

Neural Networks and Biological Modeling

Professor Wulfram Gerstner
Laboratory of Computational Neuroscience

ANSWERS TO QUESTION SET 11

Exercise 1: Stochastic input

1.1 The expression for $u(t)$ was given by

$$u(t) = u_{\text{rest}} + \frac{R}{\tau_m} \int_0^t e^{-s/\tau_m} I(t-s) ds. \quad (1)$$

Taking the average of Eq.(1) over multiple repetitions or over a population of neurons, we obtain

$$\begin{aligned} \langle u(t) \rangle &= u_{\text{rest}} + \frac{R}{\tau_m} \int_0^t e^{-s/\tau_m} \underbrace{\langle I(t) \rangle}_{=I_0} ds \\ &= u_{\text{rest}} + RI_0[1 - e^{-t/\tau_m}]. \end{aligned}$$

1.2 Using $(RI(t) - R\langle I(t) \rangle) = \xi(t)$ and $\langle \xi(t)\xi(t') \rangle = \tau_m a^2 \delta(t - t')$.

$$\begin{aligned} \langle [u(t) - \langle u(t) \rangle]^2 \rangle &= \left\langle \left[\frac{1}{\tau_m} \int_0^t e^{-s/\tau_m} \xi(s) ds \right]^2 \right\rangle \\ &= \frac{1}{\tau_m^2} \int_0^t \int_0^t e^{-(s+s')/\tau_m} \langle \xi(s)\xi(s') \rangle ds ds' \\ &= \frac{a^2}{\tau_m} \int_0^t \int_0^t e^{-(s+s')/\tau_m} \delta(s - s') ds ds' \\ &= \frac{a^2}{\tau_m} \int_0^t e^{-2s/\tau_m} ds \\ &= \frac{a^2}{2} \left(1 - e^{-2t/\tau_m} \right). \end{aligned}$$

Exercise 2: Diffusive noise (stochastic spike arrival)

2.1 The expression for $u(t)$ was given by

$$u(t) = u_{\text{rest}} + \frac{qR}{\tau} \int_0^t e^{-s/\tau} S(t-s) ds. \quad (2)$$

Taking the average of Eq.(2) over multiple repetitions or over a population of neurons, we obtain

$$\langle u(t) \rangle = u_{\text{rest}} + \frac{q}{C} \int_0^t e^{-s/\tau} \underbrace{\langle S(t-s) \rangle}_{=\nu} ds \quad (3)$$

$$= u_{\text{rest}} + \frac{q\tau\nu}{C} [1 - e^{-t/\tau}]. \quad (4)$$

2.2 Using $\langle S(t) \rangle = \nu$, $\tau = RC$ and $\langle S(t)S(t') \rangle = \nu\delta(t-t') + \nu^2$.

$$\begin{aligned}\langle u(t)u(t) \rangle &= u_{\text{rest}}^2 + \frac{2qu_{\text{rest}}}{C} \int_0^t e^{-s/\tau} \langle S(t-s) \rangle ds + \frac{q^2}{C^2} \int_0^t \int_0^t e^{-s/\tau} e^{-s'/\tau} \langle S(t-s)S(t-s') \rangle ds ds' \\ &= u_{\text{rest}}^2 + \frac{2u_{\text{rest}}q\tau\nu}{C} [1 - e^{-t/\tau}] + \frac{q^2\tau\nu}{2C^2} [1 - e^{-2t/\tau}] + \frac{q^2\tau^2\nu^2}{C^2} [1 - e^{-t/\tau}]^2. \\ &= \left(u_{\text{rest}} + \frac{q\tau\nu}{C} [1 - e^{-t/\tau}] \right)^2 + \frac{q^2\tau\nu}{2C^2} [1 - e^{-2t/\tau}]\end{aligned}$$

note that the units are consistent since q/C have units of voltage and $\tau\nu$ has no units.

2.3 It is easy to obtain the variance from the previous two questions:

$$\langle u(t)^2 \rangle - \langle u(t) \rangle^2 = \frac{\nu q^2 R^2}{2\tau} [1 - e^{-2t/\tau}].$$

2.4 Same technique as previous problem, but we replace the upper bound of the integral by ∞ .

$$\begin{aligned}\langle u(t)u(t') \rangle &= u_{\text{rest}}^2 + \frac{2qu_{\text{rest}}}{C} \int_0^\infty e^{-s/\tau} \langle S(t-s) \rangle ds + \frac{q^2}{C^2} \int_0^\infty \int_0^\infty e^{-s/\tau} e^{-s'/\tau} \langle S(t-s)S(t-s') \rangle ds ds' \\ &= u_{\text{rest}}^2 + \frac{2u_{\text{rest}}q\tau\nu}{C} + \frac{q^2\tau\nu}{2C^2} e^{(t-t')/\tau} + \frac{q^2\tau^2\nu^2}{C^2}. \\ &= \left(u_{\text{rest}} + \frac{q\tau\nu}{C} \right)^2 + \frac{\tau\nu q^2}{2C^2} e^{(t-t')/\tau} \quad , \text{ for } t' > t .\end{aligned}$$

