

# Computational Neuroscience: Neuronal Dynamics of Cognition



## Neuronal Populations

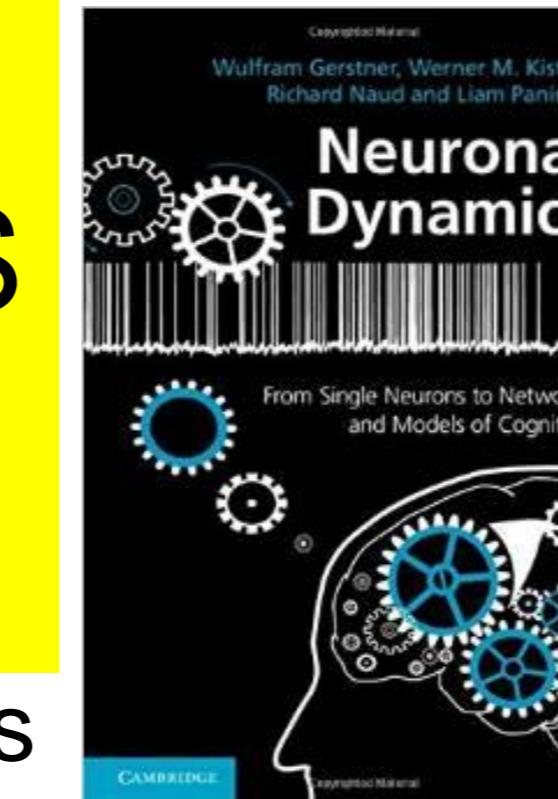
Wulfram Gerstner

EPFL, Lausanne, Switzerland

*Reading:*  
**NEURONAL DYNAMICS**

- Ch. 12.1 – 12.4.3  
(except Section 12.3.7)

Cambridge Univ. Press



### 1. Population activity

- definition and aims

### 2. Cortical Populations

- columns and receptive fields

### 3. Connectivity

- cortical connectivity
- model connectivity schemes

### 4. Mean-field argument

- input to one neuron

### 5. Stationary mean-field

- asynchronous state: predict activity

### 6. Random Networks

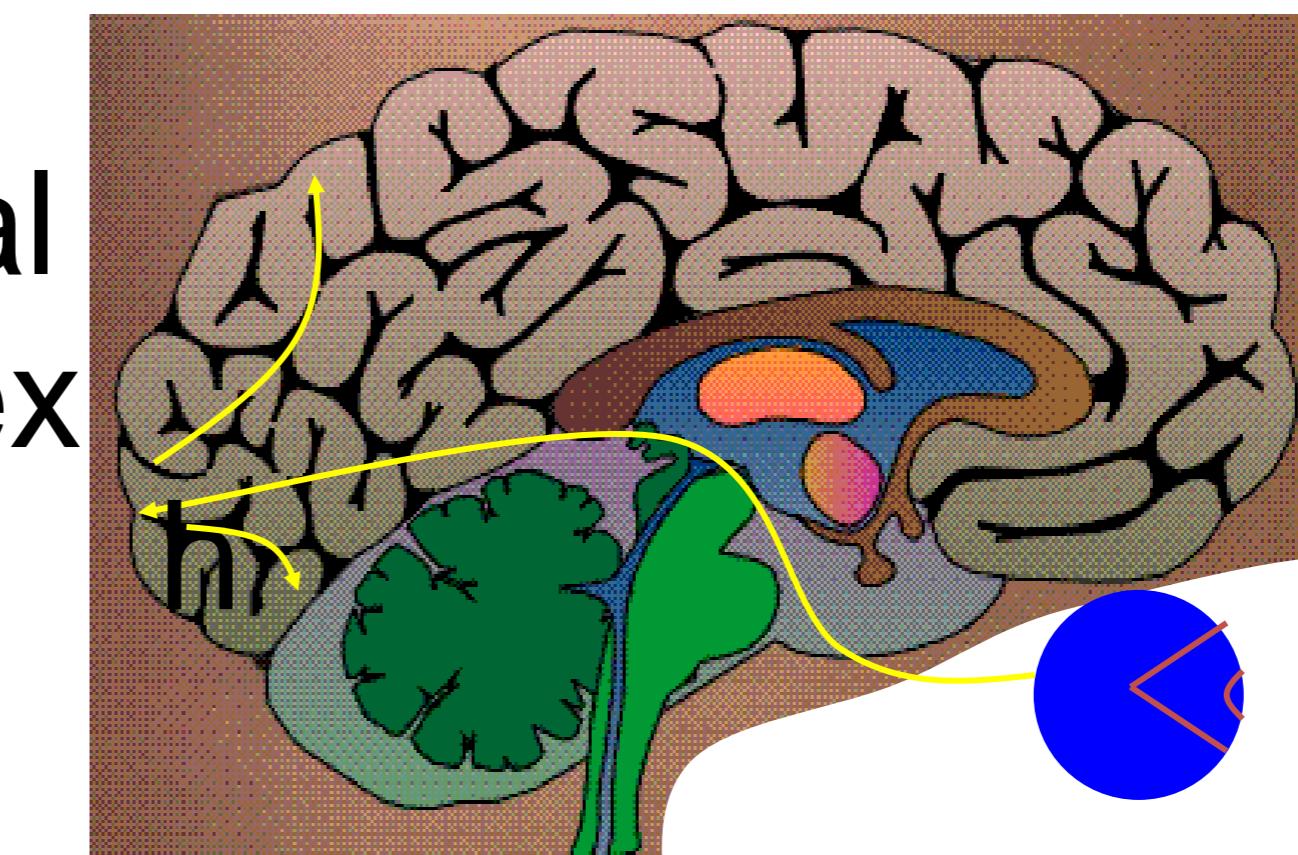
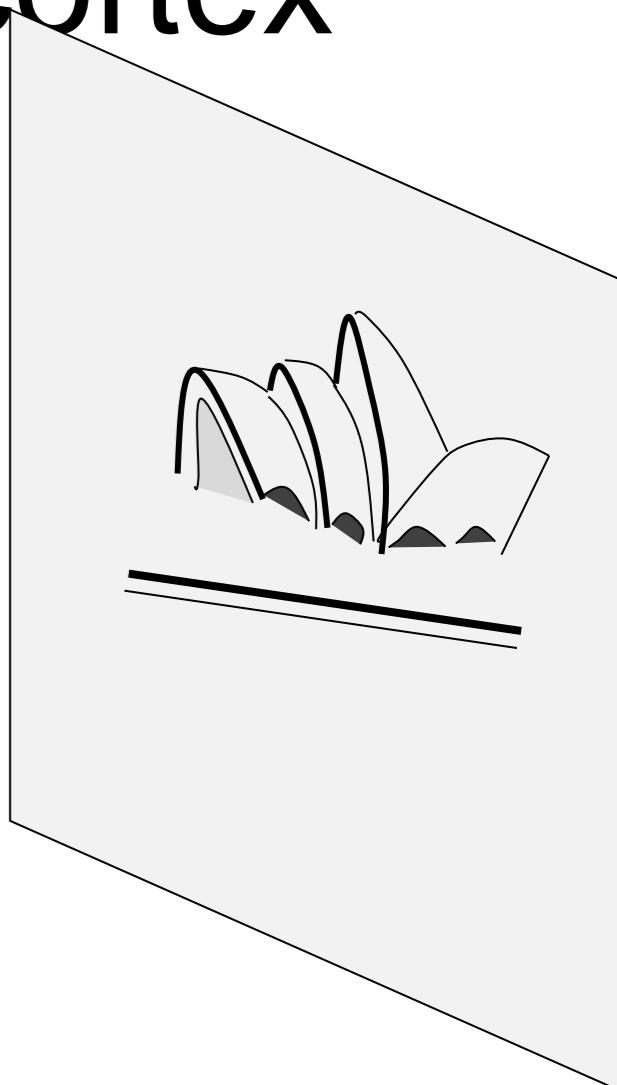
- Balanced state

