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1. Aims and Challenges

Visual cortex
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Visual Perception
—>weak contrasts
->world IS continuous



1. Aims and Challenges: sense of direction

Sense of direction
- Internal compass
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1.review: mean-field arguments

Single population
full

\_ X ° All neurons recelve the same
total Input current (‘mean field’)
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1. Review: mean-field arguments

All neurons recelive the same total input current (‘mean field’)

(1) = Joq ACt) + T7()
/ AN Ultra-short current pulse [

(1) = ja(s) A(t —s)ds+ | #4(t)

fully
connected |
All spikes, all neurons
| ™ (ta(t t )+ 1 ]

.

Index 1 disappears




1. Review: mean-field aiso works for random coupling

full connectivity random: prob p fixed random: number K
of Inputs fixed
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Image: Gerstner et al.
Neuronal Dynamics (2014)



1. Review: stationary state/asynchronous activity

Homogeneous network
All neurons are identical,

. . A(t)= Ao= const
Single neuron rate = population rate | ()= Ao= b

=25
2
[
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Single P

constant Input F szl L
neuron w230 |
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Gain function at appropriate noise level

frequency (single neuron) v =1/(s)  rate=1/(meaninterval)



1. Review : mean-field arguments for homogeneous popuilation

- single neuron is driven by the ‘population activity’ of all others

- all neurons In populations receive the same Input

- mean-field arguments work for fully connected and randomly
connected populations

- In the stationary state, the single neuron firing rate Is equal to
the ‘population activity’ of a homogeneous population

- In the stationary state, ‘population activity’ can be predicted by
(1) single neuron gain function (-1 curve)
(1) external input
(111) Intra-population coupling strength

- In the stationary state, choice of neuron model irrelevant

(apart from gain function/f-1 curve)



1. Aims and challenges

Mathematical aims:

(1) /
- beyond stationary states W
— transients? "

- more than one population
—— how many? continuum?

Cognitive Modeling aims:

- functional consequences
— Visual perception?
— sense of direction?

Visual cortex



1. Aims and challenges: compass and perception
-

Sense of direction
- Internal compass

Visual Perception
—>weak contrasts
->world 1S continuous
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2. Aims of this section: Transients

- beyond stationary states
—— transients?

- but then neuron model matters!

— INntroduce generalized
Integrate-and-fire models:
- Spike Response Model (SRM)
- Generalized Linear Model (GLM)



2. Leaky Integrate-and-Fire Model

1
j Spike emission
— g
reset
0 N
— NI
4 . N

el = —(U—Ugy) + RI(T) linear

U (t) =9 = Flre+reset u —> U_ threshold
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2. Generalized Integrate-and-Fire Model

—
u
A

Leaky U .-

Integate-and-Fire Model:

Srike emission '

passive membrane 1

Bl
VAR
:thresthf"d Input spike causes an EPSP
=5E = excitatory postsynaptic potential
\ -output spikes are events
equivalent -generated at threshold
description

- add |717(s)

\ -after spike: reset/refractoriness

(spike afterpotential)



Spike Response Model (SRM) Gerstner et al.,

1992,2000

Generalized Linear Model (GLM) Truccolo et al., 2005

/ w Pillow et al. 2008
(1) s \ G -9 : St \
ﬁ/\/\/\[ﬁ K(S)/@ :w ] S ‘ ‘ f) Y,
. ﬂ”;@ f @
votential  u(t)=[7(s)st-s)ds +[  x(s)1(t—s)ds+U,

firing Intensity  p(t)= f(u(t) -9

(escape noise)

e.g.

p(t)= p, exp[~-]



2. Leaky Integrate-and-Fire Model: iInput potential

r

d
-—U=—(U—-U_.,)+ RI(t

U(E) = Uy + Input potential + reset potential



Spike Response Model (SRM) Gerstner et al.,

1992,2000

Generalized Linear Model (GLM) Truccolo et al., 2005

-

AN K
-

h(t)

:>:

w Pillow et al. 2008
-

t

potential U(t)= U, +IOOO K(s)1(t—s)ds+ | 7(s)S(t—s)ds

h(t)

U(E) = Uy + Input potential + reset potential



2. Transients in a population of uncoupled neurons
/ — \ | l | | I|

t—5t+3)
N At
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potential population A(t) =
N / activity

