Neural Networks and Biological Modeling
Professor Wulfram Gerstner

Laboratory of Computational Neuroscience

ANSWERS TO QUESTION SET 12

Exercise 1: Flux across threshold

1.1 The fraction of neurons that jump across ug is made of all those whose voltage is more than ug— Au
at time ¢, i.e.

a(t) = /uuo p(u,t)du

0o—Au

1.2 We want to compute J(t), the fraction of neurons that jump across a threshold uy per unit of time,
at time . Now not all neurons receive a spike, but we have stochastic spike arrival with a rate v. Let us
consider a very small time interval [t,t + At]. At is so small that there is either one or no pulse arriving
during this time interval. The probability that there is one is vAt.

From the neurons that receive a spike, those whose voltage is more than ug — Awu at time ¢t will cross the
ug threshold. All the rest will not. Therefore, the expected fraction of neurons crossing threshold in this
interval is

(a(t,t + At)) = vAt X a(t) + (1 — vAL) x 0

where the 0 denotes the fact that no neuron jumps across the threshold if there is no pulse. Eventually,
dividing by At and taking the limit At — 0 yields the flux:

J(t) = I//UD p(u,t)du

OfAu

1.3 The neurons that will cross the threshold ug from below are the ones that at time ¢ are at ug — Au
or more and receive an excitatory spike.

The neurons that will cross the threshold ug from above are the ones that at time ¢ are at ug + 2Au or
less and receive an inhibitory spike.

Following the logic of the previous question we have

Jeze(t) = 1// p(u,t)du

o—Au
and
v %o
Jinn(t) = f/ p(u, t)du
2 ug+2Au

The total flux would be

Talt) = v [ pwnderl [T g 1)

ug—Au 0+2Au

= Zyk /“0 p(u,t)du (2)
k U

0~ Wk



where vy, the spike rate arriving at each synapse type k and wy the corrsponding voltage jump that they
cause.

Exercise 2: Ornstein-Uhlenbeck process

Consider the Ornstein-Uhlenbeck process
Tu(t) = —(u(t) — p(t)) + V2027E(t) (3)

where £(t) is a gaussian white noise, characterised by (£(¢)) = 0 and (£(¢)&(t)) = 6(¢t — t'). To this
differential equation (3), called a Langevin equation, corresponds the following Fokker-Planck equation
that governs the distribution of the variable u :

P 1) = (= (1)) + 0% (1) @

These two descriptions are equivalent. Here we will solve the most general case.

First method Consider a Gaussian distribution of the form

(u— U(t))2> .

1
plut) = s =P (_ 252(1)

Now calculate the partial derivatives (here we consider the general case X(t) # o):

ap(u, t) _ l(u — ﬂ)ﬂ n <(u — ﬂ)Q B 1) E] p(u, 1) (6)

ot 2 ¥2 by
apgz» t) _ _(ugza) p(u,t) (7)
2n(u u—a)?
%%ﬁ:;CZﬁ_QMW) (8)

Inserting this in the Fokker-Planck equation (4), we get
(u—u)u (u — u)? N (u—1a) o* [ (u—1u)?

We should also consider that the gaussian should be centered around w(t) which is the solution to the
deterministic differential equation (i.e without the noise term).

Tu=—(u—p)

We can therefore replace p by 71 + % in the right hand side term of (9). We then obtain.

X o? (u—1u)? B
(2o g) (o5 1) o "

We need to find a function (¢) that verifies equation (10) for all u,t. In order to do so we set a(t) = ¥2(¢).
The expression in the first parenthesis becomes

T . 9
§Oz—|—a:a R

The solution with initial condition «(0) = «y is,

alt) = age™ 27 4 o2 (1 - e_2t/T> . (11)



We have thus shown that the function

_ L o w—a®)?
p(u,t) = Tel0) p( 0] )

where

1 t
a(t) = upe T+ = / et =9/7 1u(s5)ds
T Jo

and
$2(t) = E%G—Qt/r 102 (1 _ e—2t/7’)

is the solution of the Fokker-Planck equation (4) with the initial condition

1 . < (u— u0)2>
X —_— .
NGy R

This condition becomes p(u,0) = d(u — ug) if g — 0.

p(u,0) =

Second method The problem can also be resolved by integrating directly the Langevin equation (3).
We write

t
u(t) = uge ™ + 1 / e~ (t=8)/7 (u(s) + \/20275(3)) ds,
0

T

where ug is initial distribution. If ug is a Gaussian, then u will also be a Gaussian since it is a linear
combination of such Gaussians. Therefore we need only find its mean and variance to fully characterize
it. We get

(u(t)) = <uoe_t/T + % /0 L) (u(s) + \/ﬁg(s)) ds>
= (uope/7 4 1 [ (uls) + B TE(s))
= (ug)e ™ + % /Ot e~ =9/7 1u(s5)ds

since (£(s)) = 0. Moreover,

1t
u?(t) = ud e 27 + 2uqg e_t/T; / e t=s)/T (,u(s) + \/2027'5(5)) ds

0
t
NES /0 e =m0 (u(s) 4+ v202¢(5) ) ((s') + V202rE(S)) ) dsds’

Using (£(s)&(s")) = 6(s — s'), we obtain

(0 — (w0 = () — () 7+ 22 [ om0
T Jo

_ Zg e~ 2t/ | 52 (1 B e’Qt/T) ,

where Y2 = (u2) — (ug)? is the variance of the initial distribution.



Exercise 3: Fokker-Plank equation with threshold

The aim is to solve

op(u,t)  9J(u,t)

ot ou

+v(t)o(u —u,)

with the boundary condition
p(¥,t) =0,Vt.