# 1. review: the brain

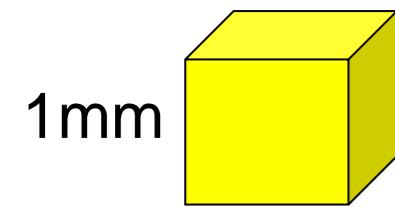
motor cortex

visual cortex

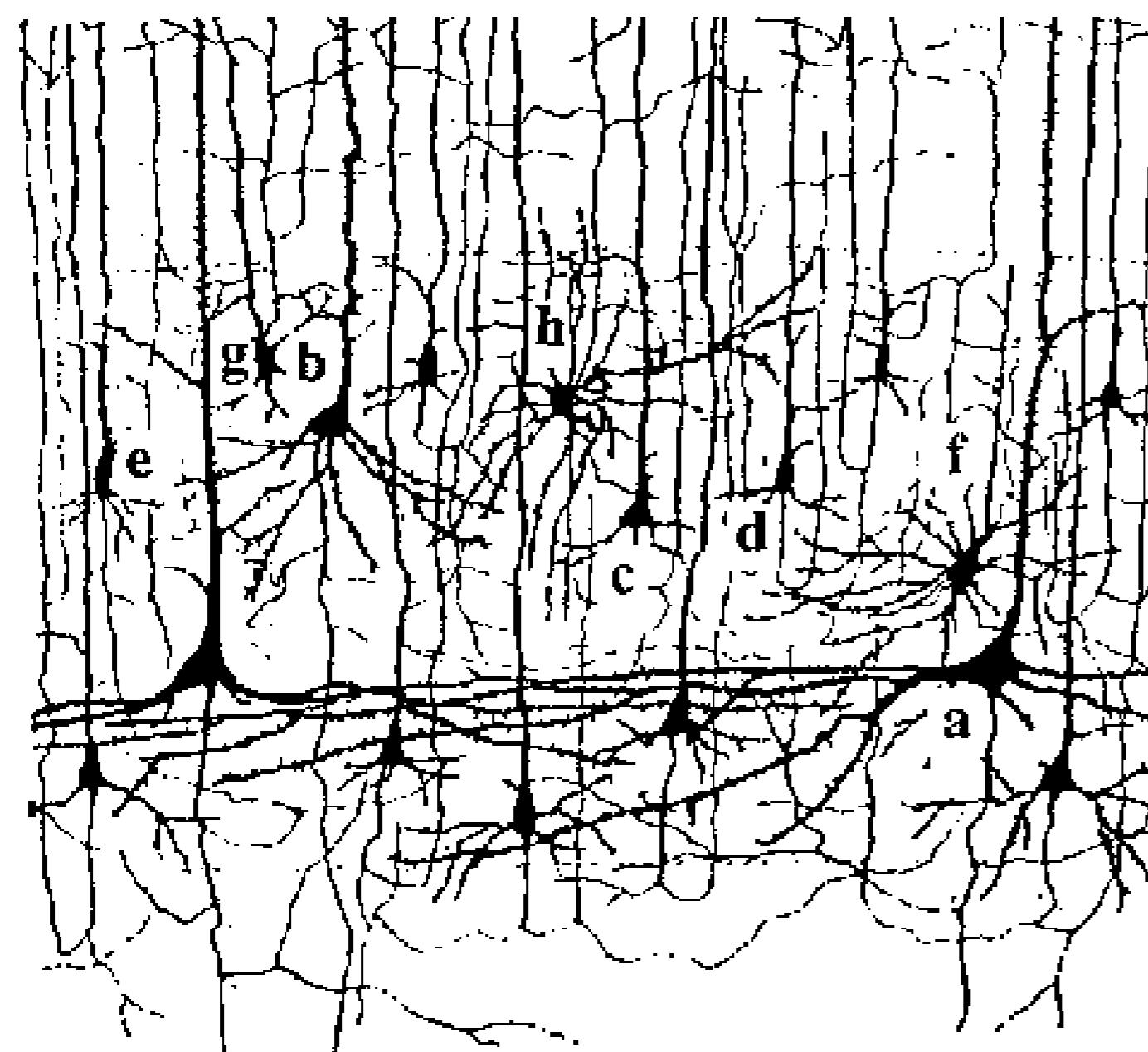
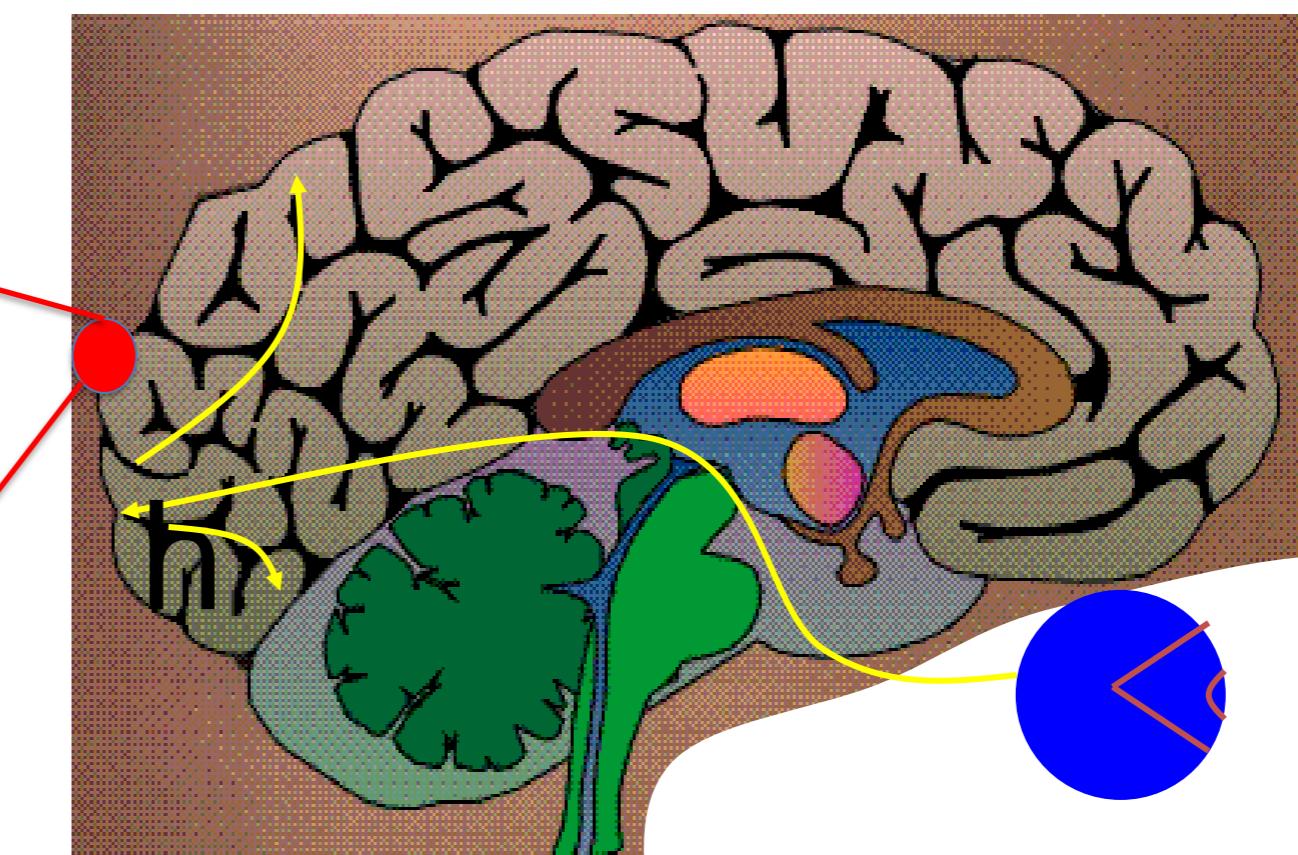
frontal cortex



