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Exercise 1: Low-dimensional dynamics in a field model

Note: we use the shorthand notation Dz = ρ(z)dz for the integral with respect to the density of neurons.

1.1 If the field is given by the linear combination:

h(t, z) =

D∑
µ=1

fµ(z)κµ(t) (1)

then by projection on the function fµ, we obtain:∫
V

fµ(z)h(t, z)Dz =

∫
V

fµ(z)

D∑
µ′=1

fµ′(z)κµ′(t)Dz =

D∑
µ′=1

κµ′(t)

∫
V

fµ(z)fµ′(z)Dz

=

D∑
µ′=1

κµ′(t)δµµ′ = κµ(t)

(2)

due to the orthonormality of the functions fµ.

Thus, κµ(t) =
∫
V
fµ(z)h(t, z)Dz is the projection of the field h(t, ·) on the function fµ.

1.2

The steady-state h(t, z) = h̄(z) is obtained by setting the time derivative d
dth(t, z) to zero:

d

dt
h̄(z) = 0 = −1

τ
h̄(z) + J

∫
V

D∑
µ=1

fµ(z)gµ(z′)φ(h̄(z′))Dz′ (3)

which gives us:

h̄(z) = τJ

∫
V

D∑
µ=1

fµ(z)gµ(z′)φ(h̄(z′))Dz′

=

D∑
µ=1

fµ(z)

(
τJ

∫
V

gµ(z′)φ(h̄(z′))Dz′
)

=

D∑
µ=1

fµ(z)κ̄µ

(4)

Method 1. The steady-state coefficients κ̄µ are obtained by identification: κ̄µ = τJ
∫
V
gµ(z′)φ(h̄(z′))Dz.

Method 2. Alternatively, the same expression for κ̄µ is obtained by projecting Eq.(4) onto fµ:

κ̄µ =

∫
V

fµ(z)h̄(z)Dz =

∫
V

fµ(z)

D∑
µ′=1

fµ′(z)

(
τJ

∫
V

gµ′(z′)φ(h̄(z′))Dz′
)
Dz

=

D∑
µ′=1

(∫
V

fµ(z)fµ′(z)Dz

)(
τJ

∫
V

gµ′(z′)φ(h̄(z′))Dz′
)

=

D∑
µ′=1

δµµ′

(
τJ

∫
V

gµ′(z′)φ(h̄(z′))Dz′
)

= τJ

∫
V

gµ(z′)φ(h̄(z′))Dz′

(5)



Moreover, the field h̄(z) in the integral can be replaced by the linear combination: h̄(z) =
∑D
ν=1 fν(z)κ̄ν ,

hence giving the closed-form expression:

κ̄µ = τJ

∫
V

gµ(z)φ(h̄(z))Dz = τJ

∫
V

gµ(z)φ

(
D∑
ν=1

fν(z)κ̄ν

)
Dz (6)

1.3

From the expression of the linear combination (Eq.(1)), we have:

d

dt
h(t, z) =

D∑
µ=1

fµ(z)
d

dt
κµ(t) (7)

On the other hand, the derivative of the field is given by:

d

dt
h(t, z) = −1

τ
h(t, z) + J

∫
V

D∑
µ=1

fµ(z)gµ(z′)φ(h(t, z′))Dz′ (8)

Replacing h by Eq.(1), we get:

d

dt
h(t, z) = −1

τ

D∑
µ=1

fµ(z)κµ(t) + J

∫
V

D∑
µ=1

fµ(z)gµ(z′)φ(h(t, z′))Dz′

=

D∑
µ=1

fµ(z)

(
−1

τ
κµ(t) + J

∫
V

gµ(z′)φ(h(t, z′))Dz′
) (9)

By identification of Eqs.(7) and (9), one gets directly:

d

dt
κµ(t) = −1

τ
κµ(t) + J

∫
V

gµ(z)φ(h(t, z))Dz (10)

Again, the field h(t, z) in the integral can be replaced by the linear combination: h(t, z) =
∑D
ν=1 fν(z)κν(t)

to obtain a closed-form expression for the dynamics of the coefficients κµ.

1.4

Let h(t, z) =
∑
µ fµ(z)κµ(t) + ∆h(t, z). Thus, we have:

d

dt
h(t, z) =

D∑
µ=1

fµ(z)
d

dt
κµ(t) +

d

dt
∆h(t, z) (11)

On the other hand, the dynamics are given by:

d

dt
h(t, z) = −1

τ

(
D∑
µ=1

fµ(z)κµ(t) + ∆h(t, z)

)
+ J

∫
V

D∑
µ=1

fµ(z)gµ(z′)φ(h(t, z′))Dz′

=

D∑
µ=1

fµ(z)

(
−1

τ
κµ(t) + J

∫
V

gµ(z′)φ(h(t, z′))Dz′
)
− 1

τ
∆h(t, z)

(12)

By identification of Eqs.(11) and (12), one gets:

d

dt
∆h(t, z) = −1

τ
∆h(t, z) ⇒ ∆h(t, z) = e−t/τ∆h(0, z)

Thus, in the general case: h(t, z) =
∑
µ fµ(z)κµ(t) + e−t/τ∆h(0, z).



For any initial condition, the field asymptotically becomes a linear combination of the functions fµ, and
the residual term ∆h(t, z) decays exponentially. This is why Eq.(1) is a good assumption.

