du systéme.

4.3 Détermination de la direction de chaque force extérieure

Quelques rappels :

— Une force de liaison, c’est-a-dire une force qui résulte de 'imposition d’une certaine
contrainte géométrique sur le mouvement du systéme, est toujours perpendiculaire a
n’importe quel déplacement du systéeme qui respecte la contrainte.

— Une force de frottement cinétique est toujours de direction opposée a la vitesse de son
point d’application par rapport au corps qui exerce le frottement.

— Une force de frottement statique est toujours opposée a la direction dans laquelle son
point d’application bougerait sans elle par rapport au corps qui exerce le frottement.

— Une force exercée par un fil souple a son point d’attache au systéme est toujours dans
la direction de l'autre point d’attache, le long du fil, a condition que le fil soit tendu
(sinon la force est nulle).

— Une force exercée par une tige rigide a son point d’attache au systéme peut avoir une
direction quelconque.



— Une force gravifique est toujours dans la direction du corps extérieur au systéme qui
exerce cette force.

— Le support de la force d’un ressort élastique est donné par la droite qui lie les deux
extrémités du ressort ; la direction de cette force de rappel est opposée a I'allongement
du ressort (elle a donc pour intention de ramener le ressort a sa longueur a vide, ou la
force est nulle).

4.4 Représentation des forces extérieures sur un dessin

Il est bien évidemment possible de compléter le dessin commencé a I'étape 2, mais il est
parfois préférable de refaire un dessin. Pour le cas d’un ensemble de forces non-coplanaires, la
visualisation en trois dimensions peut présenter des difficultés. Il peut alors étre utile de faire
également des dessins en plusieurs projections, généralement sur des plans perpendiculaires a
certaines forces ou contenant certaines forces.

Une force perpendiculaire au plan du dessin se représente par le symbole

® si la force sort du dessin (c’est-a-dire pointe en direction du lecteur), ou

® si la force entre dans le dessin (c’est-a-dire pointe dans la direction opposée au lecteur).
On peut facilement mémoriser cette convention en considérant un vecteur comme une fléchette
avec sa pointe vue par 'avant (®) ou son empennage vu par l'arriére (®).

Un dessin correct doit contenir toutes les forces extérieures appliquées a un seul systéme,
avec leurs directions et leurs points d’application. Dans la mesure du possible les normes
relatives des forces doivent étre telles que la résultante de toutes les forces soit réaliste (par
exemple, résultante nulle pour un systéme a 1’équilibre, ou résultante centripéte pour un
mouvement circulaire uniforme, ... ). Il est recommandé de définir une notation pour les forces
qui ne sont pas déja explicitement baptisées dans I'énoncé et d’utiliser ces notations sur le
dessin.

Il se peut qu’une force soit une inconnue du probléme, en particulier sa direction ou cer-
taines de ses composantes peuvent étre inconnues. Dans ce cas on représente quand méme la
force sur le dessin en choisissant arbitrairement les composantes inconnues. Quand on projet-
tera ces forces (voir étape 7), on prendra garde de considérer que ces composantes (y compris
leurs signes) sont des inconnues.

5 Lister les lois applicables; choisir une stratégie de réso-
lution

5.1 Les lois fondamentales de la dynamique

Un systéme mécanique obéit toujours aux lois fondamentales de la dynamique, c’est-a-dire
au théoréme du centre de masse et au théoréme du moment cinétique (a condition d’inclure les
forces d’inertie quand elles existent). Lorsque le systéme est formé d’un unique point matériel,
le théoréme du centre de masse est simplement la deuxiéme loi de Newton, et le théoréme du
moment cinétique, bien que valable, n’apporte rien de plus que la deuxiéme loi de Newton
(car toutes les forces ont le méme point d’application).