# 1. review: the brain



10 000 neurons  
3 km of wire



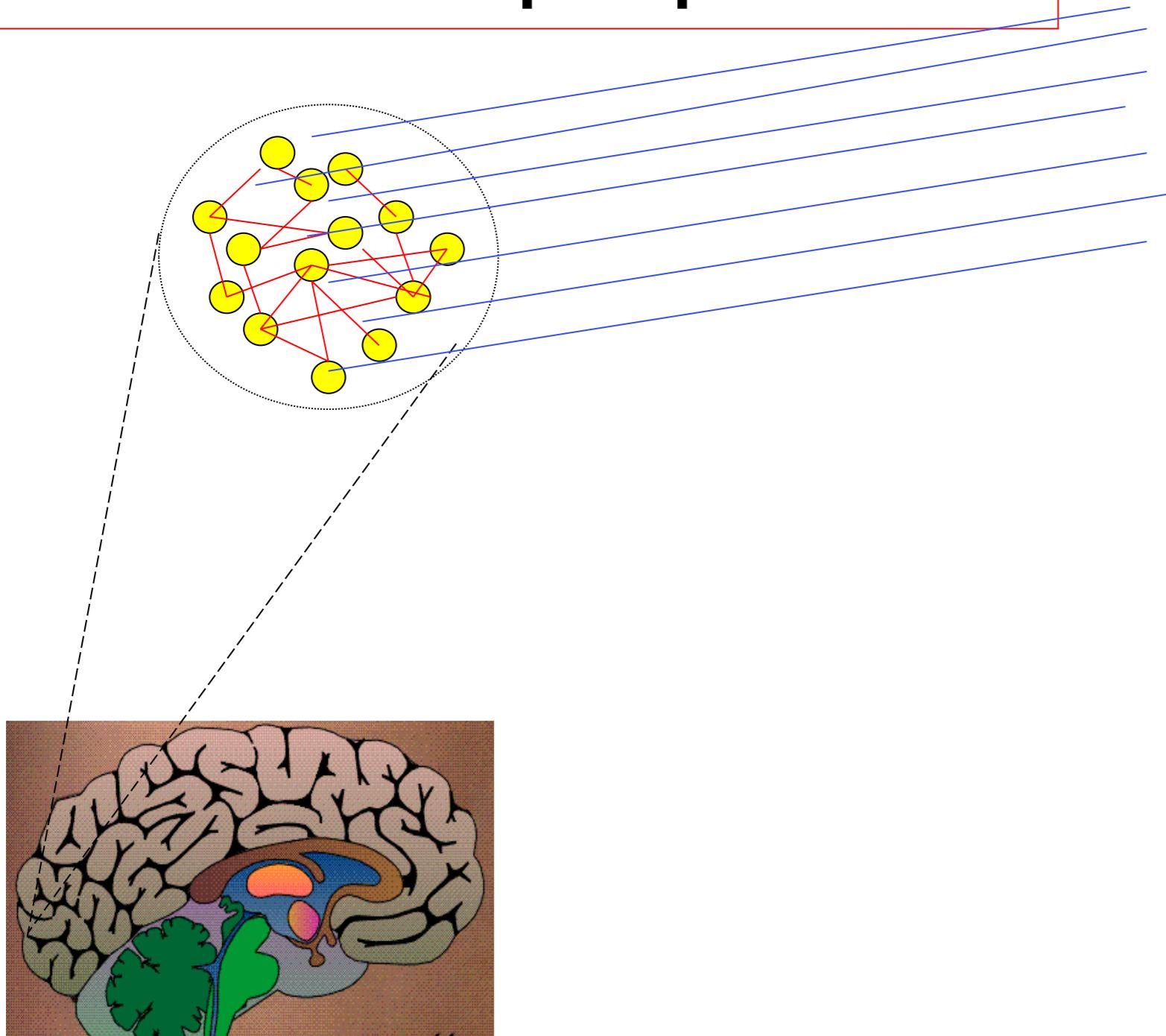
motor  
cortex

frontal  
cortex

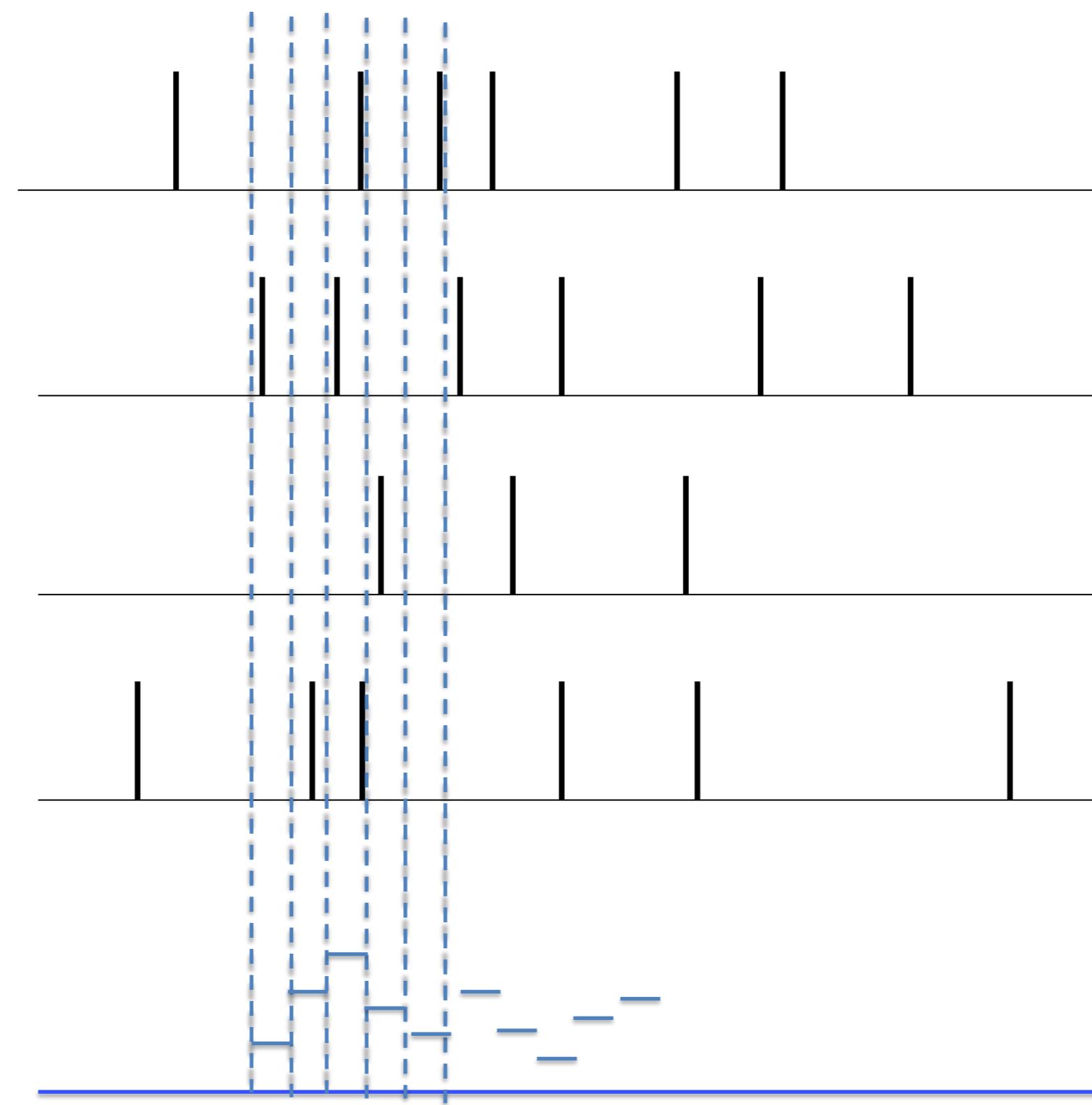
to motor  
output

# 1. Population activity, definition

population of neurons  
with similar properties



Brain



# 1. Population activity: definition

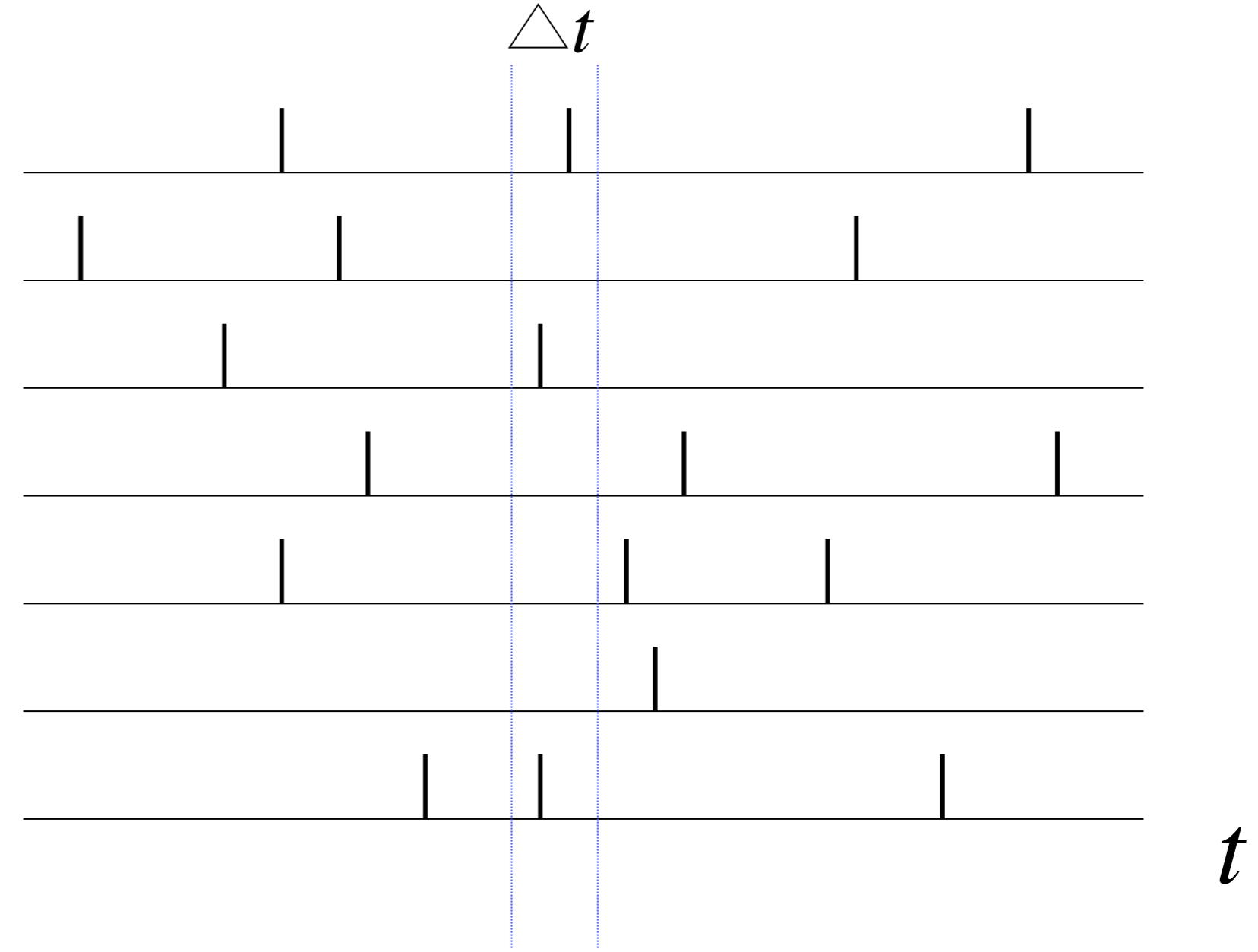