AO N\ A(t) = F(h(t)) = F(| x(s)1 (t —s)ds)
B ) A(t) = g(1 (1))

A(f)




2. Transients in a population of uncoupled neurons
- — B

(1 0200 |
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2. Transients in a population of neurons: simulations
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2. Transients in a population of neurons: simulations

~ Population
- 50 000 neurons

- 20 percent inhibitory

- randomly connected Connections
4000 external

/ 4000 within excitatory

input {low rate 1000 within inhibitory
high rate

@ @) IR HE
ARl m G




2. Transients in a population of neurons: simulations
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2. Transients for populations of noisy neurons

uncoupled population
of SRM neurons with noise (escape noise)

0.4 0.4 — —
_ - low noise | . - high noise -
= 0.2 | I T T o2 | -
<T - \ s Y N T E !
._ L% - T _.11. Fu'y T
80 90 100 110 120 80 Qo 100 110 120
t[ms] 't[I'T'IE]
It [ — hO) | t) [ — h®
fast transient slow transient

A(t) = g(I(t)) N — E(h(t
but transient oscillations (A( ) (h(t)




2. High-noise activity equation

Membrane potential caused by input (escape noise)
rSh(t) =-ht)+ R 1(t)

- high noise

= 0.2 | —

BD. - IQDl | 1DG‘1‘1D l‘l120
t [Mms]

M) | — 1

slow transient

A(t) = F(h(1))

In the limit of high noise,



2. High-noise activity equation

Population activity (escape noise)
A(t) = F(h(t)) 0.4 .

. . - high noise
Membrane potential caused by ingut | 9n e

T% h(t) — _h(t) +R | (t) i - M

00 b
| (t) = 1°°(t) + 1 ™™ (1) 80 90 100 110 120

t [Mms]
1) = 1) +J, g A(t) .
7 O L

1(t) =17 (1) + I, g F(h(t)) slow transient
A(t) = F(h(t))
1 population = 1 differential equation




2. Summary: Transients and population equations

4 h() =—h@®)+R 1)+ F(h(t))

- population activity equation
- smooth transient
- Input potential determines activity

A=F(h(t))

- valid in high-noise regime
- misses sharp transients
- misses transient oscillations



Quiz 1, now

Population equations
A single homogeneous population of neurons is driven by a step
current causing a transient response of the population activity.

| | A single cortical model population can exhibit transient oscillations
| | Transients are always sharp

| | Transients are always slow

| ] In a certain limit transients can be slow

| | An escape noise model In the high-noise limit
has transients which are always slow

| ] A single population described by a
single first-order differential equation (no integrals/no delays)
can exhibit transient oscillations
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J. Interacting Populations: how many populations?

Visual cortex



3. Review: Receptive fields with Orientation Tuning

oW o
‘e(\’@&\ Receptive fields:
o3 ot visual cortex V1
rate e
7 T
O 2 Orientation selective

Stimulus orientation



population of neighboring neurons:

as we move along cortical

urface:

similar orientations

_ _ pinwheel
orientation changes
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Image: Gerstner et al.
Neuronal Dynamics (2014)

Bonhoeffer&Grinvald, 1991;
Bressloff&Cowan, 2002:
Kaschube et al. 2010



rate

0 2
Stimulus orientation



Coarse coding

Many cells

(from different columns)

respond to a single
timulus with different rate

rate

Oriented stimulus - no discrete columns
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4. multipie popuiations - continuum

Mathematical aim:

perform continuum limit



4. multipie popuiations - continuum




4. Field eguation (continuum model) Wilson and Cowan, 1973

Population activity Fre g

A(x,t) = F(h(x,t)) y
Membrane potential caused by input 2 _;
r2h(x,t) =-h(x,t)+ R 1(x,t) =



4. Field eguation (continuum model) Wilson and Cowan, 1973

Population activity FTX 0|

A(x,t) = F(h(x,t)) y
Membrane potential caused by input 2 _;
r2h(x,t) =-h(x,t)+ R 1(x,t) =

1 (X,t) = 12(x, 1) + 1™ (X, 1)

| ™M (X, t) = djw(x— X', t) A(x',t)dx’

r4h(x,t) =—h(x,t)+ R1%(x,t) +0 j w(x—x")F (h(x',t))dx’

