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→weak contrasts

→world is continuous
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Visual cortex 

Visual Perception

→weak contrasts

→world is continuous



Single population

full connectivity

1. review: mean-field arguments 

All neurons receive the same 

total input current (‘mean field’)
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1. Review: mean-field arguments 

Ultra-short current pulse
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1. Review:  mean-field also works for random coupling 

full connectivity random: prob p fixed

Image: Gerstner et al.

Neuronal Dynamics (2014)

random: number  K 

of inputs fixed



s/1=frequency (single neuron)

Homogeneous network

All neurons are identical,

Single neuron rate = population rate
A(t)= A0= const

Single 

neuron

0 0( )g I A = =

1. Review: stationary state/asynchronous activity 

rate=1/(meanInterval)

0I c=

constant  input

Gain function at appropriate noise level



1. Review : mean-field arguments for homogeneous population 

- single neuron is driven by the ‘population activity’ of all others

- all neurons in populations receive the same input

- mean-field arguments work for fully connected and randomly

connected populations

- in the stationary state, the single neuron firing rate is equal to 

the ‘population activity’ of a homogeneous population

- in the stationary state, ‘population activity’ can be predicted by

(i)   single neuron gain function (f-I curve)  

(ii)  external input 

(iii) intra-population coupling strength

- in the stationary state, choice of neuron model irrelevant  

(apart from gain function/f-I curve)
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1. Aims and challenges

Visual cortex 

- beyond stationary states

- more than one population

- functional consequences

visual perception?

sense of direction?

transients?

how many? continuum?

Mathematical aims:

Cognitive Modeling aims:



1. Aims and challenges: compass and perception

Sense of direction

→ internal compass

Visual Perception

→weak contrasts

→world is continuous
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2. Aims of this section: Transients

- beyond stationary states

transients?

- but then neuron model matters!

introduce generalized 

integrate-and-fire models:

- Spike Response Model (SRM)

- Generalized Linear Model (GLM)
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2. Leaky Integrate-and-Fire Model



-output spikes are events

-generated at threshold

-after spike: reset/refractoriness

Input spike  causes an EPSP

= excitatory postsynaptic potential



Spike emission

u
u

Leaky 

Integate-and-Fire Model:

passive membrane 

+ threshold

+ reset 

( )sadd           (spike afterpotential)

equivalent

description

2. Generalized Integrate-and-Fire Model



Spike Response Model (SRM)

Generalized Linear Model (GLM)
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2. Leaky Integrate-and-Fire Model: input potential

)()( tRIuuu
dt

d
rest +−−=

( ) += restutu +input potential reset potential



Spike Response Model (SRM)

Generalized Linear Model (GLM)
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Gerstner et al.,

1992,2000
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2. Transients in a population of uncoupled neurons 
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Which would you choose?

2. Transients in a population of uncoupled neurons 
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2. Transients in a population of neurons: simulations 



2. Transients in a population of neurons 



Connections
4000 external

4000 within excitatory

1000 within inhibitory

Population
- 50 000 neurons

- 20 percent inhibitory

- randomly connected

-low rate

-high rate
input

2. Transients in a population of neurons: simulations 



Population
- 50 000 neurons

- 20 percent inhibitory

- randomly connected

100 200time [ms]
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50

u [mV]

100

0

N
e

u
ro

n
 #

 

32340

32440

100 200time [ms]50

2. Transients in a population of neurons: simulations 

-low rate

-high rate
input



low noise

I(t)
h(t)

noise-free

of SRM neurons with noise (escape noise)

uncoupled population

low noise

fast transient

I(t)
h(t)

high noise

slow  transient
))(()( tIgtA 

but transient oscillations
( ) ( ( ))A t F h t=

2. Transients for populations of noisy neurons 



I(t)
h(t)

(escape noise)

high noise

slow  transient
( ) ( ( ))A t F h t=

)()()( tIRthth
dt
d +−=

Membrane potential caused by input

In the limit of high noise,

2. High-noise activity equation 
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(escape noise)

high noise

slow  transient
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Population activity

Membrane potential caused by input
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1 population = 1 differential equation

2. High-noise activity equation 



2. Summary: Transients and population equations

- population activity equation

- smooth transient

- input potential determines activity

- valid in high-noise regime

- misses sharp transients 

- misses transient oscillations

))(( thFA =

( ) ( ) ( ) ( ( ))extd
dt

h t h t R I t F h t = − + +



Quiz 1, now

Population equations

A single homogeneous population of neurons is driven by a step 

current  causing a transient response of the population activity. 

