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ANSWERS TO QUESTION SET 12

Exercise 1: From adaptive integrate-and-fire to the SRM

1.1 The only difference to earlier exercises is the incorporation of the spike reset into the solution.
Integrating the differential equation for u without the reset yields (see earlier sheets)
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Now to reset the membrane potential at the spike times to the resting potential, we have to include
an artificial pulse input at the spike times ¢/ , which effectively sets the membrane potential from
0 to Upest-

This yields the effective input Zess(t) = I(t) — 7 (0 — wurest) D 6( — th) = I(t) = F(0 — urest) S(2).
In turn, we get the membrane potential

R t t—s
u(t) = Upest + ?/ e T eff(s)ds (2)
to
t R s t s
= Upest + *e_fl(s)ds + / (urest — (9)6_ = S’(s)ds (3)
to T to
t—to R . t—to R
= Upest + / —6771(25 - S)dS + / (urest — 9)67;5@ - S)dS (4)
0 T 0
t0_>:_00 Upest T / EB_E I<t - S)dS + / (urest - G)E_E S(t - S)ds (5)
o T 0 —,

e(s) n(s)

The second last equality is easily seen by substitution (substitute ¢ = t — s and later rename). The
last equality comes from the fact that the initial time ¢y can be arbitrarily chosen and thus can be
sent to —oo.

A second way to obtain the co-bounds in the integrals is introducing the input current with a
suitable Heaviside-function ©(¢t — tp). Then every input before ¢ty is set to 0 and the integration
(over s) can be extended until co.

1.2 Integrating the equation for w gives for a single spike at t =0
w(t) = B 7 (1),

where O(t) is the Heaviside step function.

Since the equation for di;(tt) is linear and w(¢) is independent of u, we can treat w(t) as another

external input. For a single spike at ¢ = 0, the effect on the membrane potential only by the w
input is then described by
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Finally, the effect of multiple spikes is described by the convolution of this kernel with the spike

train S(¢). With the results of the previous question, this gives an effective membrane potential

du(t)
dt

(including the minus sign of x —aRw)

u(t) = Upest + /000 e(s)I(t — s)ds + /000 [n(s) — k(s)] S(t — s)ds (11)
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where now 7.5 (s) is the effective kernel we are looking for.

Exercise 2: Integrate-and-fire model with linear escape rates

2.1 For a non-leaky integrate-and-fire model by considering the limit of 7,,, — co, the membrane
potential of the model is

. I
u(t)t) = u, + 7/ I(t") dt’
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Let us set u,, = 0 and consider a linear escape rate

p(tlt) = Blu(tlt) — 0]+ (12)

For constant input Iy we have u(t|f) = £ (¢ — £) and so the hazard is

pr(tlE) = agls — A®*],

where ag = % and A = % is the absolute refractory time. s =t — ¢ denotes the difference

between the current time and timing of the last spike.

The interval distribution for this hazard function is then equal to

Pi(s) = oo (- t it
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2.2 For a leaky integrate-and-fire neuron with constant input Iy, the membrane potential is



u(tlf) = Rlo [1 - 6—7} 7

where we have assumed w, = 0. For a linear escape rate (Eq. 12), and the assumption 6 = 0 the
hazard is then equal to

po(t —1) =~ {1 — e’*(”)} :
with v = BRIy and X = 7,,1.

The interval distribution for this hazard function is then equal to
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where s =t — ¢.

Exercise 3: Optimization of a free parameter

3.1 To find the minimum of the error function E with respect to the free parameter R, take the
derivative and set it to zero:
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Solving this for R yields
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3.2 For I,, = Iy the previous expression reduces to

R &Zn u:llata _ izudata _ 7deata

which is clearly the resistance estimated from the mean voltage and given input current.

Exercise 4: Likelihood of a spike train

4.1 From the previous exercise we know that the hazard for a leaky integrate-and-fire neuron is
equal to

p(t]f) = p(t — i) = [1 = e 0]

So the likelihood that this spike train could have been generated by such a neuron is equal to
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where we define (9 = 0 and t®® = T. Note that the product in front contains 4 terms, whereas
the sum in the exponential contains 5 terms. This is due to there being 4 spikes that were emitted,
and 5 periods without spikes where the neuron needs to survive.

4.2

P(T|t™)
p(T|t™)

where P(.) is the interval distribution and p(.) is the hazard function.

L= p(t(l)|0)p(t(2)|t(1))p(t(3)|t(2))P(t(4) \t(?’))



