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Corrigé 12bis : Exercice résolu en classe : Référentiels accélérés et
Forces d’inertie

Exercice 1: Voyage et variations de poids
(a) Alors qu’il voyage en train à grande vitesse entre Portland (Oregon) et Montreal (Quebec) où

il habite, le jeune F.P. décide de se peser sur une balance de précision. Il constate que le poids
indiqué par la balance n’est pas la valeur habituelle. Pourquoi ? Si son poids habituel, mesuré
à Montréal est de 75 kg, quelle est la différence mesurée dans le train ? Quelle serait-elle si il
faisait le voyage dans l’autre sens ? Et qu’en serait-il si il était dans l’hémisphère sud ?

(b) Après être rentré chez lui et avoir vérifié que son poids habituel n’a pas varié, il prend l’avion et
se rend à Singapour. Au repos dans sa chambre d’hôtel, il se pèse encore une fois et constate
de nouveau qu’il y a une différence avec le poids indiqué à Montréal. Pourquoi ? Calculer la
différence.
Indications : Placez-vous en coordonnées sphériques et évaluez les différentes forces d’inertie
Application numérique :
Masse de F.P. : 70 kg
Latitude de Portand et Montréal : 45 degrés
Latitude de Singapour : 0 degré
Vitesse du train : 300 km/h

(a) On rappelle d’abord l’expression de la position, de la vitesse et de l’accélération en coor-
données sphériques :

−−→
OP = rˆ⃗er

v⃗ = ṙ ˆ⃗er + rθ̇ ˆ⃗eθ + rϕ̇ sin θ ˆ⃗eϕ

a⃗ =
(
r̈ − rθ̇2 − rϕ̇2 sin2 θ

)
ˆ⃗er

+
(
rθ̈ + 2ṙθ̇ − rϕ̇2 cos θ sin θ

)
ˆ⃗eθ

+
(
rϕ̈ sin θ + 2rϕ̇θ̇ cos θ + 2ṙϕ̇ sin θ

)
ˆ⃗eϕ

(1)

Les mouvements que nous allons considérer seront circulaires uniformes, sur un parallèle
de la terre. Ces mouvement sont prescrits :

r = RT = cste
θ = θ0 = cste
ϕ̇ = ω = cste

(2)
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où ω prendra des valeurs différentes suivant le référentiel considéré. Le système n’a donc
aucun degré de liberté, ce qui se traduit par trois forces de contraintes N⃗r, N⃗θ, N⃗ϕ le long
des axes principaux.
Avec les contraintes, l’accélération se réduit à :

a⃗ =
(
−RT ω2 sin2 θ0

)
ˆ⃗er +

(
−RT ω2 sin θ0 cos θ0

)
ˆ⃗eθ (3)

et on constate qu’elle est bien dans un plan horizontal et dirigée vers l’axe de rotation de
la Terre.
La variation de poids (minime) constatée par F.P. est due au fait qu’il mesure son poids
dans un référentiel non-inertiel, étant donné la rotation de la Terre sur elle-même. Ceci
étant, la balance ne sait pas par rapport à quel référentiel les calculs sont effectués, ce
qui signifie que nous devons trouver le même résultat quel que soit le référentiel que nous
considérons. Pour le montrer, nous allons effectuer les calculs dans 4 référentiels différents :

1. Le référentiel géocentrique, noté R, où les 4 point fixes sont le centre de la terre (O) et
trois étoiles lointaines. Nous allons faire l’hypothèse que ce référentiel est inertiel.

2. Le référentiel terrestre, noté R′ est décrit par le centre de la terre (A = O) , le pôle
nord, et les deux points de l’équateur ayant pour longitude 0 et 90 degrés

3. Un référentiel, hybride entre la Terre et le train, R′′, défini par le centre de la Terre,
le pôle Nord, le point de l’équateur correspondant à la longitude du train et celui
correspondant à la longitude du train additionnée de 90 degrés

4. Le référentiel du train, R′′′, défini par 4 points fixes du train.
Pour pouvoir appliquer la seconde loi de Newton malgré le caractère non-inertiel du réfé-
rentiel terrestre, il faut ajouter des forces fictives qui s’écrivent

F⃗ inertie = −m a⃗a(A) − 2m
(
Ω⃗ × v⃗r(P )

)
− m

(
Ω⃗ ×

(
Ω⃗ ×

−→
AP

))
− m

(
˙⃗Ω ×

−→
AP

)
(4)

En introduisant la vitesse angulaire de rotation de la terre ΩT et celle du train mesurée par
rapport à la terre Ωt, on peut identifier les forces qui jouent un rôle en fonction du référentiel
considéré. Comme le mouvement est prescrit, toutes les grandeurs qui interviennent dans
la détermination des forces d’inertie sont connues. Elles sont listées dans la table ci-dessous
pour les quatre référentiels (NA = Not Applicable).