[ ] A single cortical model population can exhibit transient oscillations

[ ] Transients are always sharp

[ ] Transients are always slow

[ ] in a certain limit transients can be slow

[ ] An escape noise model  in the high-noise limit

has  transients which are always slow

[ ] A single population described by a 

single first-order differential equation  (no integrals/no delays) 

can exhibit transient oscillations
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3. Interacting Populations: how many populations? 

I(t)

)(tAn

Visual cortex 



Receptive fields:

 visual cortex V1

Orientation selective


2


0

rate

Stimulus orientation

3. Review:  Receptive fields with Orientation   Tuning



Visual cortex 

Image: Gerstner et al.

Neuronal Dynamics (2014)

Bonhoeffer&Grinvald, 1991; 

Bressloff&Cowan, 2002; 

Kaschube et al. 2010

3.  Orientation Map 

pinwheel
population of neighboring neurons: similar orientations

as we move along cortical surface: orientation changes




2


0

rate

Stimulus orientation

Cell 1

3. Do Orientation Columns exist? Do identical cells exist? 




0

rate

Cell 1 Cell 5

2



Oriented stimulus

Coarse coding

Many cells

(from different columns) 

respond to a single

stimulus with different rate

3.  Do Orienation colums exist? Do identical cells exist? 

→ no discrete columns
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3.  multiple populations → continuum
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3.  multiple populations → continuum
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4.  multiple populations → continuum

Mathematical aim: 

perform continuum limit





4.  multiple populations → continuum



( , ) ( ( , ))A x t F h x t=

( , ) ( , ) ( , )d
dt

h x t h x t R I x t = − +

Population activity

Membrane potential caused by input

4. Field equation (continuum model) 

max

F

F

Wilson and Cowan, 1973
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Population activity

Membrane potential caused by input
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4. Field equation (continuum model) 

max

F

F

Wilson and Cowan, 1973
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4.  coupling across continuum: Mexican hat

x

Mexican hat

local excitation,

long-range inhibition

|)'(|)',( xxwxxw −=

)'( xx −

'x
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4. more realistic cortical coupling

Effective long-range negative interaction with local inhibition



( , ) ( , ) ( , ) ( ') ( ( ', )) 'extd
dt

h x t h x t R I x t d w x x F h x t dx = − + + −

4. Summary: Field equations and coupling

-field equations = population activity

models in the spatial continuum

-coupling often  distance-dependent

-activity

-effective long-range inhibition

instead of local inhibitory neurons 

-variable x can represent space or

abstract quantity (e.g., orientation)   

|)'(|)',( xxwxxw −=
))(( thFA =
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5.  Two Solution Types (ring model)

Coupling: Input-driven regime

Bump attractor regime

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014),



5.  Two Solution Types (ring model)

Coupling: Input-driven regime

Bump attractor regime

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014),



x
0

A(x)
Edge enhancement

Weak lateral connectivity

I(x)

Possible application

visual cortex  cells:

(see next part)

Field Equations:

Wilson and Cowan, 1973

5. Solution type A: homogeneous solution=input driven regime




0

A

Bump formation:

  activity profile in the absence of input
strong lateral connectivity

5. Solution type B: bump solution

Field Equations:

Wilson and Cowan, 1973




0

A

Bump formation:

  activity profile in the absence of input
- strong lateral connectivity;

- long-range inhibition

Possible application

- head direction cells

→ (see part 7)

- spatial working memory

5. Solution type B: bump solution

A Compte, N Brunel, PS Goldman-Rakic, XJ Wang (2000) Synaptic 

mechanisms and network dynamics underlying spatial working 

memory, Cerebral Cortex 10 (9), 910-923

Field Equations:

Wilson and Cowan, 1973
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Continuum: stationary profile 



Comparison: simulation of neurons

   and macroscopic field equation

Spiridon&Gerstner

5.  Solution type B: bump solution

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014),



5.  Solution types: multiple bump solutions with local interaction

time

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014),



5.  Two Solution Types (ring model)

Coupling:
Input-driven regime:

homogeneous solution

Bump attractor regime

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014),

Two stationary solution types:
- homogeneous for flat input

→ responds to input

- bump attractor for flat input

→ moves to location of input



Quiz

Solution of Field equations (1-dimensional ring model)

[ ] If a solution exists with a single bump localized around  x0,

there are also bump solutions at other locations. 

