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Answers to Question Set 12

Exercise 1: From adaptive integrate-and-fire to the SRM

1.1 The only difference to earlier exercises is the incorporation of the spike reset into the solution.
Integrating the differential equation for u without the reset yields (see earlier sheets)

u(t) = urest +
R

τ

∫ t

t0

e−
t−s
τ I(s)ds (1)

Now to reset the membrane potential at the spike times to the resting potential, we have to include
an artificial pulse input at the spike times tf , which effectively sets the membrane potential from
θ to urest.
This yields the effective input Ieff (t) = I(t)− τ

R (θ− urest)
∑

f δ(t− tf ) = I(t)− τ
R (θ− urest)S(t).

In turn, we get the membrane potential

u(t) = urest +
R

τ

∫ t

t0

e−
t−s
τ Ieff (s)ds (2)

= urest +

∫ t

t0

R

τ
e−

t−s
τ I(s)ds+

∫ t

t0

(urest − θ)e−
t−s
τ S(s)ds (3)

= urest +

∫ t−t0

0

R

τ
e−

s
τ I(t− s)ds+

∫ t−t0

0

(urest − θ)e−
s
τ S(t− s)ds (4)

t0→−∞
= urest +

∫ ∞

0

R

τ
e−

s
τ︸ ︷︷ ︸

ϵ(s)

I(t− s)ds+

∫ ∞

0

(urest − θ)e−
s
τ︸ ︷︷ ︸

η(s)

S(t− s)ds. (5)

The second last equality is easily seen by substitution (substitute q = t− s and later rename). The
last equality comes from the fact that the initial time t0 can be arbitrarily chosen and thus can be
sent to −∞.
A second way to obtain the ∞-bounds in the integrals is introducing the input current with a
suitable Heaviside-function Θ(t − t0). Then every input before t0 is set to 0 and the integration
(over s) can be extended until ∞.

1.2 Integrating the equation for w gives for a single spike at t = 0

w(t) = βe−
t

τw Θ(t),

where Θ(t) is the Heaviside step function.

Since the equation for du(t)
dt is linear and w(t) is independent of u, we can treat w(t) as another

external input. For a single spike at t = 0, the effect on the membrane potential only by the w
input is then described by



κ(t) =
R

τ

∫ t

−∞
e−

t−s
τ w(s)dsΘ(t) (6)

=
R

τ

∫ t

−∞
e−

t−s
τ βe−

s
τw Θ(s)dsΘ(t) (7)

=
Rβ

τ
e−

t
τ

∫ t

0

es(
1
τ − 1

τw
)dsΘ(t) (8)

=
Rβ

τ

(
1

τ
− 1

τw

)−1[
e−

t
τw − e−

t
τ

]
Θ(t) (9)

= Rβ

(
1− τ

τw

)−1[
e−

t
τw − e−

t
τ

]
Θ(t). (10)

Finally, the effect of multiple spikes is described by the convolution of this kernel with the spike
train S(t). With the results of the previous question, this gives an effective membrane potential

(including the minus sign of du(t)
dt ∝ −αRw)

u(t) = urest +

∫ ∞

0

ϵ(s)I(t− s)ds+

∫ ∞

0

[η(s)− κ(s)]︸ ︷︷ ︸
ηeff (s)

S(t− s)ds (11)

where now ηeff (s) is the effective kernel we are looking for.

Exercise 2: Integrate-and-fire model with linear escape rates

2.1 For a non-leaky integrate-and-fire model by considering the limit of τm → ∞, the membrane
potential of the model is

u(t|t̂) = ur +
1

C

∫ t

t̂

I(t′) dt′

Let us set ur = 0 and consider a linear escape rate

ρ(t|t̂) = β[u(t|t̂)− θ]+ (12)

For constant input I0 we have u(t|t̂) = I0
C (t− t̂) and so the hazard is

ρI(t|t̂) = α0[s−∆abs]+

where α0 = βI0
C and ∆abs = θC

I0
is the absolute refractory time. s = t − t̂ denotes the difference

between the current time and timing of the last spike.