Grandeur R R′ R′′ R′′′

Rotation du réf.
p.r. R : Ω 0 ΩT ΩT + Ωt ΩT + Ωt

Translation du réf.
p.r. R : a⃗a(A) 0 0 0 MCU ΩT + Ωt

Mvt du train ω MCU ΩT + Ωt MCU Ωt pas de mvt. pas de mvt.
Vitesse relative

v⃗r(P ) RT sin θ0(ΩT + Ωt)ˆ⃗eϕ RT sin θ0Ωt ˆ⃗eϕ 0 0

Position relative
−→
AP

RT
ˆ⃗er RT

ˆ⃗er RT
ˆ⃗er 0

Coriolis NA oui non non
Centrifuge NA oui oui non

Entraînement.
a⃗a(A) NA non non oui
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On peut ensuite calculer les forces d’inertie dans chacun des référentiels. Pour la force de
Coriolis on utilise les formules

(Ω⃗× v⃗r(P )) = (Ω⃗×vr
ˆ⃗eϕ) =

∣∣∣∣∣∣∣
ˆ⃗er

ˆ⃗eθ
ˆ⃗eϕ

Ω cos θ0 −Ω sin θ0 0
0 0 vr

∣∣∣∣∣∣∣ = (−Ω sin θ0 vr) ˆ⃗er +(−Ω cos θ0 vr) ˆ⃗eθ

(5)
où les grandeurs Ω et vr prennent les valeurs correspondant respectivement à chaque réfé-
rentiel, et on a donc

F⃗Coriolis = (2m Ω sin θ0 vr) ˆ⃗er + (2m Ω cos θ0) vr
ˆ⃗eθ (6)

Le terme de force centrifuge est :

F⃗centrifuge = −m
(
Ω⃗ × (Ω⃗ ×

−→
AP )

)
(7)

avec
Ω⃗ = Ω cos θ0 ˆ⃗er − Ω sin θ0 ˆ⃗eθ (8)

et −→
AP = |

−→
AP | ˆ⃗er = RT

ˆ⃗er (ou 0 dans le référentiel R′′′) (9)

On a donc :

(Ω⃗ ×
−→
AP ) =

∣∣∣∣∣∣∣
ˆ⃗er

ˆ⃗eθ
ˆ⃗eϕ

Ω cos θ0 −Ω sin θ0 0
|
−→
AP | 0 0

∣∣∣∣∣∣∣ =

 0
0

|
−→
AP | Ω sin θ0

 (10)

et

−m
(
Ω⃗ × (Ω⃗ ×

−→
AP )

)
= −m

∣∣∣∣∣∣∣
ˆ⃗er

ˆ⃗eθ
ˆ⃗eϕ

Ω cos θ −Ω sin θ 0
0 0 |

−→
AP | Ω sin θ

∣∣∣∣∣∣∣ =

 m |
−→
AP | Ω2 sin2 θ0

m |
−→
AP | Ω2 cos θ0 sin θ0

0


(11)

La force d’inertie due à la translation du référentiel relatif est non-nulle dans le seul cas du
référentiel du train R′′′. Ce dernier a un mouvement circulaire uniforme de vitesse angulaire
ω = ΩT +Ωt et de rayon RT sin θ0 par rapport au référentiel géocentrique. La force d’inertie
correspondante peut donc être déterminée à partir de 3.

Les deux tables ci-dessous résument les différentes forces d’inertie mesurées dans les réfé-
rentiels d’intérêt.

Référentiel −2m
(
Ω⃗ × v⃗r(P )

)
−m

(
Ω⃗ ×

(
Ω⃗ ×

−→
AP

))
R NA NA

R′
(
2mRT sin2 θ0ΩTΩt

) ˆ⃗er +
(2mRT sin θ0 cos θ0ΩTΩt) ˆ⃗eθ

(
mRT sin2 θ0Ω2

T
) ˆ⃗er +(

mRT sin θ0 cos θ0Ω2
T

) ˆ⃗eθ

R′′ 0
(
mRT (ΩT + Ωt)2 sin2 θ0

) ˆ⃗er+(
mRT (ΩT + Ωt)2 sin θ0 cos θ0

) ˆ⃗eθ

R′′′ 0 0
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Référentiel −m a⃗a(A)
R NA
R′ 0
R′′ 0

R′′′
(
mRT (ΩT + Ωt)2 sin2 θ0

) ˆ⃗er+(
mRT (ΩT + Ωt)2 sin θ0 cos θ0

) ˆ⃗eθ

Il reste finalement à écrire les équations de Newton dans les 4 référentiels respectifs, en se
concentrant sur la composante en ˆ⃗er pour déterminer la contrainte Nr qui nous intéresse
plus particulièrement. Les forces physiques sont le poids du train mg⃗ et les trois contraintes
Nr, Nθ et Nϕ. De plus, le mouvement dans chaque référentiel est circulaire uniforme ou
nul.