For the general case the autocorrelation is:

$$\langle u(t)u(t') \rangle = \left(u_{\text{rest}} + \frac{q\tau\nu}{C} \right)^2 + \frac{\tau\nu q^2}{2C^2} e^{|t-t'|/\tau}.$$

2.5 We have $S(t) = w_1S_1(t) + w_2S_2(t)$, $\langle S_1 \rangle = \nu_1$, $\langle S_2 \rangle = \nu_2$, $\langle S_1(t)S_2(t') \rangle = \nu_1\nu_2$, $\langle S_1(t)S_1(t') \rangle = \nu_1\delta(t-t') + \nu_1^2$ and $\langle S_2(t)S_2(t') \rangle = \nu_2\delta(t-t') + \nu_2^2$.

The mean and the autocorrelation in the steady state regime ($t \rightarrow \infty$) will respectively be

$$\begin{aligned}\langle u(t) \rangle &= u_{\text{rest}} + \frac{q}{C} \int_0^\infty e^{-s/\tau} \underbrace{\langle w_1S_1(t-s) + w_2S_2(t-s) \rangle}_{=\nu_1+\nu_2} ds \\ &= u_{\text{rest}} + \frac{q\tau}{C} (w_1\nu_1 + w_2\nu_2),\end{aligned}$$

and

$$\langle u(t)u(t') \rangle = u_{\text{rest}}^2 + 2u_{\text{rest}} \frac{q\tau}{C} (w_1\nu_1 + w_2\nu_2) + \frac{q^2\tau^2}{C^2} (w_1\nu_1 + w_2\nu_2)^2 + \frac{q^2\tau}{2C^2} (w_1^2\nu_1 + w_2^2\nu_2) e^{-|(t-t')/\tau|}.$$

2.6 In this case, we have $\nu_1 = \nu_2 = \nu$ and $\langle S_1(t)S_1(t') \rangle = \langle S_2(t)S_2(t') \rangle = \langle S_1(t)S_2(t') \rangle = \nu\delta(t-t') + \nu^2$. We find

$$\langle u(t) \rangle = u_{\text{rest}} + \frac{q\tau}{C} (w_1 + w_2)\nu,$$

and

$$\langle u(t)u(t') \rangle = u_{\text{rest}}^2 + 2u_{\text{rest}} \frac{q\tau}{C} (w_1 + w_2)\nu + \frac{q^2\tau^2}{C^2} (w_1 + w_2)^2\nu^2 + \frac{q^2\tau}{2C^2} (w_1 + w_2)^2\nu e^{-|t-t'|/\tau}.$$

Note that the correlations between the two spike trains increase the autocorrelation of u since $(w_1 + w_2)^2 > w_1^2 + w_2^2$.

Exercise 3: Renewal process

Given an output spike at $t = \hat{t}$, the survivor function $S(t - \hat{t})$ is given by

$$S(t - \hat{t}) = \exp \left[- \int_{\hat{t}}^t \rho(t'|\hat{t}) dt' \right] = \exp \left[- \int_{\hat{t}}^t \rho(t' - \hat{t}) dt' \right] = \exp \left[- \int_0^{t - \hat{t}} \rho(s) ds \right].$$

where we made the variable change $s = t' - \hat{t}$.

The interspike interval distribution is $P(t - \hat{t}) = \rho(t - \hat{t})S(t - \hat{t})$. Thus we only need to calculate the integral of the hazard function $\rho(t - \hat{t})$. This gives

$$\int_0^{t - \hat{t}} \rho(s) ds = \begin{cases} \int_0^{t_{\text{abs}}} \rho(s) ds = 0 & \text{for } s < t_{\text{abs}} \\ \int_0^{t_{\text{abs}}} \rho(s) ds + \int_{t_{\text{abs}}}^{t - \hat{t}} \rho(s) ds = \frac{\rho_0}{4} (t - \hat{t} - t_{\text{abs}})^2 & \text{for } t_{\text{abs}} < s < t_{\text{abs}} + 2 \\ \int_0^{t_{\text{abs}}} \rho(s) ds + \int_{t_{\text{abs}}}^{t_{\text{abs}}+2} \rho(s) ds + \int_{t_{\text{abs}}+2}^{t - \hat{t}} \rho(s) ds = \rho_0 (-1 + t - \hat{t} - t_{\text{abs}}) & \text{for } t_{\text{abs}} + 2 < s. \end{cases}$$