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Exercise 1: Flux across threshold

1.1 The fraction of neurons that jump across u0 is made of all those whose voltage is more than u0−∆u
at time t, i.e.

a(t) =

∫ u0

u0−∆u

p(u, t)du

1.2 We want to compute J(t), the fraction of neurons that jump across a threshold u0 per unit of time,
at time t. Now not all neurons receive a spike, but we have stochastic spike arrival with a rate ν. Let us
consider a very small time interval [t, t+∆t]. ∆t is so small that there is either one or no pulse arriving
during this time interval. The probability that there is one is ν∆t.
From the neurons that receive a spike, those whose voltage is more than u0 −∆u at time t will cross the
u0 threshold. All the rest will not. Therefore, the expected fraction of neurons crossing threshold in this
interval is

⟨a(t, t+∆t)⟩ = ν∆t× a(t) + (1− ν∆t)× 0

where the 0 denotes the fact that no neuron jumps across the threshold if there is no pulse. Eventually,
dividing by ∆t and taking the limit ∆t → 0 yields the flux:

J(t) = ν

∫ u0

u0−∆u

p(u, t)du

1.3 The neurons that will cross the threshold u0 from below are the ones that at time t are at u0 −∆u
or more and receive an excitatory spike.
The neurons that will cross the threshold u0 from above are the ones that at time t are at u0 + 2∆u or
less and receive an inhibitory spike.

Following the logic of the previous question we have

Jexc(t) = ν

∫ u0

u0−∆u

p(u, t)du

and

Jinh(t) =
ν

2

∫ u0

u0+2∆u

p(u, t)du

The total flux would be

Jtot(t) = ν

∫ u0

u0−∆u

p(u, t)du+
ν

2

∫ u0

u0+2∆u

p(u, t)du (1)

=
∑
k

νk

∫ u0

u0−wk

p(u, t)du (2)



where vk the spike rate arriving at each synapse type k and wk the corrsponding voltage jump that they
cause.

Exercise 2: Ornstein-Uhlenbeck process

Consider the Ornstein-Uhlenbeck process

τ u̇(t) = −(u(t)− µ(t)) +
√
2σ2τξ(t) (3)

where ξ(t) is a gaussian white noise, characterised by ⟨ξ(t)⟩ = 0 and ⟨ξ(t)ξ(t′)⟩ = δ(t − t′). To this
differential equation (3), called a Langevin equation, corresponds the following Fokker-Planck equation
that governs the distribution of the variable u :

τ
∂

∂t
p(u, t) =

∂

∂u

(
(u− µ(t))p(u, t)

)
+ σ2 ∂2

∂u2
p(u, t) . (4)

These two descriptions are equivalent. Here we will solve the most general case.

First method Consider a Gaussian distribution of the form

p(u, t) =
1√

2πΣ2(t)
exp

(
− (u− ū(t))2

2Σ2(t)

)
. (5)

Now calculate the partial derivatives (here we consider the general case Σ(t) ̸= σ):

∂p(u, t)

∂t
=

[
(u− ū) ˙̄u

Σ2
+

(
(u− ū)2

Σ2
− 1

)
Σ̇

Σ

]
p(u, t) (6)

∂p(u, t)

∂u
= − (u− ū)

Σ2
p(u, t) (7)

∂2p(u, t)

∂u2
=

1

Σ2

(
(u− ū)2

Σ2
− 1

)
p(u, t) (8)

Inserting this in the Fokker-Planck equation (4), we get

τ

[
(u− ū) ˙̄u

Σ2
+

(
(u− ū)2

Σ2
− 1

)
Σ̇

Σ

]
= 1− (u− µ)

(u− ū)

Σ2
+

σ2

Σ2

(
(u− ū)2

Σ2
− 1

)
. (9)

We should also consider that the gaussian should be centered around ū(t) which is the solution to the
deterministic differential equation (i.e without the noise term).

τ ˙̄u = −(ū− µ)

We can therefore replace µ by τ ˙̄u+ ū in the right hand side term of (9). We then obtain.(
τ
Σ̇

Σ
+ 1− σ2

Σ2

)(
(u− ū)2

Σ2
− 1

)
= 0 . (10)

We need to find a function Σ(t) that verifies equation (10) for all u, t. In order to do so we set α(t) = Σ2(t).
The expression in the first parenthesis becomes

τ

2
α̇+ α = σ2 ,

The solution with initial condition α(0) = α0 is,

α(t) = α0e
−2t/τ + σ2

(
1− e−2t/τ

)
. (11)



We have thus shown that the function

p(u, t) =
1√

2πΣ2(t)
exp

(
− (u− ū(t))2

2Σ2(t)

)
where

ū(t) = u0e
−t/τ +

1

τ

∫ t

0

e−(t−s)/τµ(s)ds

and
Σ2(t) = Σ2

0e
−2t/τ + σ2

(
1− e−2t/τ

)
is the solution of the Fokker-Planck equation (4) with the initial condition

p(u, 0) =
1√
2πΣ2

0

exp

(
− (u− u0)

2

2Σ2
0

)
.