Ces lois sont vectorielles et elles seront initialement écrites sous cette forme. A I'étape 7 elles
donneront, aprés projection sur les trois axes d’un repére, 6 équations différentielles dans le
cas d’'un systéme de points matériels (ou seulement 3 équations différentielles dans le cas d'un



point matériel). Ces équations peuvent étre résolues (en tout cas en théorie) pour déterminer
les mouvements possibles du systéme ainsi que les forces de liaison inconnues. Cette résolution
implique 'intégration d’équations différentielles de deuxiéme ordre (au moins).

5.2 Les lois de conservation

Dans certains cas, il est possible d’identifier des intégrales premiéres du mouvement, c¢’est-a-
dire des formes déja intégrées (une fois) des équations du mouvement. Ces intégrales premiéres
prennent la forme Q(t) = @y, ou Q(¢) une quantité conservée et )y une constante d’intégration
déterminée par les conditions initiales. Les intégrales premiéres expriment donc des lois de
conservation. Si des lois de conservation existent pour un systéme donné, il est important de
le savoir, car la résolution du probléme peut souvent étre accélérée par 'application de ces
lois.

Pour chaque systéme, on déterminera lesquelles des lois de conservation suivantes sont
applicables.

— Si la résultante des forces extérieures n’a pas de composante selon une certaine direction

i, la composante u de la quantité de mouvement totale est conservée.

— Si la résultante des moments des forces extérieures par rapport a un certain point O
n’a pas de composante selon une certaine direction u, la composante u du moment
cinétique total par rapport & O est conservée.

— Si chacune des forces extérieures et intérieures est conservative (ou bien ne travaille pas,
ou bien compense le travail d’une autre force), I’énergie mécanique totale est conservée ;
son expression doit contenir I’énergie potentielle dont dérive chaque force conservative.

En particulier :

— Si le systéme ne subit aucune force extérieure (systéme isol¢), les trois composantes de
la quantité de mouvement totale et les trois composantes du moment cinétique total,
par rapport a n’importe quel point du référentiel, sont conservées.

— Si le systéme ne subit que des forces extérieures centrales de méme centre O, les trois
composantes du moment cinétique total par rapport a O sont conservées.

5.3 Le théoréme de I’énergie

Si I’énergie mécanique n’est pas conservée, on peut penser de fagon plus générale & utiliser le
théoréme de I’énergie, ou bien le théoréme de I’énergie cinétique. Ces théorémes sont toujours
applicables, mais nécessitent le calcul de travaux de forces extérieures et intérieures. Le reste
de ce document n’y fait plus explicitement référence, mais il est clair qu’ils peuvent étre utilisés
au méme titre que la loi de conservation de I’énergie (qui est un cas particulier du théoréme
de Iénergie).

5.4 Choix des lois a utiliser

Si aucune loi de conservation n’est applicable, on utilisera les lois de la dynamique.

Si des lois de conservation sont applicables, il est en principe utile d’en faire usage. Mais ces
lois de conservation ne fournissent pas toujours toutes les équations nécessaires a la résolution
du probléme. On peut bien sir décider d’ignorer les lois de conservation et utiliser uniquement
les lois de la dynamique.

De facon générale, les lois de conservation sont



— utiles lorsque 1’énoncé demande de déterminer une position, une vitesse, une vitesse

angulaire, une quantité de mouvement, un moment cinétique ;

— inutiles lorsque ’énoncé demande de déterminer un temps, une pulsation, ou bien une

force de liaison inconnue.
Dans ce dernier cas, il faut utiliser les lois de la dynamique.

Le théoréme du moment cinétique est valable par rapport a n’importe quel point de ré-
férence pour le calcul des moments de force et du moment cinétique total. Si on décide de
résoudre le probléme en utilisant ce théoréme, il faut alors aussi choisir un point de référence
(en effet, appliquer le théoréme du moment cinétique plusieurs fois en changeant de point de
référence n’apporte rien de plus). Ce choix donne une possibilité intéressante : celle d’annuler
le moment de certaines forces, ce qui est particulierement utile dans le cas de forces inconnues.
Il est fortement recommandé d’utiliser un point de vitesse nulle ou bien le centre de masse
du systéme (sinon, le théoréme du moment cinétique prend une forme plus compliquée que

SO M; = dL/dt).

