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ANSWERS TO QUESTION SET 10

Exercise 1: Firing Statistics

Defining p(t,t') as the probability density of observing a spike a ¢t and a spike at ¢/, and p(¢|t') the
conditional probability intensity (it is not really a prob. density because it does not integrate to one) of
observing a spike at t given a spike at t’, we have:

(S@SE)) = p(t,t') = p(tt')p(t") (1)

The first equality comes from the definition of the expected value as the sum of all possible results weighted
by their probability to happen. The second equality is simply the expansion of the joint probability.

If t # ¢/, we know that p(¢|t') = p(t) and therefore:

(SMSE)) = Jim 713“(25;““/) =12

Otherwise, when t = t/, we have:

. Pag(t|t)Pac(t)
(SOS®) = tim, =57
Pa4(t|t) is the probability of spiking between t — £ and ¢ + 4! given a spike at t. Pas(t[t) = 1:

(S(#)S(t)) = Agglmlt = 0.

We can summarize the two cases by writing

(SHSH)) =v* +vd(t —t). (2)

Exercise 2: Poisson neuron

2.1 We present two methods to solve this problem.

Method 1: The probability that the neuron does not fire during a small time interval At is given by
S(At) = 1 — pAt. Since a Poisson process is independent of its past history, the probability that the
neuron does not fire during n such time intervals is the product of the probabilities for each time intervals,
ie.,

S(nAt) = (1 — pAt)™. (3)

Although this expression is correct for a discrete process, it has the drawback of being dependent on the
discretization time step At. Thus it is desirable to take the limit as At — 0. This can be done by setting
t = nAt and taking the limit as n — oo with ¢ fixed. Remembering the formula lim,, (1 + £)" = e?,
one concludes that

S(t) = lim (1 - pt)n =e . (4)

n—oQ n



Alternatively, one can use the identity

(1 — pAt)" =exp lz log (1 — pAt)| , (5)

i=1

and expand the logarithm as log(1 + z) = z + ..., which yields

S(t) = lim exp l ZpAt

n—oo 4
=1

s exp [ /0 t pdt} — capl—pf] . (6)

The latter calculation has the advantage that it also works for time dependent rates p = p(t), which is
less obvious from Eq.(4).

Method 2 A different way to obtain this result is to consider the variation of S(¢) during a small time
interval At. Because of independence, we have

S(t+ At) = S(t)S(At), (7)
where S(At) =1 — pAt by assumption. Rearranging. we obtain
S(t+ At) — S(t)

D=0 _ s, ()
which becomes as At — 0 p
450) = —pS(1), (9
the solution of which is indeed S(t) = e~ **.
2.2 Again, due to independence, we have
P(t,t + At) = P (fire for the first time in (¢,¢ + At)) = P (not fire until ¢) x P (fire in (¢,¢ + At))
= e "' x pAt. (10)

As At — 0, this probability vanishes; however, the probability density, defined by p(t)dt = P(t,t + dt),
has finite value,

P(t,t+ At
p(fire at t) = AliIBO % = pe ', (11)

2.3
(i) The interval distribution was calculated earlier, P(t) = pe~*t.

(ii) The probability to observe an interspike interval smaller than 20 ms is

20ms
P(ISI < 20ms) = / pe Pds = [—e*ps]iirgs =1—e 207, (12)
0

Due to independence, the probability of getting a burst of two such intervals is just the square of this
probability. Thus, for p = 2Hz = 2 - 103ms™ !, we get prurst =~ 0.0015, whereas for p = 20Hz, ppurst =~
0.109.

(iii) Given knowledge of the interspike interval distribution and survivor function as a function of the
firing rate p, the observer can determine the strength of the input with fair confidence after observing a
few spikes.



Exercise 3: Stochastic spike arrival

We first need to solve the linear equation

du

T = —(u — Urest) + RI(¥) (13)

We know (c.f. exercise set 1) that the solution is given by
R [* /
u(t) = Upest + — / ef(t*t )/Tl(t/)dtl ) (14)
T — 00

Let us first solve the general problem with arbitrary presynaptic current shape a(t — t/). The case of
problem 3.1 then corresponds to the choice a(t — tf) = qd(t — tf).
So for I(t) =3, a(t — ') we have:

t e—(t=t)/T , ot
w(t) = trest + R/_Oo S al -t (15)
!
Writing a(t' — /) = [7_ §(s — (t' — t1))ds, we obtain
‘ o g lt—t)/r
u(t) = Upest + R/ dt’/ ds——a(s) Z S(s — (' —t)). (16)
T
—o0 —o0 I

Taking the average over all possible spike trains,

<u(t)>_urebt+R/ dt/ dsﬁ <Z§s—t—tf)> (17)

because all the deterministic quantities can be pulled out of the average.

Now since! <2f 5(s — (¢ —tf)) > =v,

t ef(tft/ T [e%e]
<'U;(t) > = Urest + RV/ dtli / dSOé(S)
— 00 T oo

= Upest + RV/ a(s)ds. (18)

—00

3.1 With a(t —t/) = ¢§(t — t/), we obtain:

(u(t)) = Uress + RV (19)

Lthis can be seen by remarking that [ §(s)ds = 1 so that & > fOT §(s —th)ds = w =v.



3.2 The general solution is given by Eq. (18).

Exercise 4: Homework

4.1 We take the limit and use Stirling’s approximation and lim, . (1 —z/n)" =e 7 :

rn =t () () @

k N_—N N—k k
N CED T N e i e (21)
kKl Nosso (N — k)N—ke-N+k N N

ket (-5

N k! Nooso (1-— k/N)N_k (22)
(Z/T)ke_k e—l/T

ST o (23)

_ (VT)kefuT (24)

The expected number of spikes in an interval of duration 7" can be calculated from the definition of
expectation,

(k) = 3 KP(T) (25)
k=0
_ - (VT)ke—yT
= I;)k Bl (26)
_ efz/T - (VT)k
= kz::lk Bl (27)
_orne (V)
— e TWT) i (”;)k (29)
k=0 ’
=uT. (30)

For the third equality we considered that for £k = 0 the sum is 0, so we can start with & = 1. For the
fourth equality we performed a change of variables and for the last one we used the definition of the
exponential function e” = 77 | L.

4.2 Let us label the spike trains corresponding to each neuron S; and S;. The percentage is the number
of spikes in 57 coincident with a spike in So, Neoine, divided by the total number of spikes (N) in spike

train one:
< Ncoinc >

N

And ( Neoine ) is just the probability to observe a spike in Sp within a small observation window size
2A = 4 ms, times the number of spikes in Si:

P= (31)

P
N

= 2poA = 8%. (32)

Here, we had to assume that the observation windows do not overlap, i. e. A < pyg.