1.5 Coming back to Eq.(9), the dynamics can now be written (with the new terms highlighted in blue):

d

dt
h(t, z) = −1

τ

D∑
µ=1

fµ(z)κµ(t) + J

∫
V

D∑
µ=1

fµ(z)gµ(z′)φ(h(t, z′))Dz′ +

D∑
µ=1

fµ(z)Iµ(t)

=

D∑
µ=1

fµ(z)

(
−1

τ
κµ(t) + J

∫
V

gµ(z′)φ(h(t, z′))Dz′ +Iµ(t)

) (13)

so that we get the dynamics:

d

dt
κµ(t) = −1

τ
κµ(t) + J

∫
V

gµ(z)φ(h(t, z))Dz +Iµ(t) (14)

The external input thus only results in an external drive to the dynamics of the hidden variables κµ. This
affects the fixed points: the steady state equation (Eq.(6)) is now:

κ̄µ = τJ

∫
V

gµ(z)φ

(
D∑
ν=1

fν(z)κ̄ν

)
Dz +Iµ(t) (15)

Exercise 2: Application: ring model

2.1 The density of neurons is given by ρ(z) = 1/(2π). The measure of the distribution is thus: Dz =
ρ(z)dz = dz

2π . The orthonormality is satisfied:∫ 2π

0

f21Dz =

∫ 2π

0

f22Dz =

∫ 2π

0

2 cos(z)2
dz

2π
= 1 ;

∫ 2π

0

f1f2Dz =

∫ 2π

0

2 cos(z) sin(z)
dz

2π
= 0

2.2 We look for a steady-state in the form of h̄(z) = A cos(z) = A/
√

2f1(z), i.e. κ̄1 = A/
√

2, κ̄2 = 0.
The steady-state equation, Eq.(6), writes:

κ̄1 = A/
√

2 = τJ

∫ 2π

0

√
2 cos(z)φ(A cos z)

dz

2π

= τJ

∫ π/2

−π/2

√
2 cos(z)R

dz

2π
=
√

2τJR
1

2π

∫ π/2

−π/2
cos(z)dz︸ ︷︷ ︸
2

⇒ A = 2τJR/π

(16)

where we used the fact that φ(A cos(z)) = R 1{A cos(z) > 0} = R 1{−π/2 < z < π/2} for A > 0. For
κ̄2, we get the self-consistent equation:

0 = κ̄2 = τJ

∫ 2π

0

√
2 sin(z)φ(A cos z)

dz

2π
= τJ

∫ π/2

−π/2

√
2 sin(z)R

dz

2π
= 0 (17)

Thus, h̄(z) = 2τJR cos(z)/π = κ̄1f1(z) + 0 · f2(z) is a steady-state of the field dynamics.

2.3 We have seen that κ2(t) = 0 is a steady-state. Thus, we look for a solution of the form: h(t, z) =
A(t) cos(z) = κ1(t)

√
2 cos(z), with κ2 = 0 and initial condition κ1(0) = A0/

√
2.

From Eq.(10), one obtains:

d

dt
κ1 = −1

τ
κ1 + J

∫ 2π

0

√
2 cos(z)φ(

√
2κ1 cos z)

dz

2π
= −1

τ
κ1 + J

∫ π/2

−π/2

√
2 cos(z)R

dz

2π

= −1

τ
κ1 +

√
2JR/π

(18)



Given A(t) =
√

2κ1(t) and the initial condition A(0) = A0, we obtain A(t) = A0 + (1− e−t/τ )(Ā− A0),
where Ā = 2τJR/π.

The exact same computations can be done for h(t, z) = A(t) sin(z), except that now, κ1(t) = 0 is a
steady-state, and A(t) =

√
2κ2(t) follows the exact same dynamics as Eq.(18).

2.4 Let (r(t), θ(t)) be the polar coordinates of the two-dimensional vector κ(t) = (κ1(t), κ2(t)), and
(êr, êθ) be the (time-dependent) unit vectors of the polar coordinate system associated with κ. In this
polar coordinate system, we have:

κ = rêr , κ̇ = ṙêr + rθ̇êθ

where the dot denotes the time derivative. The vector f(z) = g(z) =
√

2(cos(z), sin(z)) is:

f(z) = g(z) =
√

2 cos(z − θ)êr +
√

2 sin(z − θ)êθ

Finally, the field is given by the scalar product:

h(t, z) = f(z) · κ(t) =
√

2r(t) cos(z − θ(t))

In vector form, the dynamics of κ (Eq.(10)) read:

κ̇ = −1

τ
κ+ J

∫ 2π

0

g(z)φ(h(t, z))
dz

2π

By identification of the components along êr and êθ, we get:

on êr : ṙ = −1

τ
r + J

∫ 2π

0

√
2 cos(z − θ)φ(

√
2r cos(z − θ)) dz

2π

= −1

τ
r + J

∫ 2π

0

√
2 cos(z)φ(

√
2r cos(z))

dz

2π

= −1

τ
r +
√

2JR/π

on êθ : rθ̇ = J

∫ 2π

0

√
2 sin(z − θ)φ(

√
2r cos(z − θ)) dz

2π

= J

∫ 2π

0

√
2 sin(z)φ(

√
2r cos(z))

dz

2π
= 0

(19)

where we used again the results of Eqs.(16) and (17).

Thus, given any initial condition (r(0), θ(0)), the vector κ(t) converges to a point on the circle of radius
r̄ =
√

2τJR/π, according to:
r(t) = r(0) + (1− e−t/τ )(r̄ − r(0))

while the angle θ(t) = θ(0) stays constant.

The flow of the dynamics in the phase plane of (κ1, κ2) is shown on fig.1.



Figure 1: Flow of the dynamics in the phase plane of (κ1, κ2) for the ring model. The continuous set of
attractors forms a circle (dashed black line).


