

Neural Networks and Biological Modeling

Professor Wulfram Gerstner
Laboratory of Computational Neuroscience

ANSWERS – QUESTION SET 13

Exercise 1: Low-dimensional dynamics in a field model

Note: we use the shorthand notation $D\mathbf{z} = \rho(\mathbf{z})d\mathbf{z}$ for the integral with respect to the density of neurons.

1.1 If the field is given by the linear combination:

$$h(t, \mathbf{z}) = \sum_{\mu=1}^D f_\mu(\mathbf{z}) \kappa_\mu(t) \quad (1)$$

then by projection on the function f_μ , we obtain:

$$\begin{aligned} \int_V f_\mu(\mathbf{z}) h(t, \mathbf{z}) D\mathbf{z} &= \int_V f_\mu(\mathbf{z}) \sum_{\mu'=1}^D f_{\mu'}(\mathbf{z}) \kappa_{\mu'}(t) D\mathbf{z} = \sum_{\mu'=1}^D \kappa_{\mu'}(t) \int_V f_\mu(\mathbf{z}) f_{\mu'}(\mathbf{z}) D\mathbf{z} \\ &= \sum_{\mu'=1}^D \kappa_{\mu'}(t) \delta_{\mu\mu'} = \kappa_\mu(t) \end{aligned} \quad (2)$$

due to the orthonormality of the functions f_μ .

Thus, $\kappa_\mu(t) = \int_V f_\mu(\mathbf{z}) h(t, \mathbf{z}) D\mathbf{z}$ is the projection of the field $h(t, \cdot)$ on the function f_μ .

1.2

The steady-state $h(t, \mathbf{z}) = \bar{h}(\mathbf{z})$ is obtained by setting the time derivative $\frac{d}{dt} h(t, \mathbf{z})$ to zero:

$$\frac{d}{dt} \bar{h}(\mathbf{z}) = 0 = -\frac{1}{\tau} \bar{h}(\mathbf{z}) + J \int_V \sum_{\mu=1}^D f_\mu(\mathbf{z}) g_\mu(\mathbf{z}') \phi(\bar{h}(\mathbf{z}')) D\mathbf{z}' \quad (3)$$

which gives us:

$$\begin{aligned} \bar{h}(\mathbf{z}) &= \tau J \int_V \sum_{\mu=1}^D f_\mu(\mathbf{z}) g_\mu(\mathbf{z}') \phi(\bar{h}(\mathbf{z}')) D\mathbf{z}' \\ &= \sum_{\mu=1}^D f_\mu(\mathbf{z}) \left(\tau J \int_V g_\mu(\mathbf{z}') \phi(\bar{h}(\mathbf{z}')) D\mathbf{z}' \right) = \sum_{\mu=1}^D f_\mu(\mathbf{z}) \bar{\kappa}_\mu \end{aligned} \quad (4)$$

Method 1. The steady-state coefficients $\bar{\kappa}_\mu$ are obtained by identification: $\bar{\kappa}_\mu = \tau J \int_V g_\mu(\mathbf{z}') \phi(\bar{h}(\mathbf{z}')) D\mathbf{z}'$.

Method 2. Alternatively, the same expression for $\bar{\kappa}_\mu$ is obtained by projecting Eq.(4) onto f_μ :