6 Choisir les variables de position (= coordonnées)

6.1 Variables déterminant la position des systémes

Un ensemble de variables doit étre choisi de telle sorte que les valeurs de ces variables a un
certain temps ¢ définissent sans ambiguité la position de chacun des points matériels de chacun
des systémes. Pour un solide, ces variables doivent définir & la fois la position du centre de
masse et I’orientation du solide autour de son centre de masse. Ces variables sont aussi appelées
“coordonnées”. Il peut s’agir de coordonnées usuelles, telles que coordonnées cartésiennes,
cylindriques ou sphériques, ou de coordonnées curvilignes absolument quelconques.

Un bon choix de variables tient souvent compte des contraintes auxquelles sont soumis les
systémes, en simplifiant 1’expression de ces contraintes (voir point suivant). Par exemple, si
un point matériel est contraint a rester

— sur un cylindre de rayon R, on utilisera les coordonnées cylindriques (p, ¢, z) avec

p <t> =R,
— sur une sphére de rayon R, on utilisera les coordonnées sphériques (r, 6, ¢) avec r(t) =
R,

— sur un cone de révolution de demi-angle d’ouverture «, on utilisera les coordonnées
sphériques (r, 0, ¢) avec 0(t) = «,

— sur un plan, on utilisera les coordonnées cartésiennes (x, y, z) ou cylindriques (p, ¢, z),
ou I'axe z est perpendiculaire au plan, avec z(t) = 2y,

— sur un cercle de rayon R, on utilisera les coordonnées cylindriques (p, ¢, z), ou 'axe z est
perpendiculaire au plan du cercle, avec z(t) = 2z et p(t) = R, ou bien les coordonnées
sphériques (r, 6, ¢) avec 0(t) = arctan(R/zg) et r(t) = \/R? + 22,

— sur le parcours d'un grand huit, on utilisera la coordonnée curviligne s définie comme
la distance parcourue depuis le point de départ.

6.2 Contraintes dues aux forces de liaison

Les forces de liaison donnent lieu & des conditions sur les variables de position et/ou leur
dérivées par rapport au temps. Ces conditions permettent, le cas échéant, de supprimer des



variables inutiles (cas d’une variable constante, ou bien d'une variable qui dépend d’une autre).
Par exemple, les positions de deux corps reliés par un fil tendu, passant éventuellement par
des poulies, ne sont pas indépendantes. Un autre exemple plus compliqué est une roue verti-
cale roulant sur un plan horizontal, dont les coordonnées de position et d’orientation doivent
satisfaire des conditions imposées par le non-glissement de la roue. Il peut étre avantageux
(parfois méme inévitable) de garder des variables qui ne sont pas indépendantes, mais il faut
alors tenir compte de leurs relations lors de la résolution du probléme. Lorsqu’on a un jeu de
variables (non constantes) toutes indépendantes les unes des autres, le nombre de ces variables
est égal au nombre de degrés de liberté de ’ensemble des systémes définis.

7 Ecrire les équations du mouvement ; les résoudre

7.1 Choix de repéres

On va partir des lois choisies a 'étape 5.4. S’il y a des lois vectorielles parmi elles, il va
falloir faire des projections sur les trois axes d’un repére. Ce repére doit étre spécifié. On peut
a priori utiliser des repéres différents pour les projections de chaque loi vectorielle appliquée
a chaque systéme. On donnera la préférence a un repére associé aux coordonnées utilisées
(variables de position), mais ceci n’est pas une obligation.

Dans le cas d’un solide, il est beaucoup plus simple de travailler avec un repére d’inertie,
c’est-a-dire un repére dont les axes sont des axes principaux d’inertie du solide (attention : ne
pas confondre repére d’inertie avec référentiel d’inertie).