population activity - rate defined by population average

units?

invariances?

Time scale/averaging?

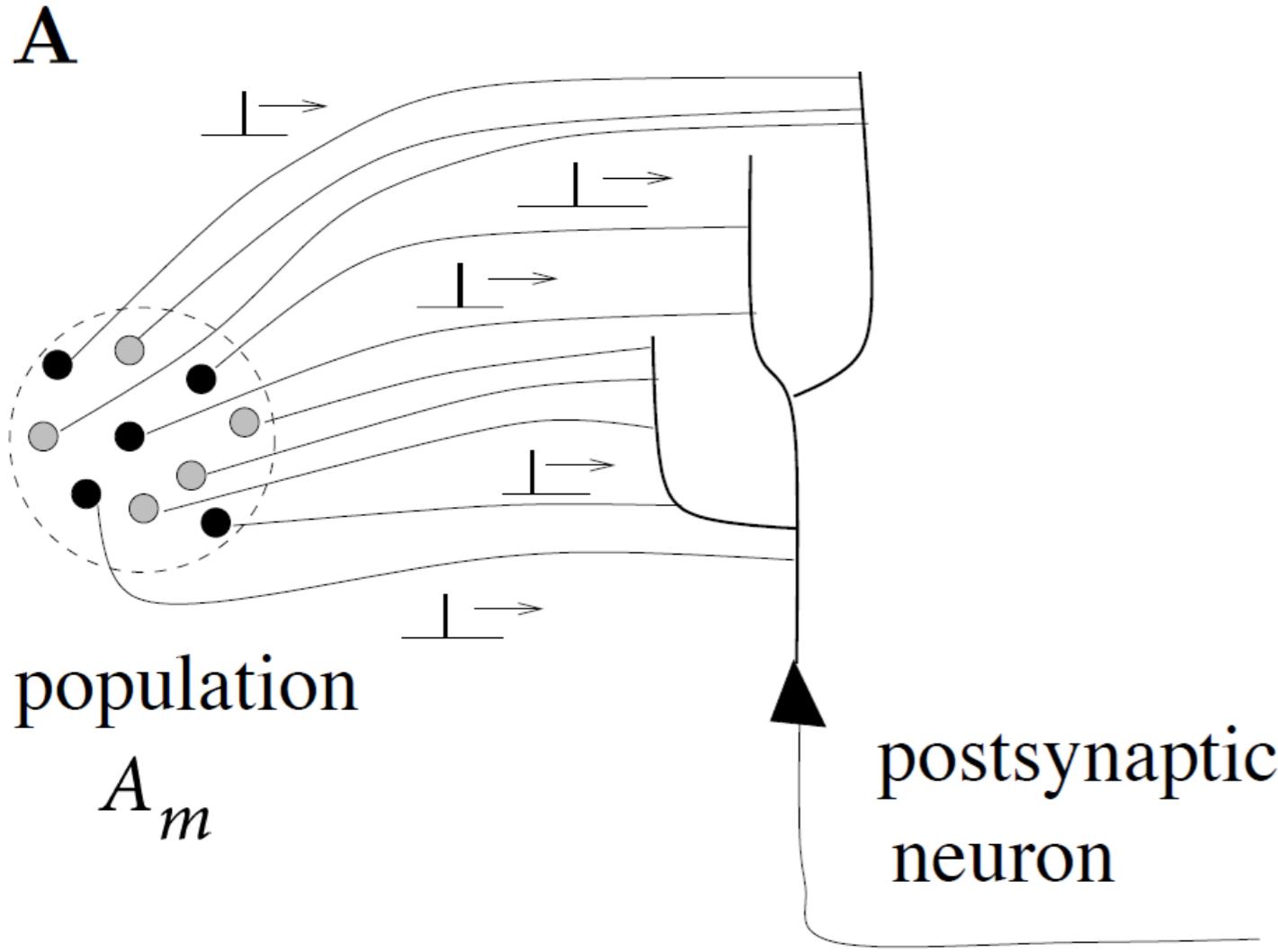
population  
activity



$$A(t) =$$

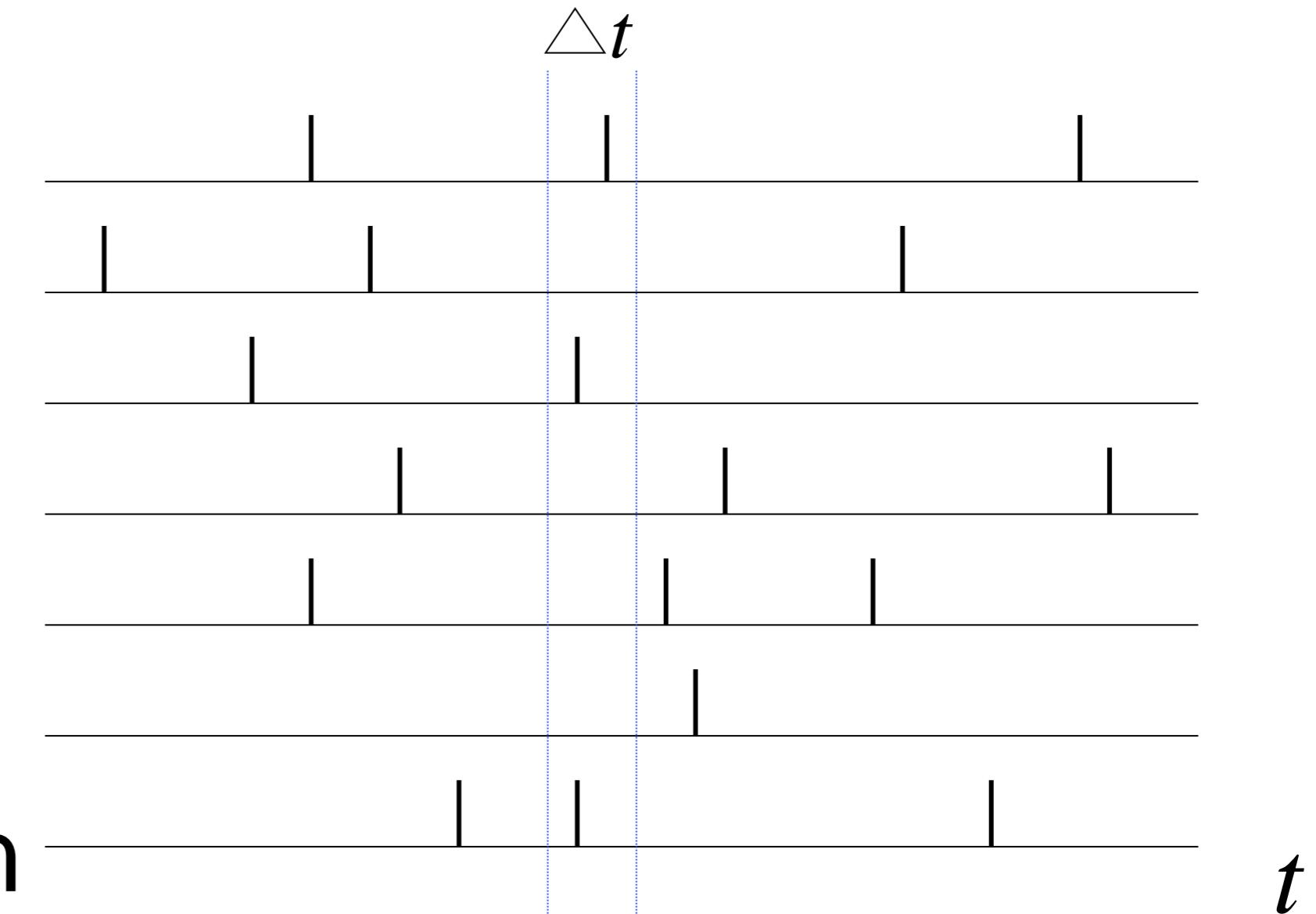
# 1. Population activity: definition

population activity - rate defined by population average



‘natural readout’