$$\begin{aligned} \bar{\kappa}_\mu &= \int_V f_\mu(\mathbf{z}) \bar{h}(\mathbf{z}) D\mathbf{z} = \int_V f_\mu(\mathbf{z}) \sum_{\mu'=1}^D f_{\mu'}(\mathbf{z}) \left(\tau J \int_V g_{\mu'}(\mathbf{z}') \phi(\bar{h}(\mathbf{z}')) D\mathbf{z}' \right) D\mathbf{z} \\ &= \sum_{\mu'=1}^D \left(\int_V f_\mu(\mathbf{z}) f_{\mu'}(\mathbf{z}) D\mathbf{z} \right) \left(\tau J \int_V g_{\mu'}(\mathbf{z}') \phi(\bar{h}(\mathbf{z}')) D\mathbf{z}' \right) \\ &= \sum_{\mu'=1}^D \delta_{\mu\mu'} \left(\tau J \int_V g_{\mu'}(\mathbf{z}') \phi(\bar{h}(\mathbf{z}')) D\mathbf{z}' \right) = \tau J \int_V g_\mu(\mathbf{z}') \phi(\bar{h}(\mathbf{z}')) D\mathbf{z}' \end{aligned} \quad (5)$$

Moreover, the field $\bar{h}(\mathbf{z})$ in the integral can be replaced by the linear combination: $\bar{h}(\mathbf{z}) = \sum_{\nu=1}^D f_{\nu}(\mathbf{z}) \bar{\kappa}_{\nu}$, hence giving the closed-form expression:

$$\bar{\kappa}_{\mu} = \tau J \int_V g_{\mu}(\mathbf{z}) \phi(\bar{h}(\mathbf{z})) D\mathbf{z} = \tau J \int_V g_{\mu}(\mathbf{z}) \phi \left(\sum_{\nu=1}^D f_{\nu}(\mathbf{z}) \bar{\kappa}_{\nu} \right) D\mathbf{z} \quad (6)$$

1.3

From the expression of the linear combination (Eq.(1)), we have:

$$\frac{d}{dt} h(t, \mathbf{z}) = \sum_{\mu=1}^D f_{\mu}(\mathbf{z}) \frac{d}{dt} \kappa_{\mu}(t) \quad (7)$$

On the other hand, the derivative of the field is given by:

$$\frac{d}{dt} h(t, \mathbf{z}) = -\frac{1}{\tau} h(t, \mathbf{z}) + J \int_V \sum_{\mu=1}^D f_{\mu}(\mathbf{z}) g_{\mu}(\mathbf{z}') \phi(h(t, \mathbf{z}')) D\mathbf{z}' \quad (8)$$

Replacing h by Eq.(1), we get:

$$\begin{aligned} \frac{d}{dt} h(t, \mathbf{z}) &= -\frac{1}{\tau} \sum_{\mu=1}^D f_{\mu}(\mathbf{z}) \kappa_{\mu}(t) + J \int_V \sum_{\mu=1}^D f_{\mu}(\mathbf{z}) g_{\mu}(\mathbf{z}') \phi(h(t, \mathbf{z}')) D\mathbf{z}' \\ &= \sum_{\mu=1}^D f_{\mu}(\mathbf{z}) \left(-\frac{1}{\tau} \kappa_{\mu}(t) + J \int_V g_{\mu}(\mathbf{z}') \phi(h(t, \mathbf{z}')) D\mathbf{z}' \right) \end{aligned} \quad (9)$$

By identification of Eqs.(7) and (9), one gets directly:

$$\frac{d}{dt} \kappa_{\mu}(t) = -\frac{1}{\tau} \kappa_{\mu}(t) + J \int_V g_{\mu}(\mathbf{z}) \phi(h(t, \mathbf{z})) D\mathbf{z} \quad (10)$$

Again, the field $h(t, \mathbf{z})$ in the integral can be replaced by the linear combination: $h(t, \mathbf{z}) = \sum_{\nu=1}^D f_{\nu}(\mathbf{z}) \kappa_{\nu}(t)$ to obtain a closed-form expression for the dynamics of the coefficients κ_{μ} .