Dans tous les cas, il est fortement recommandé de travailler avec des repéres orthonormés
droits et de les représenter sur les dessins.

7.2 Expression des grandeurs physiques apparaissant dans les lois en
fonction des variables choisies

On exprimera les grandeurs apparaissant dans les lois de la dynamique ou les lois de conser-
vation en fonction des variables choisies ainsi que de leurs dérivées par rapport au temps. Ces
grandeurs physiques sont des forces, des moments de force, des quantités de mouvement, des
moments cinétiques, des énergies cinétiques, et des énergies potentielles. Les quantités ciné-
matiques telles que vitesses et accélérations (linéaires ou angulaires) dépendent évidemment
aussi des variables et de leurs dérivées et servent a calculer les grandeurs physiques. Pour les
grandeurs vectorielles, on prendra soin d’exprimer chacune des trois composantes sur les axes
du repére choisi.

Pour chaque loi de conservation, on déterminera aussi la valeur initiale de la quantité
conservée a l'aide des conditions initiales sur les variables de position et leurs dérivées tempo-
relles.

7.3 Obtention du systéme d’équations

On écrira toutes les équations du mouvement, par projection des lois fondamentales de la
dynamique ou applications des lois de conservation sur tous les systémes définis. Si toutes les
quantités physiques ont été exprimées en fonction des variables de position et de leurs dérivées
par rapport au temps, on doit obtenir un ensemble d’équation différentielles ou les fonctions



inconnues du temps sont les variables de position et des forces de liaison. On vérifiera qu’il y
a suffisamment d’équations pour les inconnues & déterminer.

La résolution des équations du mouvement n’est pas toujours demandée. Il est tres utile
de savoir reconnaitre les équations différentielles du mouvement uniformément accéléré et du
mouvement oscillatoire harmonique, et tout aussi utile de connaitre par coeur leurs solutions.

Rappel : les équations différentielles données par les lois de la dynamique ont une infinité
de solutions, qui différent par les valeurs de constantes d’intégration. Ces valeurs peuvent étre
déterminées a 1’aide de conditions initiales.

8 Vérifier la(les) solution(s) (dimension et cas limites)

Une fois le probléme résolu, il est utile de procéder & un certain nombre de vérifications sur
la solution obtenue. Cette étape est trés importante, car elle permet souvent de détecter les
erreurs (lorsqu’il y en a). La plupart des vérifications ne peuvent pas étre faites si le résultat
est numérique. Il est donc essentiel de résoudre le probléme jusqu’au bout de fagon littérale, et
de ne passer aux applications numériques (lorsqu’elles sont demandées) qu’aprés avoir vérifié
la solution littérale.

8.1 Vérifications élémentaires

— La solution répond-elle précisément aux questions posées dans I’énoncé ?

— La solution est-elle exprimée de facon littérale, uniquement en fonction des quantités
données dans 1'énoncé ? Si non, il se peut que la résolution ne soit par terminée (par
exemple substitutions manquantes).

8.2 Vérifications mathématiques

Si la solution contient des fonctions définies seulement sur une partie de ’ensemble des
nombres réels, il convient de porter une attention particuliére a leurs arguments. Par exemple :

— L’argument d’une racine carrée est-il positif (ou nul) ?

— L’argument d’un logarithme est-il positif ?

— L’argument de la fonction arcsin ou arccos est-il compris entre —1 et +17

— Le dénominateur d’une fraction est-il non nul ?

Si ce n’est pas le cas, il se peut que la solution soit correcte mais n’existe que pour certaines
valeurs des parameétres du probléme, ou bien que la solution soit incorrecte. Par exemple, des
expressions du type y/a? cos(3m) ou arccos(In(1/2 — a?) — 1) ne font pas de sens.

