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ANSWERS — QUESTION SET 13

Exercise 1: Low-dimensional dynamics in a field model

Note: we use the shorthand notation Dz = p(z)dz for the integral with respect to the density of neurons.

1.1 If the field is given by the linear combination:
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then by projection on the function f,, we obtain:
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due to the orthonormality of the functions f,,.
Thus, £, (t) = [i, fu(2)h(t, 2) Dz is the projection of the field h(t,-) on the function f,.
1.2
The steady-state h(t, z) = h(z) is obtained by setting the time derivative <h(t, z) to zero:
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which gives us:
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Method 1. The steady-state coefficients %, are obtained by identification: %, = 7J [, g.(2)¢(h(2’))Dz.

Method 2. Alternatively, the same expression for &, is obtained by projecting Eq.(4) onto f,:
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Moreover, the field h(z) in the integral can be replaced by the linear combination: h(z) = Zle fu(2)Ry,

hence giving the closed-form expression:
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On the other hand, the derivative of the field is given by:
ih(t z) = —fh t,z +J/ th (h(t,2")) Dz
dt " ! ’

Replacing h by Eq.(1), we get:
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By identification of Egs.(7) and (9), one gets directly:
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Again, the field h(t, z) in the integral can be replaced by the linear combination: h(t, z) = 25:1 fu(z)k

to obtain a closed-form expression for the dynamics of the coeflicients «,,.

1.4
Let h(t,z) =3, fu(z)ku(t) + Ah(t, z). Thus, we have:
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On the other hand, the dynamics are given by:
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By identification of Egs.(11) and (12), one gets:
%Ah(t z) = iAh(t,z) = Ah(t,z) = e /TAN0, z)
T

Thus, in the general case: h(t,z) = >, fu(2)r,u(t) + e /T AR(0, 2).
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For any initial condition, the field asymptotically becomes a linear combination of the functions f,, and
the residual term Ah(t, z) decays exponentially. This is why Eq.(1) is a good assumption.

1.5 Coming back to Eq.(9), the dynamics can now be written (with the new terms highlighted in blue):
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so that we get the dynamics:
%ﬁu(t) = —%mu(t) + J/Vgu(z)(b(h(t,z))Dz +1,(t) (14)

The external input thus only results in an external drive to the dynamics of the hidden variables . This
affects the fixed points: the steady state equation (Eq.(6)) is now:

D
e /V u(2)0 (Z_:l fl,(z)fa'y> Dz +1,(1) (15)

Exercise 2: Application: ring model

2.1 The density of neurons is given by p(z) = 1/(27). The measure of the distribution is thus: Dz =

p(z)dz = 2. The orthonormality is satisfied:
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2.2 We look for a steady-state in the form of h(z) = Acos(z) = A/V2f1(2), i.e. k1 = A/V?2, k2 = 0.
The steady-state equation, Eq.(6), writes:
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where we used the fact that ¢(Acos(z)) = R1{Acos(z) > 0} = R1{—n/2 < z < 7/2} for A > 0. For
Fo, we get the self-consistent equation:

- 2 ) dz w/2 ' dz
O0=FRo=71J V2sin(z)¢(Acos z)— = 1.J V2sin(z)R— =0 (17)
0 2T —/2 2

Thus, h(z) = 2rJRcos(z)/m = R1f1(2) + 0 - f2(2) is a steady-state of the field dynamics.

2.3 We have seen that x3(t) = 0 is a steady-state. Thus, we look for a solution of the form: h(t,z) =
A(t) cos(z) = k1(t)V2cos(z), with kg = 0 and initial condition 1(0) = Ay/v/2.

From Eq.(10), one obtains:
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Given A(t) = v/2r1(t) and the initial condition A(0) = Ay, we obtain A(t) = Ag + (1 — e "/7)(A — Ap),
where A = 27JR/m.

The exact same computations can be done for h(t,z) = A(t)sin(z), except that now, x1(t) = 0 is a
steady-state, and A(t) = v/2ka(t) follows the exact same dynamics as Eq.(18).

2.4 Let (r(t),0(t)) be the polar coordinates of the two-dimensional vector k(t) = (k1(t), k2(t)), and
(ér,é9) be the (time-dependent) unit vectors of the polar coordinate system associated with . In this
polar coordinate system, we have:

K =76, ,k =1¢, +rbéy

where the dot denotes the time derivative. The vector f(z) = g(z) = v/2(cos(2), sin(z)) is:
Ff(2) = g(2) = V2cos(z — 0)é, + V2sin(z — 0)ég
Finally, the field is given by the scalar product:

B(t,2) = F(2) - K(t) = V2r(t) cos(z — 6(t))

In vector form, the dynamics of k (Eq.(10)) read:
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By identification of the components along é, and €&y, we get:
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where we used again the results of Eqgs.(16) and (17).

Thus, given any initial condition (r(0),6(0)), the vector k(t) converges to a point on the circle of radius
7 = /27JR/7, according to:
r(t) = r(0) + (1 — e /7)(7 — (0))

while the angle 0(t) = 6(0) stays constant.

The flow of the dynamics in the phase plane of (k1,k2) is shown on fig.1.
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Figure 1: Flow of the dynamics in the phase plane of (k1, x2) for the ring model. The continuous set of
attractors forms a circle (dashed black line).