1 field = 1 integro-differential equation



4 coupling across continuum: Mexicanhat
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Effective long-range negative interaction with local inhibition



T% h(X,t) = —h(X,t) + R I eXt(X,t) -I—d JW(X_ Xl)F(h(X',t))dX'

-field equations = population activity
models In the spatial continuum
-coupling often distance-dependent

W(X, X") = W(| X = X'|)
-activity A= F(h(t))
-effective long-range inhibition
iInstead of local inhibitory neurons
-variable x can represent space or
abstract quantity (e.g., orientation)
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9. TwWo Solution Types (ring model)

Coupling: Input-driven regime
A
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Image: Neuronal Dynamics,
Gerstner et al.,
Cambridge Univ. Press (2014),



9. TwWo Solution Types (ring model)

Coupling: Input-driven regime
A
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Bump attractor regime

Image: Neuronal Dynamics,
Gerstner et al.,
Cambridge Univ. Press (2014),



9. dolution type A: homogeneous solution=input driven regime

Field Equations:
Wilson and Cowan, 1973

Edge enhancement

A(X)
| Weak lateral connectivity
Possible application
visual cortex cells:
(see next part)
0 X




J. Solution type B: hump solution

Field Equations:
Wilson and Cowan, 1973

Bump formation:
A activity profile in the absence of input

strong lateral connectivity




J. Solution type B: hump solution

Field Equations:

. Wilson and Cowan, 1973
Bump formation:

activity profile in the absence of input
A - strong lateral connectivity;
- long-range Inhibition
Possible application
- head direction cells
| - (see part 7)
0 # - spatial working memory

A Compte, N Brunel, PS Goldman-Rakic, XJ Wang (2000) Synaptic
mechanisms and network dynamics underlying spatial working
memory, Cerebral Cortex 10 (9), 910-923




A(6,t) = A(6) Spiridon&Gerstner
Comparison: simulation of neurons
0.3 e, @Nd Macroscopic field equation

J 4|5 EIEJ ‘IEIE “""TE[! : H
Preferred orientation (deq)
Continuum: stationary profile Gorsverstal,

Cambridge Univ. Press (2014),



J. Solution types: muitiple bump solutions with local interaction

time
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Image: Neuronal Dynamics,
Gerstner et al.,
Cambridge Univ. Press (2014),



9. TWo Solution Types (ring model)

Input-driven regime;

. . homogeneous solution
Two stationary solution types:

- homogeneous for flat Input
-> responds to Input
- bump attractor for flat input
- moves to location of input

700 200 300 700 500

Bump attractor regime

Image: Neuronal Dynamics,
Gerstner et al.,
Cambridge Univ. Press (2014),



Solution of Fleld eqguations (1-dimensional ring model)
[ ] If a solution exists with a single bump localized around Xo,
there are also bump solutions at other locations.
| ] If the Interaction iIs Mexican hat, a stationary solution can have
at most a single bump
| | A homogeneous solution (constant in time and space)
always exists
| | A homogeneous solution (constant in time and space)
IS always stable
[ ]It I Increase in a model the spatial scale of inhibition, the activity
profile of an existing bump solution becomes broader
[ ]If | Increase in a model the amplitude of excitation and the spatial
scale of inhibition, a bump solution Is more likelly to exist
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6. homogeneous/input driven solution

Field Equations

for edge enhancement
Edge enhancement Wilson and Cowan, 1973

A(X) (Weak lateral connectivity) Grossberg, 1973

Possible application to
visual cortex cells:
cpntrast enhancement in
I()T) - orientation
- - location




6. Perception - grid illusion

Image: Neuronal Dynamics,
Gerstner et al.,
Cambridge Univ. Press (2014),



6. Perception - grid illusion W

Image: Neuronal Dynamics,
Gerstner et al.,
Cambridge Univ. Press (2014),




6. Perception — Mach bands Mach, 1865, 1906
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Image: Neuronal Dynamics,
Gerstner et al.,
Cambridge Univ. Press (2014),



6. Perception — Mach bands Mach, 1865, 1906
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Image: Neuronal Dynamics,
Gerstner et al.,
Cambridge Univ. Press (2014),



6. Mach bands In a continuum model

0.8 |
0.6 |

Mexican-hat coupling - .
~0.2 \_/ \/

2
r [a.u.]