Si la solution n’existe que pour certaines valeurs des paramétres, il est trés intéressant
d’expliciter ces valeurs et de discuter la solution en fonction des paramétres. Ceci peut étre
fait méme si I’énoncé ne le demande pas. On gagne souvent une meilleure compréhension
physique du probléme aprés avoir fait une telle discussion.

8.3 Vérifications dimensionnelles

Il est important de vérifier que toute expression apparaissant dans la solution soit cohérente
du point de vue des dimensions (c’est-a-dire des unités). En réalité, cette cohérence doit
étre maintenue au cours de toute la résolution, et les tests proposés ci-dessous peuvent étre
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appliqués a tout résultat intermédiaire. Si la solution finale n’est pas cohérente du point de vue
des dimensions, on peut vérifier chaque étape intermédiaire et trouver a quel moment I’erreur
est survenue. Les régles de cohérence dimensionnelle sont les suivantes :

— deux expressions égalées, additionnées ou soustraites doivent avoir la méme dimension

(c’est-a~dire les méme unités) ;

— une expression apparaissant comme un exposant doit étre sans dimension (sans unité) ;

— une expression utilisée comme argument d’une fonction mathématique (par exemple,

sin, cos, tan, exp, log, ...) doit étre sans dimension (sans unité).

Note : le “radian” n’est pas une unité comme les autres, dans le sens oul il n’est pas une
unité proprement dite; en effet, les angles (exprimés en radians) sont sans dimension.

Un excellent réflexe est de systématiquement procéder & une simplification de la solu-
tion du point de vue dimensionnel, c¢’est-a-dire une réécriture de la solution en fonction de
sous-expressions sans dimension. Ceci rend la dimensionnalité de ’expression beaucoup plus
explicite, ce qui simplifie les vérifications ainsi que la discussion de la solution. Par exemple,
une expression du type v/ R? — vZt2/\/R{ + Rj, ot R; et Ry sont des longueurs, vy une vitesse
et to un temps, est beaucoup plus lisible (du point de vue des dimensions) si on la réécrit
comme (1/R1)\/1 — (Ugto/Rl)Q/\/l + (RQ/R1>4.

8.4 Cas limites

Il arrive souvent qu’on ait une intuition de la solution (ou que celle-ci devienne tout a fait
évidente) lorsque le probléme est simplifié en considérant des “cas limites” correspondant a des
valeurs particuliéres de certains parameétres. En pratique

— on peut essayer de faire tendre chaque paramétre vers zéro ou vers l'infini, et vérifier

que, dans cette limite, la solution se réduise bien a ce qu’'on attend (par exemple,
on peut faire tendre la constante élastique k d’un ressort vers zéro pour “enlever” ce
ressort ; on peut aussi faire tendre g vers zéro pour éliminer la pesanteur, un coefficient
de frottement vers zéro pour éliminer le frottement, ou un rayon de courbure vers 'infini
pour obtenir une surface place, etc.) ;

— si deux paramétres ont la méme dimension, on peut considérer le cas limite ot ces deux

parameétres sont égaux (par exemple poser que deux masses m; et mgy sont égales, etc.) ;

— l’expression mathématique de la solution peut également suggérer des cas limites a

vérifier, par exemple celui ot un terme additif s’annule, celui ot 'argument d’une
racine s’annule, etc.

9 Passer a ’application numérique

C’est seulement lorsque la solution algébrique a été validée, qu’il est opportun d’effectuer
les applications numériques demandées.

On donnera les résultats numériques avec un nombre de chiffres significatifs raisonnable.
Suivant les cas, un ordre de grandeur suffira. Dans cette perspective, on pourra arrondir des
données, par exemple utiliser g = 10 ms—2 au lieu de ¢ = 9.81 ms2.

Dans la mesure du possible, on vérifiera I'ordre de grandeur de la solution en utilisant son
sens commun et des comparaisons en termes de poids, de longueur, et de vitesse des objets
courants. Un pois chiche de 20 kg ou une voiture roulant & 1000 km/h sont des indices qu’il

y a probablement une erreur quelque part.
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