[ ] If the interaction is Mexican hat, a stationary solution can have

at most a single bump 

[ ] A homogeneous solution (constant in time and space) 

always exists

[ ] A homogeneous solution (constant in time and space) 

is always stable

[ ] If I increase in a model the spatial scale of inhibition, the activity 

profile of  an existing  bump  solution becomes broader

[ ] If I increase in a model the amplitude of excitation and the spatial

scale of inhibition, a bump solution is more likeliy to exist
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x
0

A(x)

Edge enhancement

(Weak lateral connectivity)

I(x)

Possible application to

visual cortex  cells:

contrast enhancement in

- orientation 

- location

Field Equations 

for edge enhancement

Wilson and Cowan, 1973

Grossberg, 1973

6. homogeneous/input driven solution  



6. Perception - grid illusion 

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014),



6. Perception - grid illusion 

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014),



Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014),

6. Perception – Mach bands Mach, 1865, 1906



Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014),

6. Perception – Mach bands Mach, 1865, 1906



Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014),

6. Mach bands in a continuum model 

Mexican-hat coupling



6. Field models and Perception: contrast enhancement

Shriki et al. (2003):

Ring model in input-driven regime,

driven by broad input (dashed line),

causes sharp activity bump;

See also: Ben-Yishai et al. 1995; 

Hansel and Sompolinsky, 1998

contrast enhancement

→ Sharpening



6: Field models and Perception: surround suppresion

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014),

Ozeki et al. (2009):



6.  Field models and Perception
Psychophysics:

-contrast enhancement is a stable

psychophysical phenomenon

-Mach bands are but one example

Neuronal:

-the activity of V1 cell first increases and

then decreases with size of stimulus

-both excitatory and inhibitory input 

into a cell show similar changes

Modeling

-continuum model with Mexican-hat 

interaction in the input-driven regime

for Mach bands 

- Receptive Field tuning:

contrast enhancement = ‘sharpening’
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7. Head direction cells: aims 

sense of direction

Model

memory of direction related

to bump solution of ring model



Basic phenomenology 


0

A
Bump formation

strong lateral connectivity

Possible application:

head direction cells  -

bump of active cells

→ indicate current orientation

7. Bump solution  



rat brain

CA1

CA3

DG

pyramidal cells

soma

axon

dendrites

synapses
electrodePlace fields

7. Hippocampal place cells  



Main property: encoding the animal’s  location

place 

field 

.7. Hippocampal place cells  



Main property: encoding the animal ’s  heading

 
 

Preferred firing direction

r  () i 

 
 i 

7. Head direction cells  

Taube and Muller, 

Hippocampus 1998,



Main property: encoding the animal ’s allocentric heading

Preferred firing direction

r  () i 

 
 i 

0

90

180

270 300

7. Head direction cells  



7. Head direction cells  

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014),

Adapted from Zugaro et al. (2003), J. Neurosci. 23:3478-3482



Seelig and Jarayaman, Nature, 2015,

Neural dynamics for landmark orientation and angular path 

integration

stimulus on screen:

activity in 

ellipsoid body

- bump activity persists in the dark

- cue is landmark configuration

Similar to the rat: head direction cells in fly brain (ellipsoid body)

7. Head direction cells in the fly brain  



7. Head direction cells: summary 

head direction cells

- are sensitive to direction of head

with respect to visual cues

- keep their activity if light is switched off

- exist in rodents and in flies

- can be explained by bump solution in ring model 

Taube and Muller, Hippocampus 1998,

Zugaro et al., J. Neurosci.  2003

Seelig and Jarayaman, Nature, 2015

Redish et al., Network, 1996, Zhang, J. Neurosci. 1996



7. Summary: field models  

Continuum model provides understanding for:

- head direction cell 

→ bumps of activity

- spatial working memory

→ bumps of activity

- place cells

→ bumps of activity

- contrast enhancement and some visual illusions

→ input driven regime

- receptive field properties

→ input driven regime
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