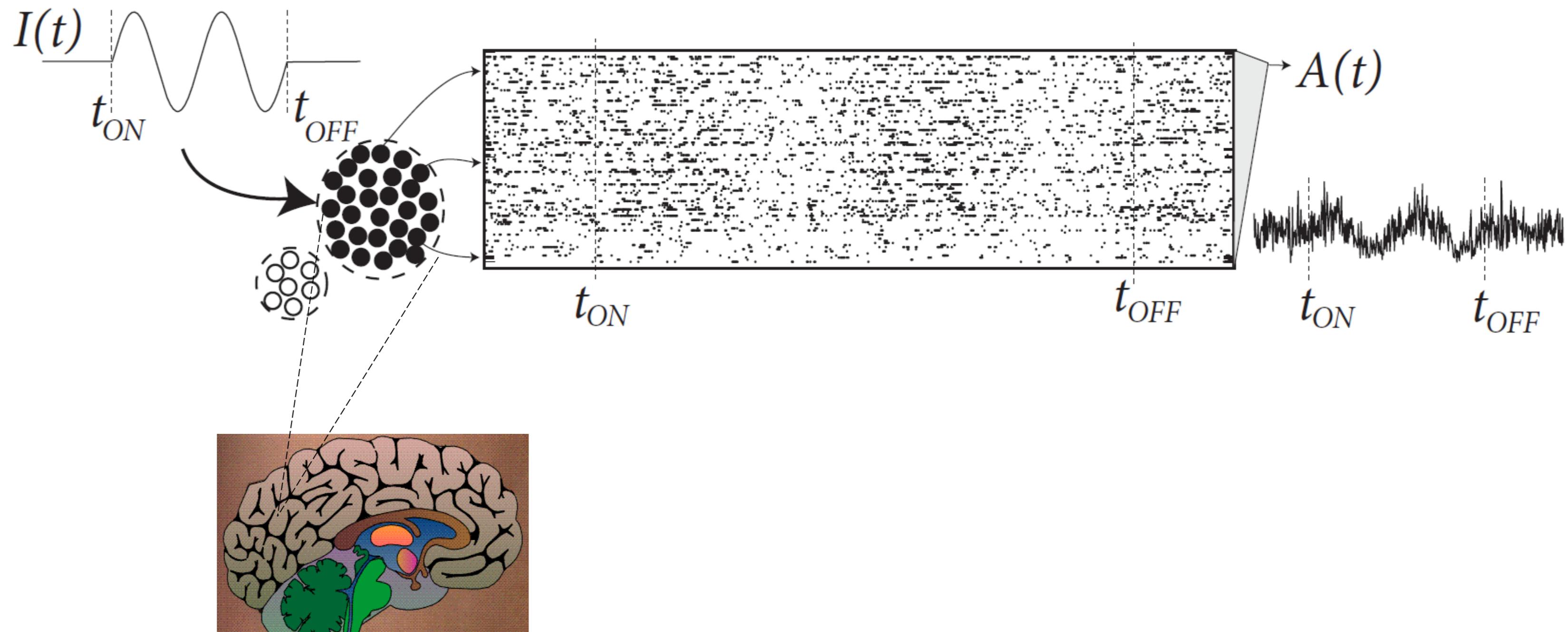
population  
activity



$$A(t) = \frac{n(t; t + \Delta t)}{N\Delta t}$$

# 1. Population activity: example

population of neurons  
with similar properties

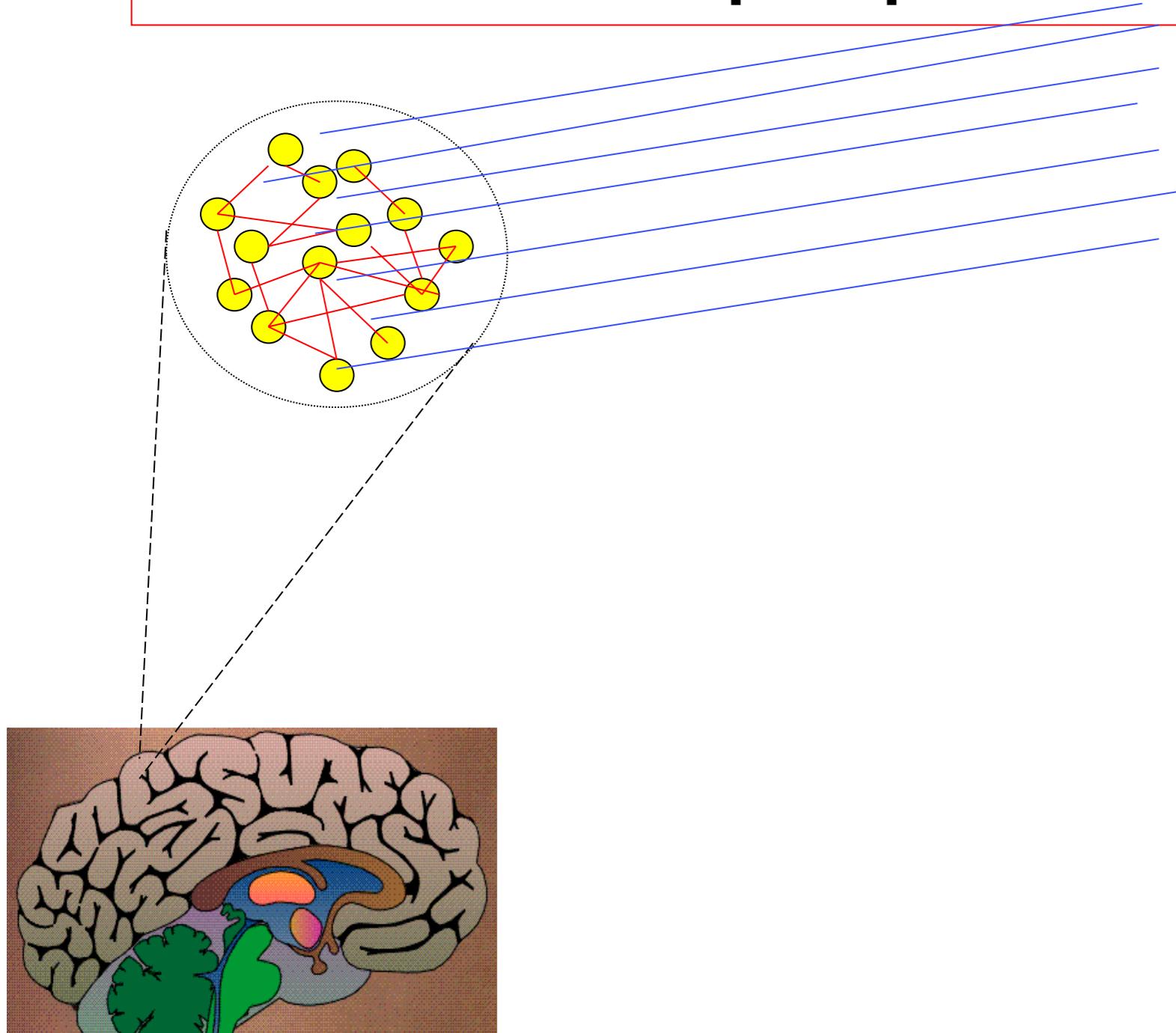


Brain

*Image: Neuronal Dynamics,  
Gerstner et al.,  
Cambridge Univ. Press (2014),*

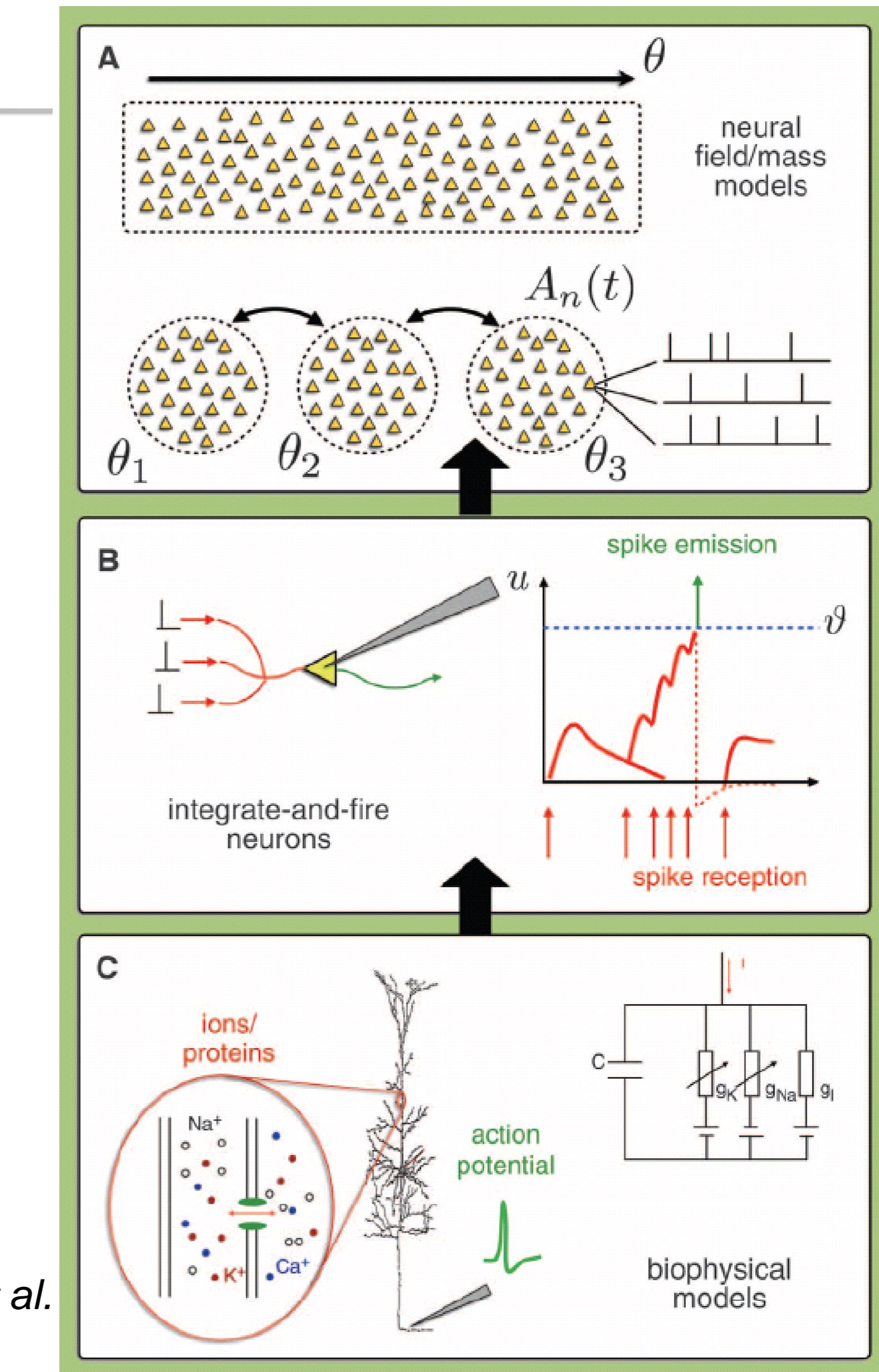
# 1. Scales of neuronal processes

population of neurons  
with similar properties



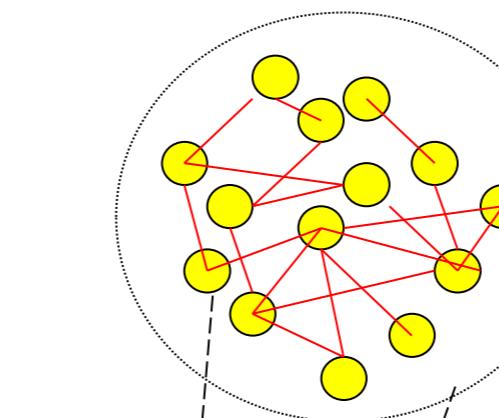
Brain

Image: Gerstner et al.  
Science (2012),



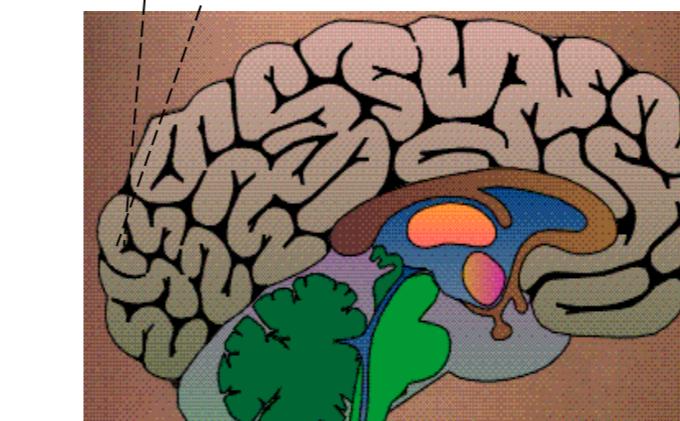
# 1. Population activity

population of neurons  
with similar properties



population activity  
→  $A(t)$

- do populations exist?
- how do they interact?
- can we predict  $A(t)$  ?



## Quiz 1, now

The population activity

- Is a firing rate
- Is a fast variable on the time scale of milliseconds
- Is proportional to the number of spikes  
counted across a population in a short time window
- Is defined as the number of spikes  
counted across a population in a short time window

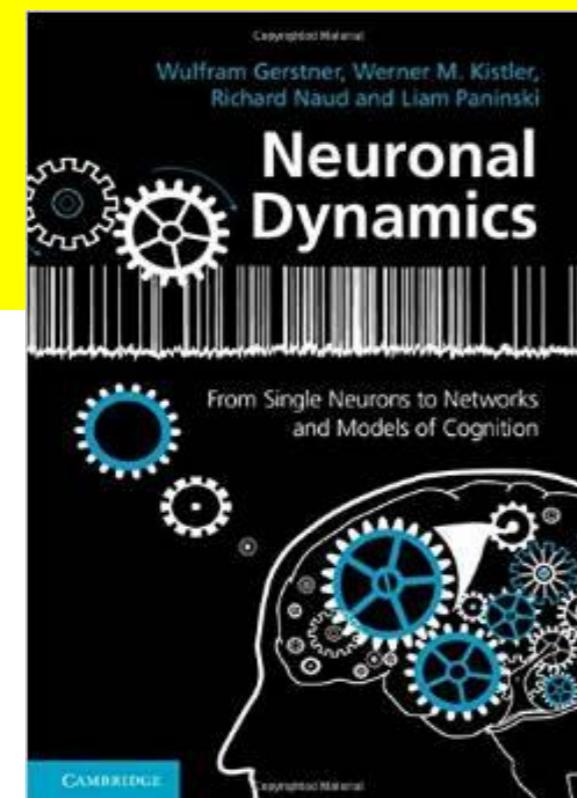
# Additional information: Computational Neuroscience



Wulfram Gerstner  
EPFL, Lausanne,  
Switzerland

## *Background Reading:* NEURONAL DYNAMICS

- Ch. 1.3.
- Ch. 12.1



Cambridge Univ. Press

## Additional links to short MOOC - videos

<http://lcn.epfl.ch/~gerstner/NeuronalDynamics-MOOC1.html>

- Dirac delta-function in computational neuroscience

<https://www.youtube.com/watch?v=l3hvrx33IZc>

- Integrate-and-fire model, a first introduction

<https://www.youtube.com/watch?v=gU9UzFeg8f4>

## Textbook also online:

<http://neuronal-dynamics.epfl.ch/>

# Computational Neuroscience: Neuronal Dynamics of Cognition



## Neuronal Populations

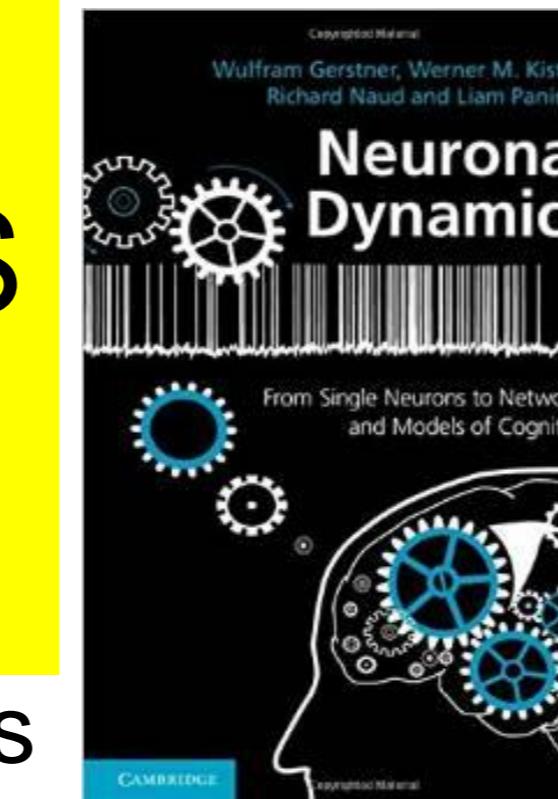
Wulfram Gerstner

EPFL, Lausanne, Switzerland

*Reading:*  
**NEURONAL DYNAMICS**

- Ch. 12.1 – 12.4.3  
(except Section 12.3.7)

Cambridge Univ. Press



### 1. Population activity

- definition and aims

### 2. Cortical Populations

- columns and receptive fields

### 3. Connectivity

- cortical connectivity  
- model connectivity schemes

### 4. Mean-field argument

- input to one neuron

### 5. Stationary mean-field

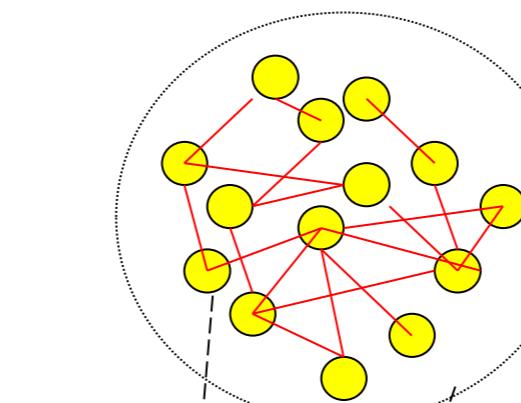
- asynchronous state: predict activity

### 6. Random Networks

- Balanced state

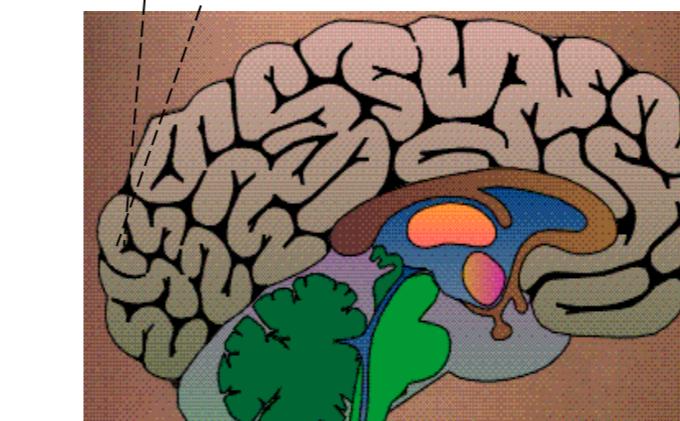
## 2. Population activity and cortical populations