This condition becomes p(u, 0) = δ(u− u0) if Σ0 → 0.

Second method The problem can also be resolved by integrating directly the Langevin equation (3).
We write

u(t) = u0e
−t/τ +

1

τ

∫ t

0

e−(t−s)/τ
(
µ(s) +

√
2σ2τξ(s)

)
ds ,

where u0 is initial distribution. If u0 is a Gaussian, then u will also be a Gaussian since it is a linear
combination of such Gaussians. Therefore we need only find its mean and variance to fully characterize
it. We get

⟨u(t)⟩ =
〈
u0e

−t/τ +
1

τ

∫ t

0

e−(t−s)/τ
(
µ(s) +

√
2σ2τξ(s)

)
ds

〉
= ⟨u0⟩e−t/τ +

1

τ

∫ t

0

e−(t−s)/τ
(
µ(s) +

√
2σ2/τ⟨ξ(s)⟩

)
ds

= ⟨u0⟩e−t/τ +
1

τ

∫ t

0

e−(t−s)/τµ(s)ds

since ⟨ξ(s)⟩ = 0. Moreover,

u2(t) = u2
0 e

−2t/τ + 2u0 e
−t/τ 1

τ

∫ t

0

e−(t−s)/τ
(
µ(s) +

√
2σ2τξ(s)

)
ds

+
1

τ2

∫ t

0

e−(t−s)/τe−(t−s′)/τ
(
µ(s) +

√
2σ2τξ(s)

)(
µ(s′) +

√
2σ2τξ(s′)

)
dsds′ ,

Using ⟨ξ(s)ξ(s′)⟩ = δ(s− s′), we obtain

⟨u2(t)⟩ − ⟨u(t)⟩2 =
(
⟨u2

0⟩ − ⟨u0⟩2
)
e−2t/τ +

2σ2

τ

∫ t

0

e−(t−s)/τds

= Σ2
0 e

−2t/τ + σ2
(
1− e−2t/τ

)
,

where Σ2
0 = ⟨u2

0⟩ − ⟨u0⟩2 is the variance of the initial distribution.



Exercise 3: Fokker-Plank equation with threshold

The aim is to solve
∂p(u, t)

∂t
= −∂J(u, t)

∂u
+ ν(t)δ(u− ur) (12)

with the boundary condition
p(ϑ, t) = 0 ,∀t . (13)

3.1 From the second line equation (2) of the question set we have

J(u) = −1

τ
(u+ σ2 ∂

∂u
)p(u, t). (14)

p1(u) indeed satisfies J = 0.

3.2 We check that p2 satisfies equation (6) of the question set. Morevover it satisfies the boundary
condition (13) and the form of J is that of a non-zero constant (J(u) = σc2

τ ). All the conditions are
satisfied for p2 to be the solution on the interval [ur, θ].

3.3 Since we have found solutions of the differential equation (12) on both side of the singularity ur we
know that the solution is of the form

p(u) =

{
p1(u) , u < ur

p2(u) , ur < u < ϑ .
(15)

The constraint of continuity for p(u) at ur is satisfied if

c1 = c2

∫ θ

ur

e
x2

2σ2 dx.

3.4 We can write the solution on the whole interval [−∞, θ],

p(u) =
c2
σ
e−

u2

2σ2

∫ θ

max(u,ur)

e
x2

2σ2 dx

and c2 is

c2 =

(∫ θ

−∞
e−

u2

2σ2

∫ θ

max(u,ur)

e
x2

2σ2 dx du

)−1

.

3.5 ν = J(θ) = σc2
τ ⇒

ν =
σ2

τ

(∫ θ

−∞
e−

u2

2σ2

∫ θ

max(u,ur)

e
x2

2σ2 dx du

)−1

3.6 See Figure 1.
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Figure 1: The normalized function q(u)/q(ur), and stationnary distribtion p(u) for different values of σ.
σ = 0.1 (top), 0.5, 1, et 5mV (bottom). The other parameters are τ = 10ms, µ = 0, vr = 0 et θ = 1mV.

Exercise 4: Brunel Network

4.1 The total ‘drive’ µ is given by 1

µ(t) = τm
∑
k

νk(t)wk.

