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Question set 13

Exercise 1: Low-dimensional dynamics in a field model

We study a recurrent network composed of N rate neurons, where the membrane potential hi(t) of each
neuron i = 1, . . . , N follows the dynamics:

d

dt
hi(t) = −1

τ
hi(t) +

J

N

N∑
j=1

Wijφ(hj(t)) (1)

where φ(h) is a non-linear voltage-to-rate function. We consider that each neuron i has a spatial position
zi in a space V , and that the density of neurons at position z is given by the distribution ρ(z). These
positions determine the recurrent connections, via the expression:

Wij =

D∑
µ=1

fµ(zi)gµ(zj) (2)

where fµ, gµ (µ = 1, . . . , D) are continuous functions of the neurons’ positions.

In the limit of N →∞, the model corresponds to a neural field model, where the membrane potential of
each neuron depends on its position: we have hi(t) = h(t, zi). The sum over all neurons j in Eq.(1) can
be replaced by an integral over all the positions z′, so that we obtain the neural field equation:

d

dt
h(t, z) = −1

τ
h(t, z) + J

∫
V

D∑
µ=1

fµ(z)gµ(z′)φ(h(t, z′))ρ(z′)dz′ (3)

As a field model, this is an infinite-dimensional dynamical system. Yet, due to the particular form of the
connectivity in Eq.(2), it can be reduced to a D-dimensional description. The goal of this exercise is to
derive the hidden D-dimensional dynamics.

In this exercise, we assume that the functions fµ are orthonormal:∫
V

fµ(z)fν(z)ρ(z)dz = δµν = {1 if µ = ν, and 0 otherwise} (4)

1.1 Assume that the field h(t, z) is given by a linear combination of the functions fµ, with time-
dependent coefficients κµ(t) (µ = 1, . . . , D); that is:

h(t, z) =

D∑
µ=1

fµ(z)κµ(t) (5)

What is the expression of each coefficient κµ in terms of the field h(t, z)?

Hint: compute the projection of the field on the function fµ:
∫
V
fµ(z)h(t, z)ρ(z)dz.

1.2 We are now interested in the fixed points of Eq.(3). Find a closed-form expression solved by the
coefficients κµ in the steady-state.



Hint: use Eq.(5) to replace the field with the variables κµ.

1.3 Starting from the field dynamics of Eq.(3), derive a closed-form expression for the dynamics of the
coefficients κµ.

Hint: use Eq.(5) to compute the time derivative of the variables κµ(t).

1.4 Consider that, at initial time t = 0, the field is a linear combination of the functions fµ, plus an
additional term:

h(t = 0, z) =
∑
µ

fµ(z)κµ(0) + ∆h(z)

where
∫
V

∆h(z)fµ(z)ρ(z)dz = 0, for all µ. What are the dynamics of ∆h? Why is Eq.(5) a good
assumption?

1.5 Consider now that the network receives an external input, given by an additional term in Eq.(3):

Iext(z) =

D∑
µ=1

fµ(z)Iµ(t)

What are the dynamics of the coefficients κµ now? Can the external input affect the fixed points?

Exercise 2: Application to the ring model

We now apply the results of the first exercise to the ring model, in which neurons have angular positions
zi ∈ [0, 2π[ uniformly distributed on a ring, and the membrane potential of each neuron i follows the
dynamics:

d

dt
hi(t) = −1

τ
hi(t) +

J

N

N∑
j=1

Wijφ(hj(t)) (6)

Wij = 2 cos(zi − zj) (7)

The interactions can be written in the form of Eq.(2), by using the sum expansion of the cosine: we have

Wij = 2 cos(zi − zj) = 2 cos(zi) cos(zj) + 2 sin(zi) sin(zj) =

2∑
µ=1

fµ(zi)gµ(zj) (8)

where f1(z) = g1(z) =
√

2 cos(z), and f2(z) = g2(z) =
√

2 sin(z).

We consider the limit of N →∞, where the membrane potentials are described by a neural field over the
ring: hi(t) = h(t, zi).

2.1 What is the density of neurons, ρ(z)? Check that the orthonormality condition of Eq.(4) is satisfied.

H int: the distribution of the neurons integrates to 1, i.e.
∫ 2π

0
ρ(z)dz = 1.

In the following, consider the step transfer function given by: φ(x) = RH(x), where H(x) = 1{x > 0} is
the Heaviside function, and R some active-state firing rate.

2.2 Find the value of A > 0 such that hi(t) = A cos(zi) is a steady-state of the dynamics.

To find the solution, use the field formulation of Eq.(5). The steady state corresponds to: h(z) =
A/
√

2f1(z), so that κ1 = A/
√

2, and κ2 = 0.

2.3 Given the initial condition hi(t = 0) = A0 cos(zi), find the solution to the dynamics. Use your result
to express the solution for the initial condition hi(t = 0) = A0 sin(zi).



H int: look for a solution of the form: h(t, z) = A(t) cos(z).

2.4 Show that there is a continuous set of attractors of the dynamics, that forms a circle in the space
of (κ1, κ2), with radius

√
2τJR/π. What is the flow of the dynamics in the phase plane of (κ1, κ2)?

H int: express the dynamics of the vector κ(t) = (κ1(t), κ2(t)) in polar coordinates.