Dans le référentiel d’inertie R : (ω = ΩT + Ωt, Ω = 0, −→
AP = RT

ˆ⃗er )

Selon ˆ⃗er : −mRT (ΩT + Ωt)2 sin2 θ0 = −mg + Nr

Selon ˆ⃗eθ : −mRT (ΩT + Ωt)2 sin θ0 cos θ0 = Nθ

Selon ˆ⃗eϕ : 0 = Nϕ

(12)

d’où on tire immédiatement :

Nr = mg − mRT (ΩT + Ωt)2 sin2 θ0 (13)

Dans le référentiel de la Terre R′ : (ω = Ωt, Ω = Ωt,
−→
AP = RT

ˆ⃗er)

Selon ˆ⃗er : −mRT Ω2
t sin2 θ0 = −mg + Nr + 2mRT sin2 θ0ΩTΩt︸ ︷︷ ︸

Coriolis

+ mRT sin2 θ0Ω2
T︸ ︷︷ ︸

centrifuge
Selon ˆ⃗eθ : −mRT Ω2

t sin θ0 cos θ0 = Nθ + 2mRT sin θ0 cos θ0ΩTΩt︸ ︷︷ ︸
Coriolis

+ mRT sin θ0 cos θ0Ω2
T︸ ︷︷ ︸

centrifuge
(14)

d’où on tire également :

Nr = mg − mRT (ΩT + Ωt)2 sin2 θ0 (15)

Dans le référentiel hybride Terre-train R′′ : (ω = 0, Ω = ΩT + Ωt,
−→
AP = RT

ˆ⃗er)

Selon ˆ⃗er : 0 = −mg + Nr + mRT (ΩT + Ωt)2 sin2 θ0︸ ︷︷ ︸
Force centrifuge

Selon ˆ⃗eθ : 0 = Nθ + mRT (ΩT + Ωt)2 sin θ0 cos θ0︸ ︷︷ ︸
Force centrifuge

(16)

d’où l’on tire encore
Nr = mg − mRT (ΩT + Ωt)2 sin2 θ0 (17)
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Dans le référentiel du train R′′′ : (ω = 0, Ω = ΩT + Ωt,
−→
AP = 0)

Selon ˆ⃗er : 0 = −mg + Nr + mRT (ΩT + Ωt)2 sin2 θ0︸ ︷︷ ︸
Force d’entraînement

Selon ˆ⃗eθ : 0 = Nθ + mRT (ΩT + Ωt)2 sin θ0 cos θ0︸ ︷︷ ︸
Force d’entraînement

(18)

d’où l’on tire encore et toujours

Nr = mg − mRT (ΩT + Ωt)2 sin2 θ0 (19)

On a donc montré que le résultat est indépendant du choix du référentiel. Il faut préciser
que ce résultat est valable dans la limite non-relativiste, c’est-à-dire pour des vitesses qui
sont très petites devant la vitesse de la lumière.
On constate également que la fonction 13 est paire par rapport θ0 = π/2, ce qui signifie
que la tendance serait identique dans l’hémisphère Sud.

(b) Si F.P. se pèse chez lui ou dans sa chambre d’hôtel au niveau de l’équateur, sa vitesse
relative, et donc la force de Coriolis qu’il ressent, est nulle. C’est donc la variation de la
force centrifuge qui sera responsable de sa variation de poids apparent.
L’effet de la force centrifuge est donc de modifier non-seulement le poids apparent à travers
la composante en ˆ⃗er , mais également la direction de la gravité apparente à travers la
composante en ˆ⃗eθ. Dans l’application numérique ci-dessous, on fait l’hypothèse que le poids
indiqué par la balance est uniquement sensible à la composante en ˆ⃗er.

Application numérique :
m = 75[kg], RT = 6.4 · 106[m], ΩT = 2π/86400 = 7.2722 · 10−5[rad/s], θ0 = π/4, Ωt =
vtrain/(RT sin θ0) = 1.8414 · 10−5[rad/s].
Dans l’application numérique on indique Nr/g pour m = 75[kg].

1. Poids indiqué par la balance au pôle Nord : 75.000 [kg]
2. Poids à Montréal : 74.871 [kg]
3. Poids dans le train Portland-Montréal : 74.797 [kg] (différence par rapport à Montréal :

-74 grammes)
4. Poids dans le train Montréal-Portland : 74.928 [kg] (différence par rapport à Montréal :

+57 grammes)
5. Poids à Singapour : 74.741 [kg] (différence par rapport à Montréal : -130 grammes)
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