This sum can be split in an excitatory and an inhibitory term so that

µ(t) = τmw0KA(t) + τm(−g)w0
K

4
A(t)

= τmw0KA(t)(1− g

4
) (16)

1[For personal interest] A complete derivation of the drive and diffusion is shown in 4.8



4.2 The amount of diffusive noise σ2(t) is

σ2(t) = τm
∑
k

νk(t)w
2
k

= τmw2
0KA(t) + τmg2w2

0

K

4
A(t)

= τmw2
0KA(t)(1 +

g2

4
) (17)

4.3 The balance state is obtained when inhibition counterbalance excitation, which is obtained with
g = 4 in Eq. 16.

4.4 A change in the number of neurons without changing the connectivity does not affect the net-
work dynamic as long as the network is large enough (N >> K) so that the inputs can be considered
uncorrelated. Both the driving potential and the diffusion constant grow linearly with K.

4.5 As long as the network is in a balanced state (g = 4), the driving potential will be clamped to zero.
Hence N and K can be increased while keeping the driving potential at 0. However, in this case the
variance will increase linearly with K.

4.6 If w2
0 = 1/K, the driving potential and the diffusion become

µ(t) = τm
√
KA(t)(1− g

4
) (18)

σ2(t) = τmA(t)(1 +
g2

4
) (19)

To keep the driving potential at zero the balanced state is sufficient. The scaling of the jump amplitudes
w2

0 = 1/K allows to keep the diffusion term fixed even if K is changing.

4.7 The Fokker-Planck equation is given by

τm
∂

∂t
p(u, t) = − ∂

∂u

(
(−u+ µ(t))p(u, t)

)
+

1

2
σ2(t)

∂2

∂u2
p(u, t) +A(t)

(
δ(u− ur)− δ(u− ϑ)

)
,

with µ(t) and σ2(t) given in Eq. 16 and 17 (or their scaled version Eq. 18 and 19). The balanced state
condition and scaling effects discussed earlier hold for time-dependent firing rate.

4.8 Derivation of the mean drive and diffusion

[These two formulas were given in class, we give here their derivation if you are curious.]

The dynamics of the menbrane potential in the absence of a threshold is given by

τmV̇ = −V + EL +RIs, (20)

where Is(t) is the synaptic input current:

RIs(t) = τm
∑
k

wkSk(t). (21)

Here, Sk(t) is is a Poissonian spike train with rate νk. That is, the mean is given by

⟨Sk(t)⟩ = νk(t) (22)

and the auto-correlation function is

⟨Sk(t)Sl(t
′)⟩ = νkδk,lδ(t− t′) + νkνl. (23)



Here, the Kronecker delta δk,l expresses the fact that inputs are uncorrelated across neurons and the
Dirac delta function δ(t − t′) means that spikes are uncorrelated in time (Poisson assumption). The
aim is to approximate the synaptic input by its mean and a white Gaussian noise (so-called diffusion
approximation), i.e.

RIs(t) ≈ µ(t) + σ(t)
√
τmξ(t), (24)

where ⟨ξ(t)⟩ = 0 and ⟨ξ(t)ξ(t′)⟩ = δ(t−t′). Thus, the goal is to derive the µ(t) and σ(t) for the Poissonian
shot noise, Eq. (21).

Solution A. We simply match the mean and auto-correlation of the noise in Eq. (21) and (24). For
the diffusion approximation, we have the mean

⟨RIs(t)⟩ = µ(t) (25)

and the auto-correlation function for δIs = Is − ⟨Is⟩ = σ
√
τmξ/R

R2⟨δIs(t)δIs(t′)⟩ = τmσ(t)σ(t′)⟨ξ(t)ξ(t′)⟩ = τmσ2(t)δ(t− t′). (26)

On the other hand, for the shot noise Eq. (21), we have the mean

⟨RIs(t)⟩ = τm
∑
k

wk⟨Sk(t)⟩ = τm
∑
k

wkνk(t) (27)

and correlation function (RδIs = τm
∑

k[wk(Sk − νk)])

R2⟨δIs(t)δIs(t′)⟩ = τ2m
∑
k,l

wkwl⟨[Sk(t)− νk(t)][Sl(t
′)− νl(t

′)]⟩ (28)

= τ2m
∑
k,l

wkwl [⟨Sk(t)Sl(t
′)⟩ (29)

−νk(t)⟨Sl(t
′)⟩ − ⟨Sk(t)⟩νl(t′) + νk(t)νl(t

′)] (30)

= τ2m
∑
k,l

wkwl [⟨Sk(t)Sl(t
′)⟩ − νk(t)νl(t

′)] (31)

= τ2m
∑
k,l

wkwlνk(t)δk,lδ(t− t′) (32)

= τ2m
∑
k

w2
kνk(t)δ(t− t′) (33)

Comparing Eq. (25) with Eq. (27) and Eq. (26) with Eq. (33) we conclude that

µ(t) = τm
∑
k

wkνk(t), σ2(t) = τm
∑
k

w2
kνk(t). (34)

This solution works for the time-dependent case (see 4.7).