1.4

Let $h(t, \mathbf{z}) = \sum_{\mu} f_{\mu}(\mathbf{z}) \kappa_{\mu}(t) + \Delta h(t, \mathbf{z})$. Thus, we have:

$$\frac{d}{dt} h(t, \mathbf{z}) = \sum_{\mu=1}^D f_{\mu}(\mathbf{z}) \frac{d}{dt} \kappa_{\mu}(t) + \frac{d}{dt} \Delta h(t, \mathbf{z}) \quad (11)$$

On the other hand, the dynamics are given by:

$$\begin{aligned} \frac{d}{dt} h(t, \mathbf{z}) &= -\frac{1}{\tau} \left(\sum_{\mu=1}^D f_{\mu}(\mathbf{z}) \kappa_{\mu}(t) + \Delta h(t, \mathbf{z}) \right) + J \int_V \sum_{\mu=1}^D f_{\mu}(\mathbf{z}) g_{\mu}(\mathbf{z}') \phi(h(t, \mathbf{z}')) D\mathbf{z}' \\ &= \sum_{\mu=1}^D f_{\mu}(\mathbf{z}) \left(-\frac{1}{\tau} \kappa_{\mu}(t) + J \int_V g_{\mu}(\mathbf{z}') \phi(h(t, \mathbf{z}')) D\mathbf{z}' \right) - \frac{1}{\tau} \Delta h(t, \mathbf{z}) \end{aligned} \quad (12)$$

By identification of Eqs.(11) and (12), one gets:

$$\frac{d}{dt} \Delta h(t, \mathbf{z}) = -\frac{1}{\tau} \Delta h(t, \mathbf{z}) \quad \Rightarrow \quad \Delta h(t, \mathbf{z}) = e^{-t/\tau} \Delta h(0, \mathbf{z})$$

Thus, in the general case: $h(t, \mathbf{z}) = \sum_{\mu} f_{\mu}(\mathbf{z}) \kappa_{\mu}(t) + e^{-t/\tau} \Delta h(0, \mathbf{z})$.

For any initial condition, the field asymptotically becomes a linear combination of the functions f_μ , and the residual term $\Delta h(t, \mathbf{z})$ decays exponentially. This is why Eq.(1) is a good assumption.

1.5 Coming back to Eq.(9), the dynamics can now be written (with the new terms highlighted in blue):

$$\begin{aligned} \frac{d}{dt} h(t, \mathbf{z}) &= -\frac{1}{\tau} \sum_{\mu=1}^D f_\mu(\mathbf{z}) \kappa_\mu(t) + J \int_V \sum_{\mu=1}^D f_\mu(\mathbf{z}) g_\mu(\mathbf{z}') \phi(h(t, \mathbf{z}')) D\mathbf{z}' + \sum_{\mu=1}^D f_\mu(\mathbf{z}) I_\mu(t) \\ &= \sum_{\mu=1}^D f_\mu(\mathbf{z}) \left(-\frac{1}{\tau} \kappa_\mu(t) + J \int_V g_\mu(\mathbf{z}') \phi(h(t, \mathbf{z}')) D\mathbf{z}' + I_\mu(t) \right) \end{aligned} \quad (13)$$

so that we get the dynamics:

$$\frac{d}{dt} \kappa_\mu(t) = -\frac{1}{\tau} \kappa_\mu(t) + J \int_V g_\mu(\mathbf{z}) \phi(h(t, \mathbf{z})) D\mathbf{z} + I_\mu(t) \quad (14)$$

The external input thus only results in an external drive to the dynamics of the hidden variables κ_μ . This affects the fixed points: the steady state equation (Eq.(6)) is now:

$$\bar{\kappa}_\mu = \tau J \int_V g_\mu(\mathbf{z}) \phi \left(\sum_{\nu=1}^D f_\nu(\mathbf{z}) \bar{\kappa}_\nu \right) D\mathbf{z} + I_\mu(t) \quad (15)$$

