

Neural Networks and Biological Modeling

Professor Wulfram Gerstner
Laboratory of Computational Neuroscience

QUESTION SET 13

Exercise 1: Low-dimensional dynamics in a field model

We study a recurrent network composed of N rate neurons, where the membrane potential $h_i(t)$ of each neuron $i = 1, \dots, N$ follows the dynamics:

$$\frac{d}{dt}h_i(t) = -\frac{1}{\tau}h_i(t) + \frac{J}{N} \sum_{j=1}^N W_{ij}\phi(h_j(t)) \quad (1)$$

where $\phi(h)$ is a non-linear voltage-to-rate function. We consider that each neuron i has a spatial position \mathbf{z}_i in a space V , and that the density of neurons at position \mathbf{z} is given by the distribution $\rho(\mathbf{z})$. These positions determine the recurrent connections, via the expression:

$$W_{ij} = \sum_{\mu=1}^D f_{\mu}(\mathbf{z}_i)g_{\mu}(\mathbf{z}_j) \quad (2)$$

where f_{μ}, g_{μ} ($\mu = 1, \dots, D$) are continuous functions of the neurons' positions.

In the limit of $N \rightarrow \infty$, the model corresponds to a neural field model, where the membrane potential of each neuron depends on its position: we have $h_i(t) = h(t, \mathbf{z}_i)$. The sum over all neurons j in Eq.(1) can be replaced by an integral over all the positions \mathbf{z}' , so that we obtain the neural field equation:

$$\frac{d}{dt}h(t, \mathbf{z}) = -\frac{1}{\tau}h(t, \mathbf{z}) + J \int_V \sum_{\mu=1}^D f_{\mu}(\mathbf{z})g_{\mu}(\mathbf{z}')\phi(h(t, \mathbf{z}'))\rho(\mathbf{z}')d\mathbf{z}' \quad (3)$$

As a field model, this is an infinite-dimensional dynamical system. Yet, due to the particular form of the connectivity in Eq.(2), it can be reduced to a D -dimensional description. The goal of this exercise is to derive the hidden D -dimensional dynamics.

In this exercise, we assume that the functions f_{μ} are orthonormal:

$$\int_V f_{\mu}(\mathbf{z})f_{\nu}(\mathbf{z})\rho(\mathbf{z})d\mathbf{z} = \delta_{\mu\nu} = \{1 \text{ if } \mu = \nu, \text{ and } 0 \text{ otherwise}\} \quad (4)$$

1.1 Assume that the field $h(t, \mathbf{z})$ is given by a linear combination of the functions f_{μ} , with time-dependent coefficients $\kappa_{\mu}(t)$ ($\mu = 1, \dots, D$); that is:

$$h(t, \mathbf{z}) = \sum_{\mu=1}^D f_{\mu}(\mathbf{z})\kappa_{\mu}(t) \quad (5)$$

What is the expression of each coefficient κ_{μ} in terms of the field $h(t, \mathbf{z})$?

Hint: compute the projection of the field on the function f_{μ} : $\int_V f_{\mu}(\mathbf{z})h(t, \mathbf{z})\rho(\mathbf{z})d\mathbf{z}$.

1.2 We are now interested in the fixed points of Eq.(3). Find a closed-form expression solved by the coefficients κ_{μ} in the steady-state.

Hint: use Eq.(5) to replace the field with the variables κ_μ .

1.3 Starting from the field dynamics of Eq.(3), derive a closed-form expression for the dynamics of the coefficients κ_μ .

Hint: use Eq.(5) to compute the time derivative of the variables $\kappa_\mu(t)$.

1.4 Consider that, at initial time $t = 0$, the field is a linear combination of the functions f_μ , *plus* an additional term:

$$h(t=0, \mathbf{z}) = \sum_\mu f_\mu(\mathbf{z}) \kappa_\mu(0) + \Delta h(\mathbf{z})$$

where $\int_V \Delta h(\mathbf{z}) f_\mu(\mathbf{z}) \rho(\mathbf{z}) d\mathbf{z} = 0$, for all μ . What are the dynamics of Δh ? Why is Eq.(5) a good assumption?

1.5 Consider now that the network receives an external input, given by an additional term in Eq.(3):

$$I^{\text{ext}}(\mathbf{z}) = \sum_{\mu=1}^D f_\mu(\mathbf{z}) I_\mu(t)$$

What are the dynamics of the coefficients κ_μ now? Can the external input affect the fixed points?

Exercise 2: Application to the ring model

We now apply the results of the first exercise to the ring model, in which neurons have angular positions $z_i \in [0, 2\pi[$ uniformly distributed on a ring, and the membrane potential of each neuron i follows the dynamics:

$$\frac{d}{dt} h_i(t) = -\frac{1}{\tau} h_i(t) + \frac{J}{N} \sum_{j=1}^N W_{ij} \phi(h_j(t)) \quad (6)$$

$$W_{ij} = 2 \cos(z_i - z_j) \quad (7)$$

The interactions can be written in the form of Eq.(2), by using the sum expansion of the cosine: we have

$$W_{ij} = 2 \cos(z_i - z_j) = 2 \cos(z_i) \cos(z_j) + 2 \sin(z_i) \sin(z_j) = \sum_{\mu=1}^2 f_\mu(z_i) g_\mu(z_j) \quad (8)$$

where $f_1(z) = g_1(z) = \sqrt{2} \cos(z)$, and $f_2(z) = g_2(z) = \sqrt{2} \sin(z)$.

We consider the limit of $N \rightarrow \infty$, where the membrane potentials are described by a neural field over the ring: $h_i(t) = h(t, z_i)$.

2.1 What is the density of neurons, $\rho(z)$? Check that the orthonormality condition of Eq.(4) is satisfied.

Hint: the distribution of the neurons integrates to 1, i.e. $\int_0^{2\pi} \rho(z) dz = 1$.

In the following, consider the step transfer function given by: $\phi(x) = RH(x)$, where $H(x) = \mathbf{1}\{x > 0\}$ is the Heaviside function, and R some active-state firing rate.

2.2 Find the value of $A > 0$ such that $h_i(t) = A \cos(z_i)$ is a steady-state of the dynamics.

To find the solution, use the field formulation of Eq.(5). The steady state corresponds to: $h(z) = A/\sqrt{2} f_1(z)$, so that $\kappa_1 = A/\sqrt{2}$, and $\kappa_2 = 0$.

2.3 Given the initial condition $h_i(t=0) = A_0 \cos(z_i)$, find the solution to the dynamics. Use your result to express the solution for the initial condition $h_i(t=0) = A_0 \sin(z_i)$.

Hint: look for a solution of the form: $h(t, z) = A(t) \cos(z)$.

2.4 Show that there is a continuous set of attractors of the dynamics, that forms a circle in the space of (κ_1, κ_2) , with radius $\sqrt{2\tau JR}/\pi$. What is the flow of the dynamics in the phase plane of (κ_1, κ_2) ?

Hint: express the dynamics of the vector $\kappa(t) = (\kappa_1(t), \kappa_2(t))$ in polar coordinates.