population of neurons  
with similar properties

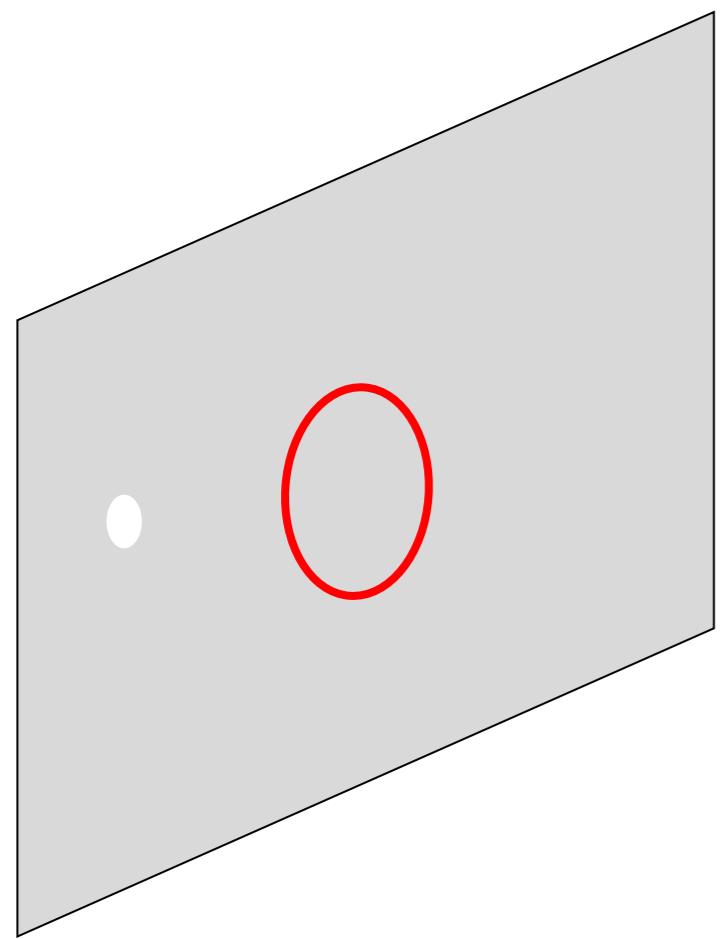
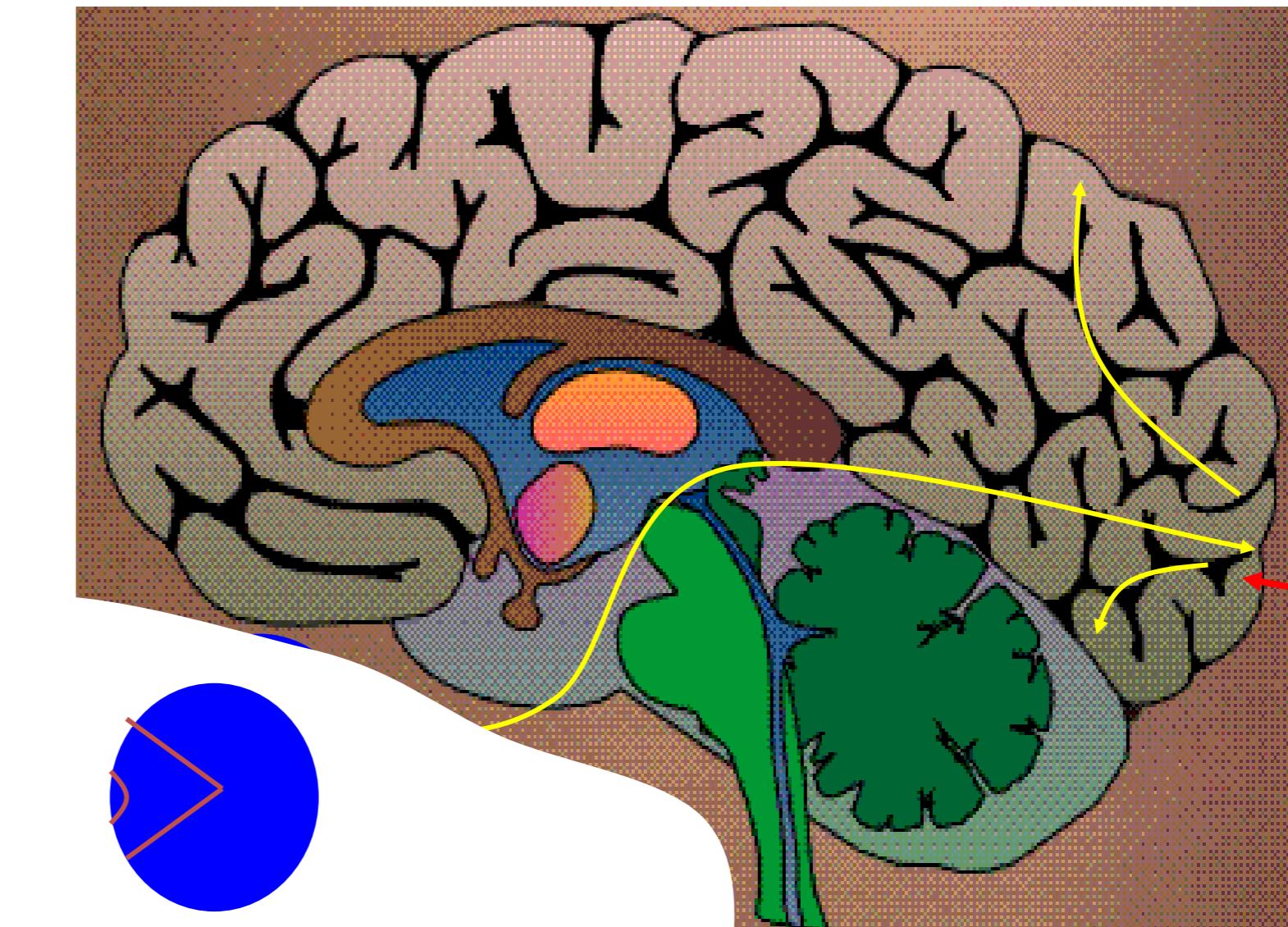


population activity  
→  $A(t)$

- do populations exist?



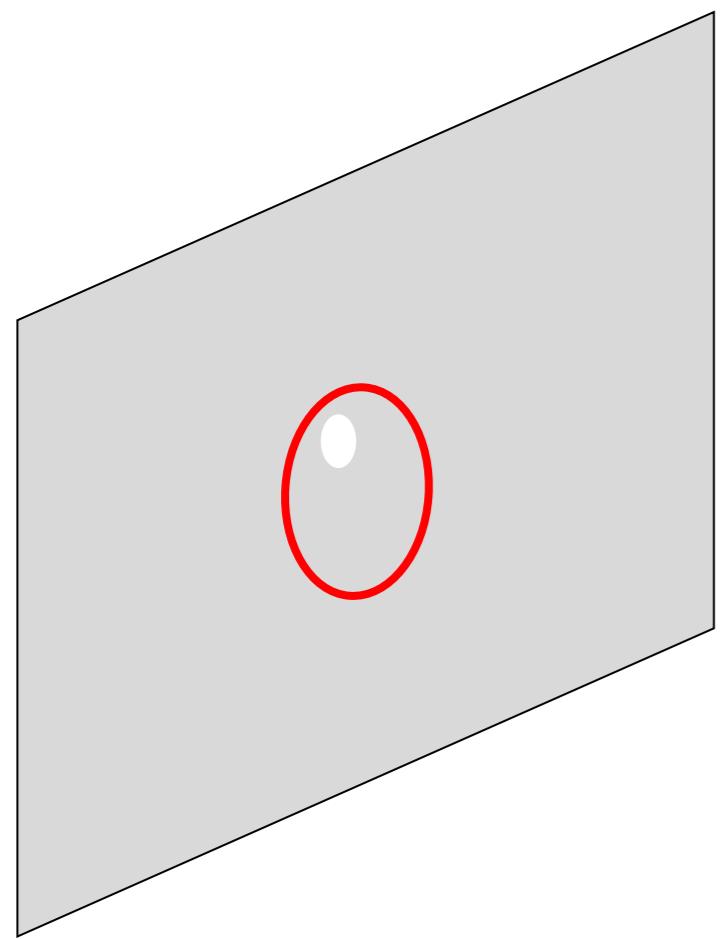
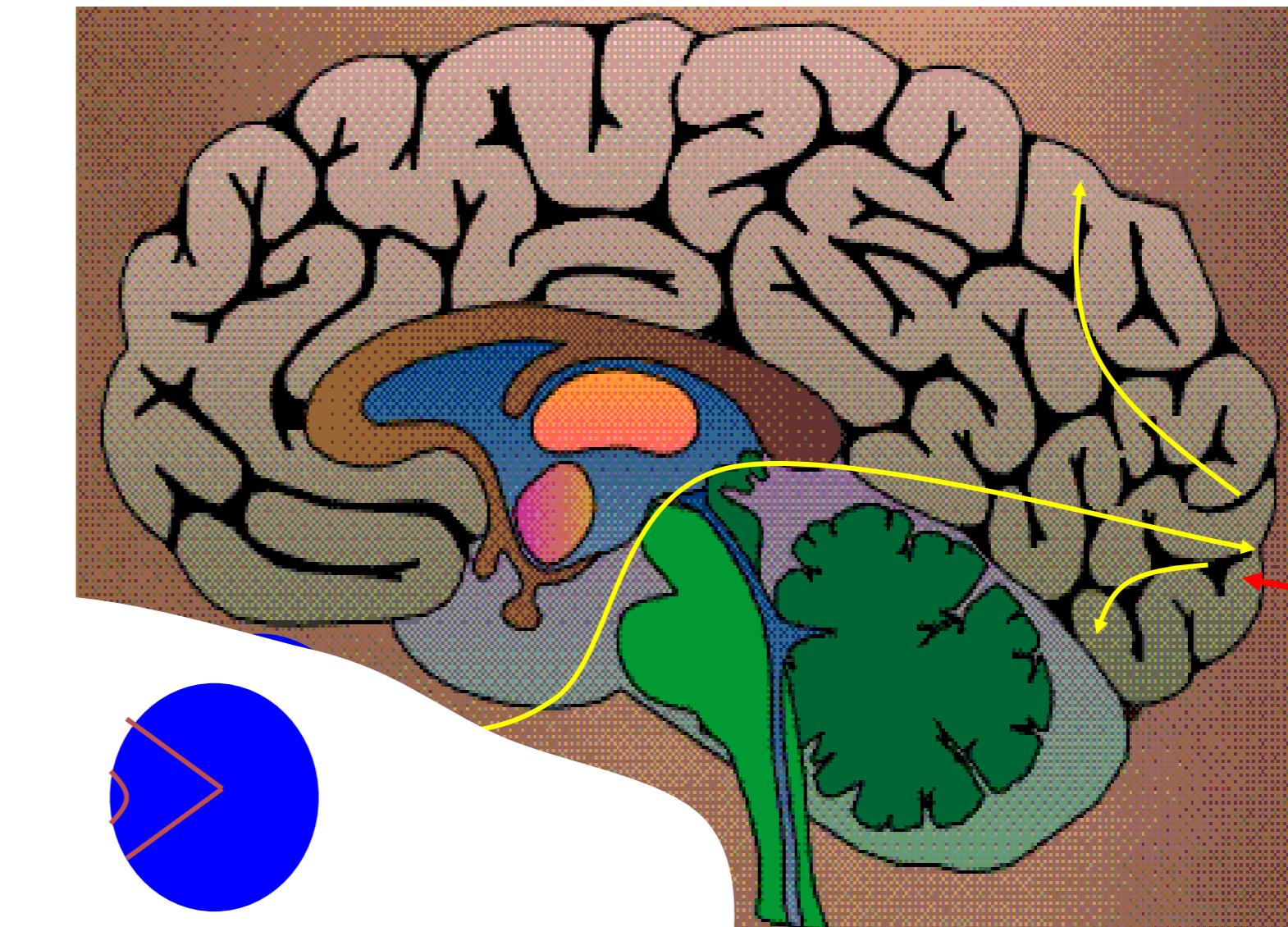
## 2. Receptive fields