3.1 From the second line equation (2) of the question set we have

J(u) = f%(qu 02%)p(u,t).

p1(u) indeed satisfies J = 0.

3.2 We check that po satisfies equation (6) of the question set. Morevover it satisfies the boundary

condition (13) and the form of J is that of a non-zero constant (J(u) =

satisfied for ps to be the solution on the interval [u,., 6].

. All the conditions are

3.3 Since we have found solutions of the differential equation (12) on both side of the singularity u, we

know that the solution is of the form

- (u) , u<u,
p(u){g(u) LU <u<v.

The constraint of continuity for p(u) at w, is satisfied if

0 5
x
c1 = Co e22 dzx.
u

r

3.4 We can write the solution on the whole interval [—o0, 6],

2 9 2
p(u) = 0—267 207 / €257 d

o max(u,u)

—1
o 2 2
Cy = e 202 e272 dx du .
—o0 max(u,u,)

and cg 1s

35 v=J(0)="2=

-1
(72 0 _i 0 22
v=— e 202 e22 dx du
T —00 max(u,ur )

3.6 See Figure 1.

(15)
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Figure 1: The normalized function g(u)/q(u,), and stationnary distribtion p(u) for different values of o.
o =0.1 (top), 0.5, 1, et 5mV (bottom). The other parameters are 7 = 10ms, u =0, v, = 0 et § = IlmV.

Exercise 4: Brunel Network

4.1 The total ‘drive’ u is given by !
MOESS PGS
k
This sum can be split in an excitatory and an inhibitory term so that

u®=mmKWHmwﬂw§Mﬂ
= TwoKA(t)(1 — %) (16)

[For personal interest] A complete derivation of the drive and diffusion is shown in 4.8




4.2 The amount of diffusive noise o2(t) is

o2(t) = T Z v (t)w?
k

K
= megKA(t) + ngzwng(t)

= Tnwi KA(t) (1 + %) (17)

4.3 The balance state is obtained when inhibition counterbalance excitation, which is obtained with
g=4in Eq. 16.

4.4 A change in the number of neurons without changing the connectivity does not affect the net-
work dynamic as long as the network is large enough (N >> K) so that the inputs can be considered
uncorrelated. Both the driving potential and the diffusion constant grow linearly with K.

4.5 Aslong as the network is in a balanced state (g = 4), the driving potential will be clamped to zero.
Hence N and K can be increased while keeping the driving potential at 0. However, in this case the
variance will increase linearly with K.

4.6 If w2 = 1/K, the driving potential and the diffusion become

u(t) = T VEAMD(1L - ) (18)

2

o> (1) = T AW)(1+ ) (19)

To keep the driving potential at zero the balanced state is sufficient. The scaling of the jump amplitudes
wg = 1/K allows to keep the diffusion term fixed even if K is changing.

4.7 The Fokker-Planck equation is given by

2
Tm%p(u, t) = f% ((—u+ pu()p(u, b)) + %cr%t)%p(u, t) + A(t) (6(u —up) — 6(u— V),

with u(t) and o2(t) given in Eq. 16 and 17 (or their scaled version Eq. 18 and 19). The balanced state
condition and scaling effects discussed earlier hold for time-dependent firing rate.

4.8 Derivation of the mean drive and diffusion
[These two formulas were given in class, we give here their derivation if you are curious.]

The dynamics of the menbrane potential in the absence of a threshold is given by
™V ==V + Ep + RI,, (20)

where I(t) is the synaptic input current:
RI,(t) = 7o Y wiSk(t). (21)
k

Here, Si(t) is is a Poissonian spike train with rate v;. That is, the mean is given by

(Sk(t)) = vi(t) (22)
and the auto-correlation function is

(Sk(t)Si(t)) = vk 16(t — t') + vy (23)



Here, the Kronecker delta 0 expresses the fact that inputs are uncorrelated across neurons and the
Dirac delta function 6(¢ — t') means that spikes are uncorrelated in time (Poisson assumption). The
aim is to approximate the synaptic input by its mean and a white Gaussian noise (so-called diffusion

approximation), i.e.

RI(t) = p(t) + o (t)v/Tmé (D),

(24)

where (£(t)) = 0 and (£(¢)(t')) = 6(¢—1¢'). Thus, the goal is to derive the u(t) and o(¢) for the Poissonian

shot noise, Eq. (21).

Solution A. We simply match the mean and auto-correlation of the noise in Eq. (21) and (24). For

the diffusion approximation, we have the mean
(RIs(t)) = p(t)
and the auto-correlation function for 61, = Iy — (Is) = 0\/Tmé&/R
R2(SI,(1)01,(t)) = Tmo (o (') (EM)E(H)) = Tma ()8 ( — 1),

On the other hand, for the shot noise Eq. (21), we have the mean

(RLE) = T 3 0n(84(0) = 7 3 w0
and correlation function (RSI, = 7, 32 [wi(Sk — v)])
R GLIILE) = iy Y wanSu(0) = (OIS (€)= ()
=723 i [(Sk(1)Si())
oSO — (SOt + o)
= 723w [(Se(DSi(1)) — vy (t)]

k1
=72 wpwvg (8o, 0(t — )
k1
=72 wiv(t)s(t —t)
k
Comparing Eq. (25) with Eq. (27) and Eq. (26) with Eq. (33) we conclude that

w(t) =1 Z wr v (t), o2(t) = T Z wivy(t).
k k

This solution works for the time-dependent case (see 4.7).

(25)

(26)

(27)