Exercise 2: Application: ring model

2.1 The density of neurons is given by $\rho(z) = 1/(2\pi)$. The measure of the distribution is thus: $Dz = \rho(z)dz = \frac{dz}{2\pi}$. The orthonormality is satisfied:

$$\int_0^{2\pi} f_1^2 Dz = \int_0^{2\pi} f_2^2 Dz = \int_0^{2\pi} 2 \cos(z)^2 \frac{dz}{2\pi} = 1 \quad ; \quad \int_0^{2\pi} f_1 f_2 Dz = \int_0^{2\pi} 2 \cos(z) \sin(z) \frac{dz}{2\pi} = 0$$

2.2 We look for a steady-state in the form of $\bar{h}(z) = A \cos(z) = A/\sqrt{2} f_1(z)$, i.e. $\bar{\kappa}_1 = A/\sqrt{2}$, $\bar{\kappa}_2 = 0$. The steady-state equation, Eq.(6), writes:

$$\begin{aligned} \bar{\kappa}_1 &= A/\sqrt{2} = \tau J \int_0^{2\pi} \sqrt{2} \cos(z) \phi(A \cos z) \frac{dz}{2\pi} \\ &= \tau J \int_{-\pi/2}^{\pi/2} \sqrt{2} \cos(z) R \frac{dz}{2\pi} = \sqrt{2} \tau J R \underbrace{\frac{1}{2\pi} \int_{-\pi/2}^{\pi/2} \cos(z) dz}_2 \\ &\Rightarrow A = 2\tau J R / \pi \end{aligned} \quad (16)$$

where we used the fact that $\phi(A \cos(z)) = R \mathbf{1}\{A \cos(z) > 0\} = R \mathbf{1}\{-\pi/2 < z < \pi/2\}$ for $A > 0$. For $\bar{\kappa}_2$, we get the self-consistent equation:

$$0 = \bar{\kappa}_2 = \tau J \int_0^{2\pi} \sqrt{2} \sin(z) \phi(A \cos z) \frac{dz}{2\pi} = \tau J \int_{-\pi/2}^{\pi/2} \sqrt{2} \sin(z) R \frac{dz}{2\pi} = 0 \quad (17)$$

Thus, $\bar{h}(z) = 2\tau J R \cos(z)/\pi = \bar{\kappa}_1 f_1(z) + 0 \cdot f_2(z)$ is a steady-state of the field dynamics.

2.3 We have seen that $\kappa_2(t) = 0$ is a steady-state. Thus, we look for a solution of the form: $h(t, z) = A(t) \cos(z) = \kappa_1(t) \sqrt{2} \cos(z)$, with $\kappa_2 = 0$ and initial condition $\kappa_1(0) = A_0/\sqrt{2}$.

From Eq.(10), one obtains:

$$\begin{aligned} \frac{d}{dt} \kappa_1 &= -\frac{1}{\tau} \kappa_1 + J \int_0^{2\pi} \sqrt{2} \cos(z) \phi(\sqrt{2} \kappa_1 \cos z) \frac{dz}{2\pi} = -\frac{1}{\tau} \kappa_1 + J \int_{-\pi/2}^{\pi/2} \sqrt{2} \cos(z) R \frac{dz}{2\pi} \\ &= -\frac{1}{\tau} \kappa_1 + \sqrt{2} J R / \pi \end{aligned} \quad (18)$$

Given $A(t) = \sqrt{2}\kappa_1(t)$ and the initial condition $A(0) = A_0$, we obtain $A(t) = A_0 + (1 - e^{-t/\tau})(\bar{A} - A_0)$, where $\bar{A} = 2\tau JR/\pi$.

The exact same computations can be done for $h(t, z) = A(t) \sin(z)$, except that now, $\kappa_1(t) = 0$ is a steady-state, and $A(t) = \sqrt{2}\kappa_2(t)$ follows the exact same dynamics as Eq.(18).