visual  
cortex

electrode

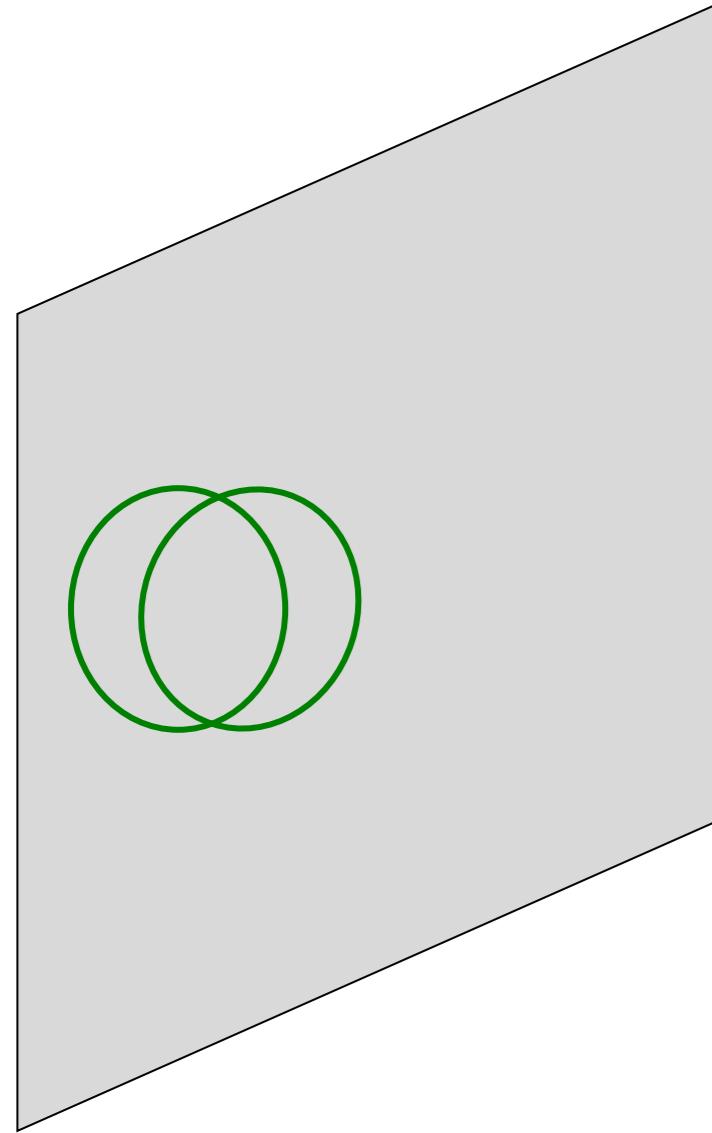
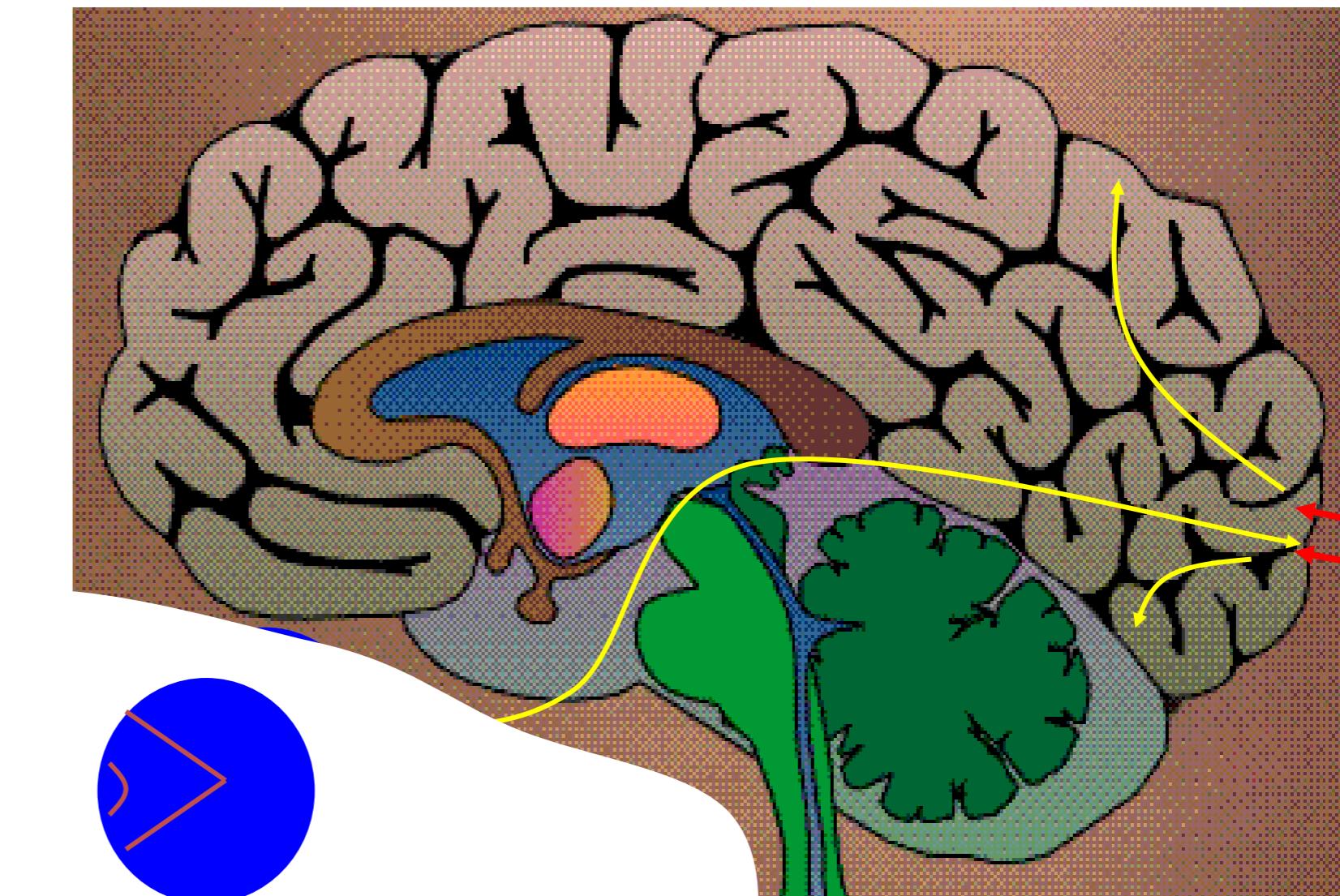
## 2. Receptive fields



visual  
cortex

electrode

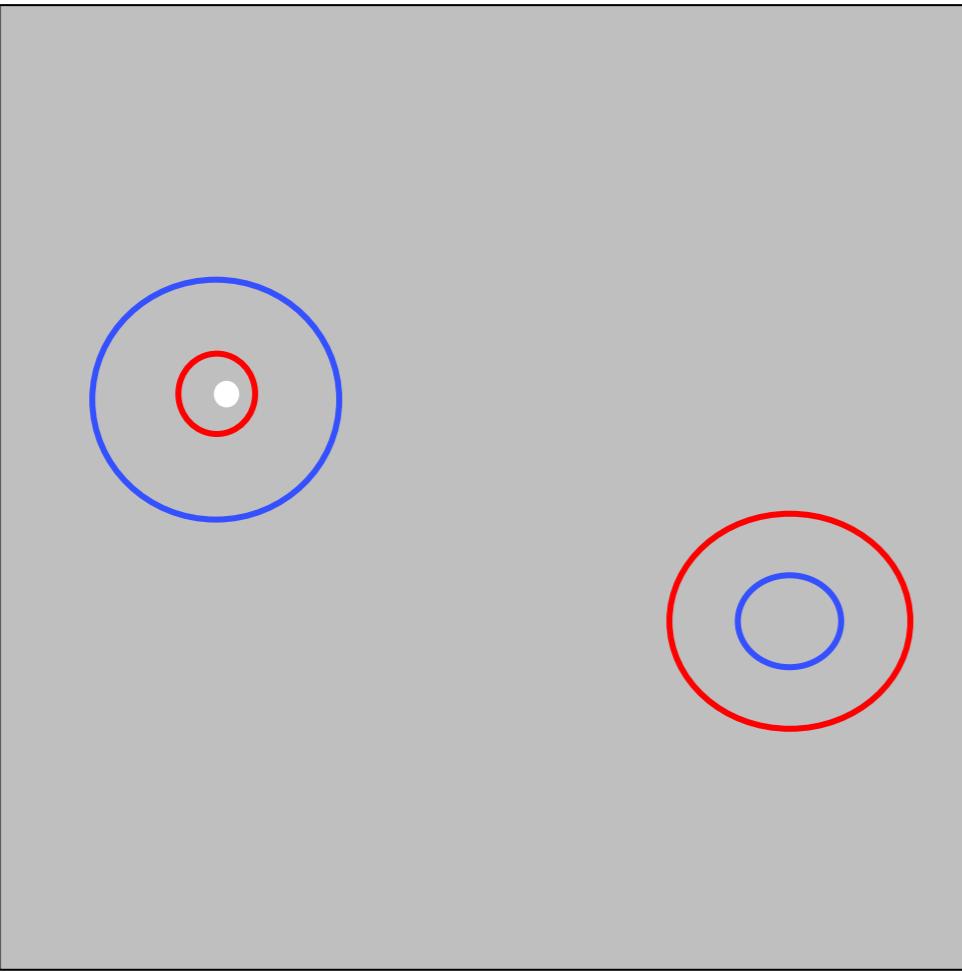
## 2. Receptive fields and Retinotopic Map



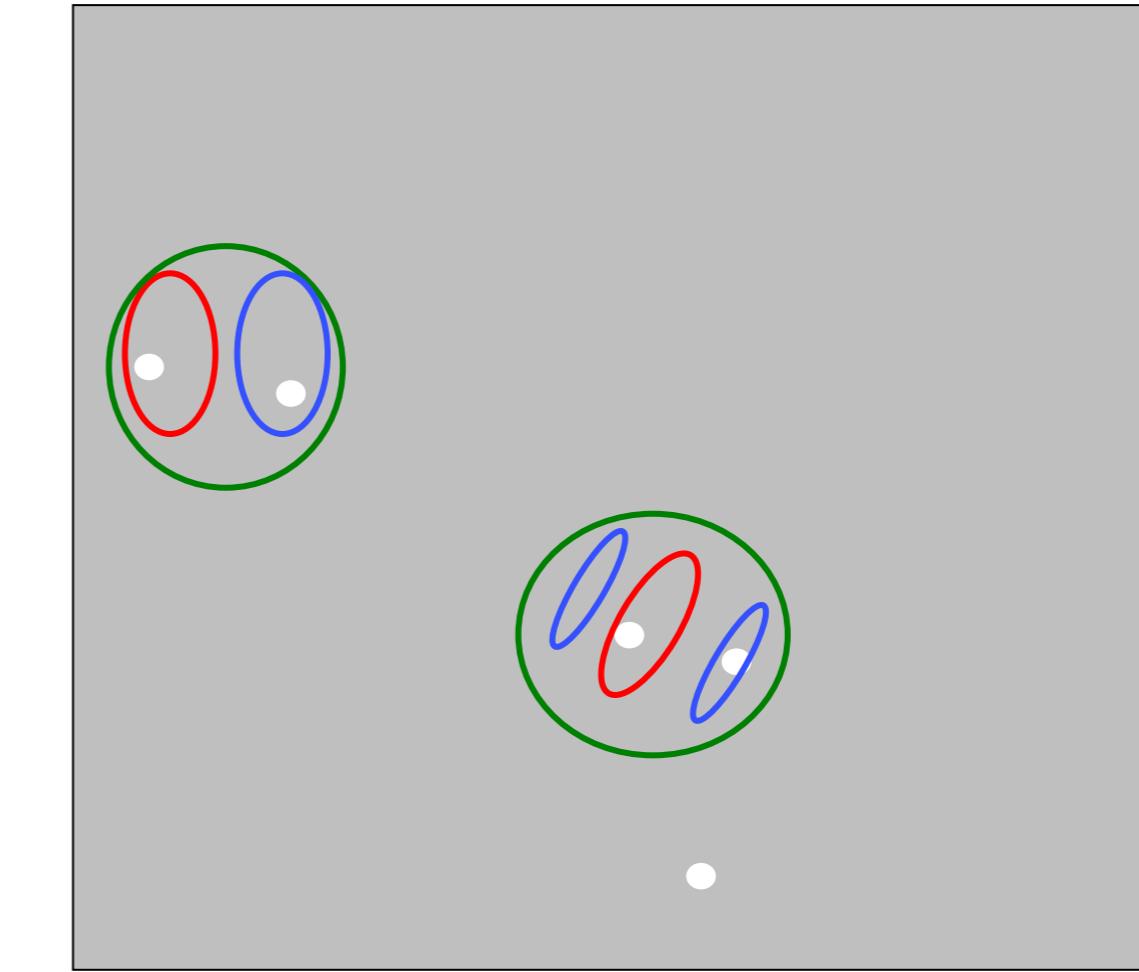
Neighboring cells  
in visual cortex  
have similar preferred  
center of receptive field