ig. 18.9: A. Mach bands in a field model with mexican hat |
Image: Neuronal Dynamics,

Gerstner et al.,
Cambridge Univ. Press (2014),



- 6.Field models and Perception: contrast enhancement

B A
-L/2 =:L/ 2
-
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‘L/2 0 L/2 N

* 0.8 |

Shriki et al. (2003): 0.6 |

Ring model in input-driven regime, > 04|
driven by broad input (dashed line), 0.2 | ;
causes sharp activity bump; 0| ;
See also: Ben-Yishai et al. 1995; 02—/ N

Hansel and Sompolinsky, 1998 X-y
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Fig. 18.12: Surround suppression.

Image: Neuronal Dynamics,
Gerstner et al.,
Cambridge Univ. Press (2014),

Ozeki et al. (2009).
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Fig. 18.13: Network stabilized by local inhibition. The schematic model could potentially
explain why larger gratings lead not only to less excitatory input gexe, but also to less
inhibitory input gj,,. A. The firing rate as a function of the phase of the moving grating for
the three stimulus conditions (blank screen, small and large grating). B.Top: Excitatory
imput into the cell. Bottom: Inhibitory input into the same cell. As in A, left, middle
and right correspond to a blank screen, a small grating and or a large grating. Note that
the larger grating leads to a reduction of both excitation and inhibition; adapted from
(Ozeki et al., 2009). C. Network model with long range excitation and local inhibition.
Excitatory neurons within a local population excite themselves (feedback arrow), and also
send excitatory input to inhibitory cells (downward arrows). Inhibitory neurons project
to local excitatory neurons.



6. Field models and Perception

Psychophysics:

-contrast enhancement Is a stable
psychophysical phenomenon

-Mach bands are but one example

Neuronal:

-the activity of V1 cell first increases and
then decreases with size of stimulus

-both excitatory and inhibitory input
Into a cell show similar changes

Modeling

-continuum model with Mexican-hat
Interaction in the input-driven regime
for Mach bands

- Receptive Field tuning:
contrast enhancement = ‘sharpening’
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1. Head direction cells:aims

sense of direction

Model
memory of direction related
to bump solution of ring model



1. Bump solution

Basic phenomenology  Bump formation

strong lateral connectivity

~ head direction cells -
0 “  bump of active cells
- Indicate current orientation



1. Hippocampal place cells

et b
=
s

rat brain
Place fields clectrode
_— synapses. .
| axon
< SOMma

dendrites

yramidal cells



Main property: encoding the animal’s location




Main property: encoding the animal ’s headlng

( r(6) ' ' /*
\\ ")

L |
b £
\xﬁﬁf (I) )

oD/\MWM Lans™V, 3
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Taube and Muller, 9

Preferred firing (l,llrectlon

Hippocampus 1998,



1. Head direction cells

Main property: encoding the animal ’s allocentric heading
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1. Head direction cells

. head direction 6

Image: Neuronal Dynamics,

Gerstner et al.,
Cambridge Univ. Press (2014),
Adapted from Zugaro et al. (2003), J. Neuroscl. 23:3478-3482



1. Head direction cells in the fly brain
Similar to the rat: head direction cells in fly brain (ellipsoid body)

t=38.1s t=43.4s t =60.0s t=113.4s

simissonsreen: ) Y ICY
)

- bump activity persists in the dark

- cue Is landmark configuration
Seelig and Jarayaman, Nature, 2015,

activity Iin
ellipsoid body

Neural dynamics for landmark orientation and anqular path
Integration



head direction cells
- are sensitive to direction of head
with respect to visual cues

- keep their activity If light is switched off
- exist In rodents and In flies

- can be explained by bump solution In ring model

Taube and Muller, Hippocampus 1998,

Zugaro et al., J. Neuroscl. 2003

Seelig and Jarayaman, Nature, 2015

Redish et al., Network, 1996, Zhang, J. Neurosci. 1996



Continuum model provides understanding for:
- head direction cell
-> bumps of activity
- spatial working memory
-> bumps of activity
- place cells
-> bumps of activity
- contrast enhancement and some visual illusions
- Input driven regime
- receptive field properties
- Input driven regime



_1.5elected References: Field Models
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