2.4 Let $(r(t), \theta(t))$ be the polar coordinates of the two-dimensional vector $\kappa(t) = (\kappa_1(t), \kappa_2(t))$, and $(\hat{e}_r, \hat{e}_\theta)$ be the (time-dependent) unit vectors of the polar coordinate system associated with κ . In this polar coordinate system, we have:

$$\kappa = r\hat{e}_r, \dot{\kappa} = \dot{r}\hat{e}_r + r\dot{\theta}\hat{e}_\theta$$

where the dot denotes the time derivative. The vector $\mathbf{f}(z) = \mathbf{g}(z) = \sqrt{2}(\cos(z), \sin(z))$ is:

$$\mathbf{f}(z) = \mathbf{g}(z) = \sqrt{2}\cos(z - \theta)\hat{e}_r + \sqrt{2}\sin(z - \theta)\hat{e}_\theta$$

Finally, the field is given by the scalar product:

$$h(t, z) = \mathbf{f}(z) \cdot \kappa(t) = \sqrt{2}r(t)\cos(z - \theta(t))$$

In vector form, the dynamics of κ (Eq.(10)) read:

$$\dot{\kappa} = -\frac{1}{\tau}\kappa + J \int_0^{2\pi} \mathbf{g}(z)\phi(h(t, z)) \frac{dz}{2\pi}$$

By identification of the components along \hat{e}_r and \hat{e}_θ , we get:

$$\begin{aligned} \text{on } \hat{e}_r : \quad & \dot{r} = -\frac{1}{\tau}r + J \int_0^{2\pi} \sqrt{2}\cos(z - \theta)\phi(\sqrt{2}r\cos(z - \theta)) \frac{dz}{2\pi} \\ &= -\frac{1}{\tau}r + J \int_0^{2\pi} \sqrt{2}\cos(z)\phi(\sqrt{2}r\cos(z)) \frac{dz}{2\pi} \\ &= -\frac{1}{\tau}r + \sqrt{2}JR/\pi \quad (19) \\ \text{on } \hat{e}_\theta : \quad & r\dot{\theta} = J \int_0^{2\pi} \sqrt{2}\sin(z - \theta)\phi(\sqrt{2}r\cos(z - \theta)) \frac{dz}{2\pi} \\ &= J \int_0^{2\pi} \sqrt{2}\sin(z)\phi(\sqrt{2}r\cos(z)) \frac{dz}{2\pi} = 0 \end{aligned}$$

where we used again the results of Eqs.(16) and (17).

Thus, given any initial condition $(r(0), \theta(0))$, the vector $\kappa(t)$ converges to a point on the circle of radius $\bar{r} = \sqrt{2}\tau JR/\pi$, according to:

$$r(t) = r(0) + (1 - e^{-t/\tau})(\bar{r} - r(0))$$

while the angle $\theta(t) = \theta(0)$ stays constant.

The flow of the dynamics in the phase plane of (κ_1, κ_2) is shown on fig.1.

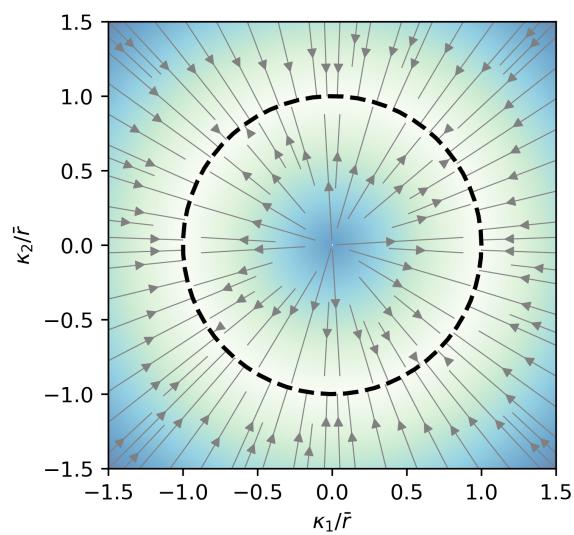


Figure 1: Flow of the dynamics in the phase plane of (κ_1, κ_2) for the ring model. The continuous set of attractors forms a circle (dashed black line).