The interval distribution for this hazard function is then equal to

PI(s) = ρI(t|t̂) exp
(
−
∫ t

t̂

ρI(t
′|t̂)dt′

)
= α0[s−∆abs]+ exp

(
−1

2
α0

(
[s−∆abs]+

)2)

2.2 For a leaky integrate-and-fire neuron with constant input I0, the membrane potential is



u(t|t̂) = RI0

[
1− e−

t−t̂
τm

]
,

where we have assumed ur = 0. For a linear escape rate (Eq. 12), and the assumption θ = 0 the
hazard is then equal to

ρ0(t− t̂) = γ
[
1− e−λ(t−t̂)

]
,

with γ = βRI0 and λ = τ−1
m .

The interval distribution for this hazard function is then equal to

P0(s) = ρ0(t|t̂) exp
(
−
∫ t

t̂

ρ0(t
′|t̂)dt′

)
= γ

[
1− e−λ(t−t̂)

]
exp

(
−
∫ t

t̂

γ
[
1− e−λ(t−t̂)

]
dt′
)

= γ
[
1− e−λ(t−t̂)

]
exp

(
−γs− γλ−1(e−λs − 1)

)
where s = t− t̂.

Exercise 3: Optimization of a free parameter

3.1 To find the minimum of the error function E with respect to the free parameter R, take the
derivative and set it to zero:

∂E

∂R
= 2

∑
n

[
udata
n −RIn

]
(−In) (13)

= 2

[
−
∑
n

udata
n In +R

∑
n

I2n

]
!
= 0. (14)

Solving this for R yields

R =

∑
n u

data
n In∑
n I

2
n

3.2 For In = I0 the previous expression reduces to

R =
I0
I20

∑
n u

data
n∑

n 1
=

1

I0n

∑
n

udata
n =

ūdata

I0
,

which is clearly the resistance estimated from the mean voltage and given input current.

Exercise 4: Likelihood of a spike train

4.1 From the previous exercise we know that the hazard for a leaky integrate-and-fire neuron is
equal to

ρ(t|t̂) = ρ(t− t̂) = γ
[
1− e−λ(t−t̂)

]
,

So the likelihood that this spike train could have been generated by such a neuron is equal to



L = exp

(
−
∫ t(1)

0

ρ(t|0)dt

)
ρ(t(1)|0) exp

(
−
∫ t(2)

t(1)
ρ(t|t(1))dt

)
ρ(t(2)|t(1)) exp

(
−
∫ t(3)

t(2)
ρ(t|t(2))dt

)

ρ(t(3)|t(2)) exp

(
−
∫ t(4)

t(3)
ρ(t|t(3))dt

)
ρ(t(4)|t(3)) exp

(
−
∫ T

t(4)
ρ(t|t(4))dt

)

= ρ(t(1)|0)ρ(t(2)|t(1))ρ(t(3)|t(2))ρ(t(4)|t(3)) exp

(
−

4∑
i=0

∫ t(i+1)

t(i)
ρ(t|t(i))dt

)

= γ4

(
3∏

i=0

[
1− e−λ(t(i+1)−t(i))

])
exp

(
−γT − γλ−1

4∑
i=0

(e−λ(t(i+1)−t(i)) − 1)

)

where we define t(0) = 0 and t(5) = T . Note that the product in front contains 4 terms, whereas
the sum in the exponential contains 5 terms. This is due to there being 4 spikes that were emitted,
and 5 periods without spikes where the neuron needs to survive.

4.2

L = P (t(1)|0)P (t(2)|t(1))P (t(3)|t(2))P (t(4)|t(3))P (T |t(4))
ρ(T |t(4))

where P (.) is the interval distribution and ρ(.) is the hazard function.