## 2. Receptive fields with Orientation Tuning

Receptive fields:  
**Retina, LGN**



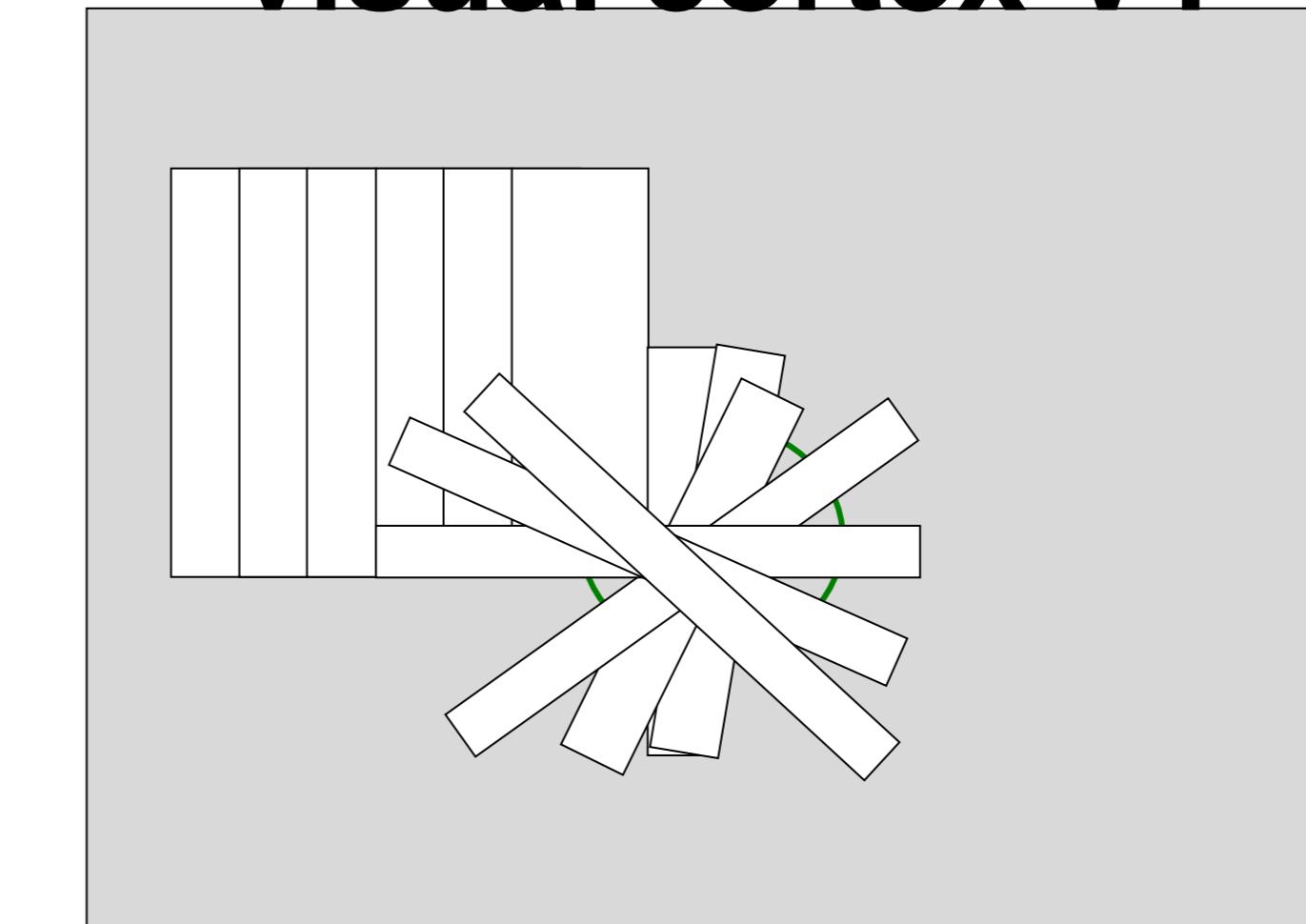
Receptive fields:  
**visual cortex V1**



Orientation  
selective

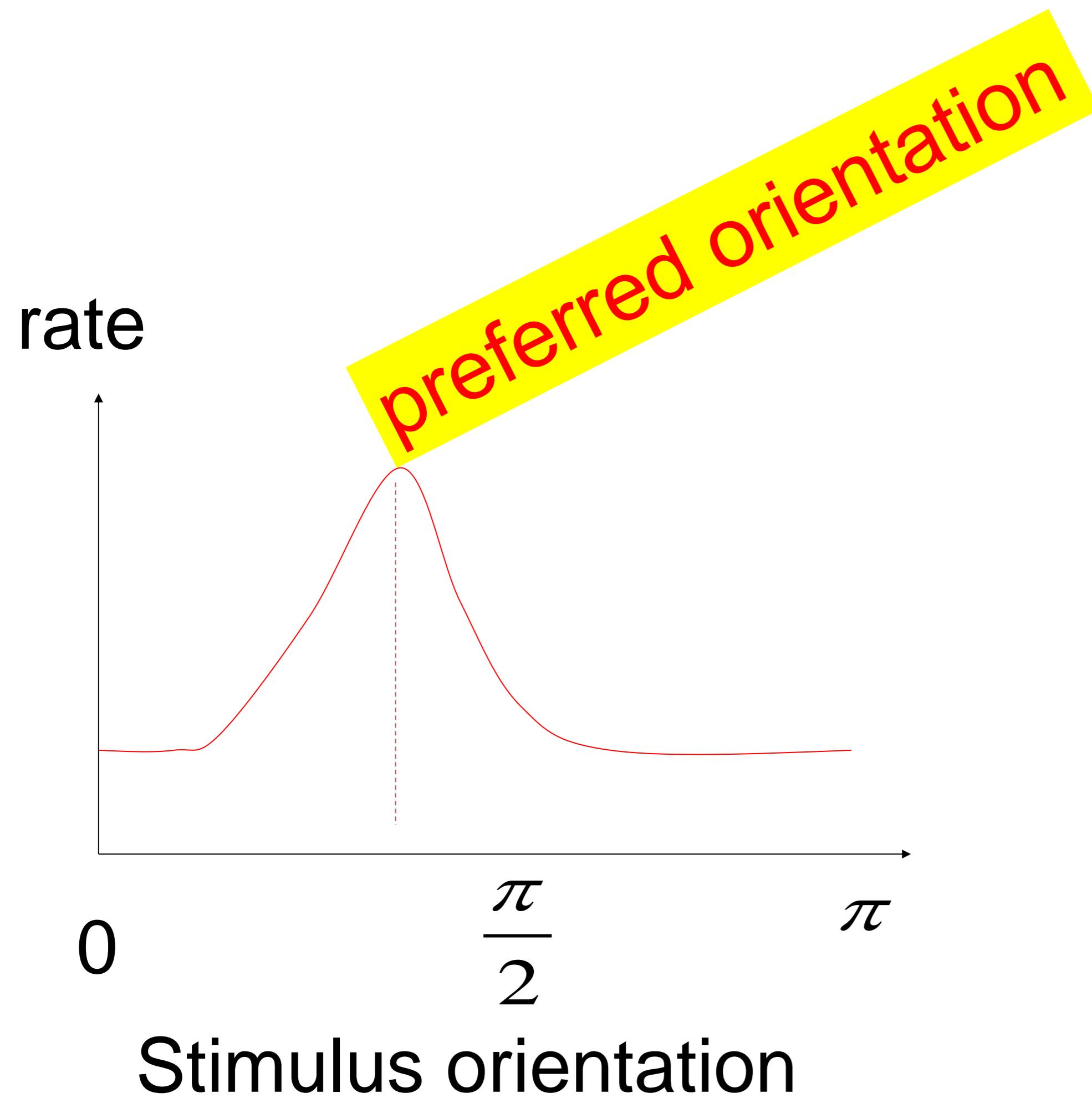
## 2. Receptive fields with Orientation Tuning

Receptive fields:  
**visual cortex V1**



Orientation selective

## 2. Receptive fields with Orientation Tuning



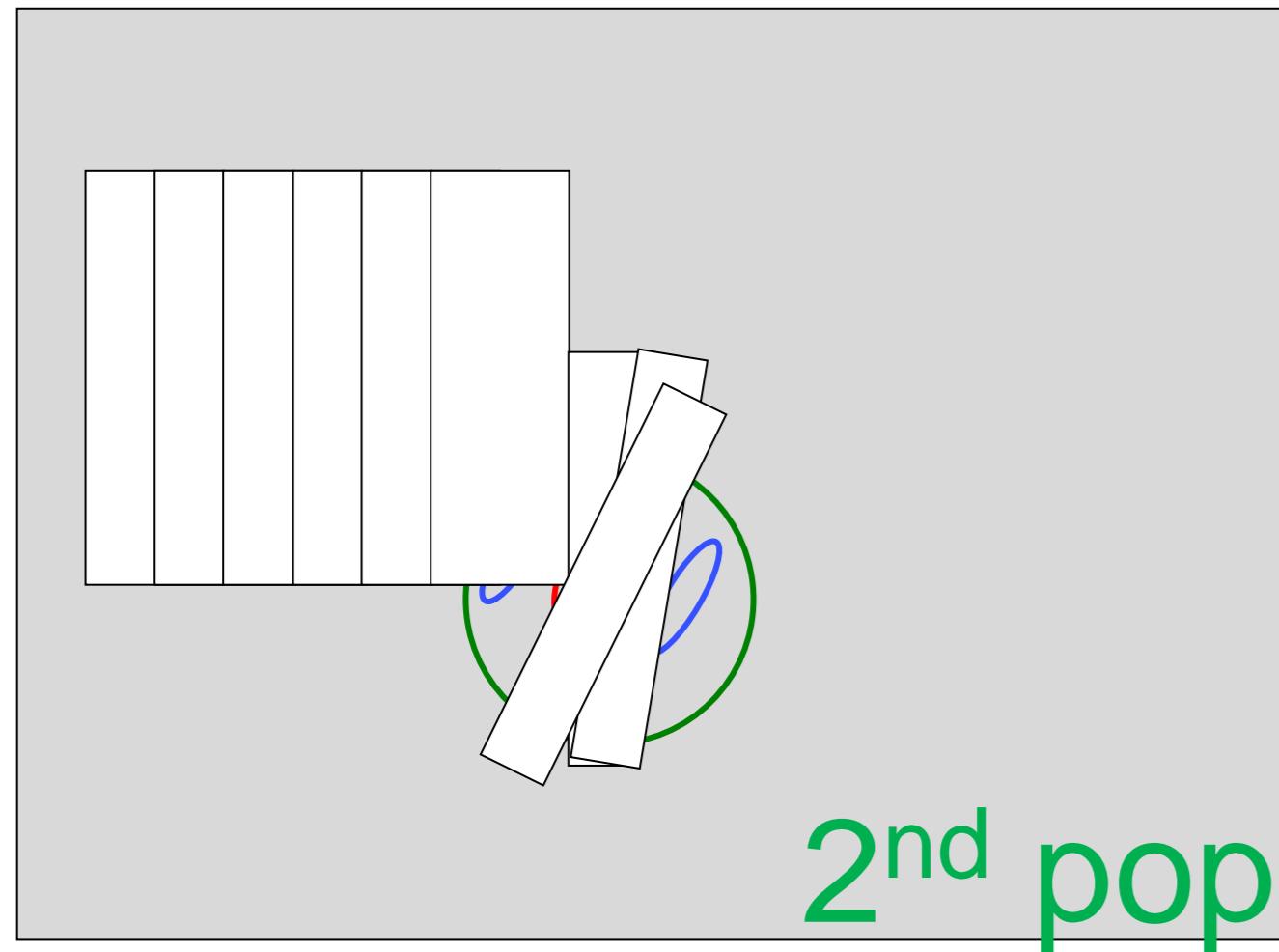
Receptive fields:  
**visual cortex V1**



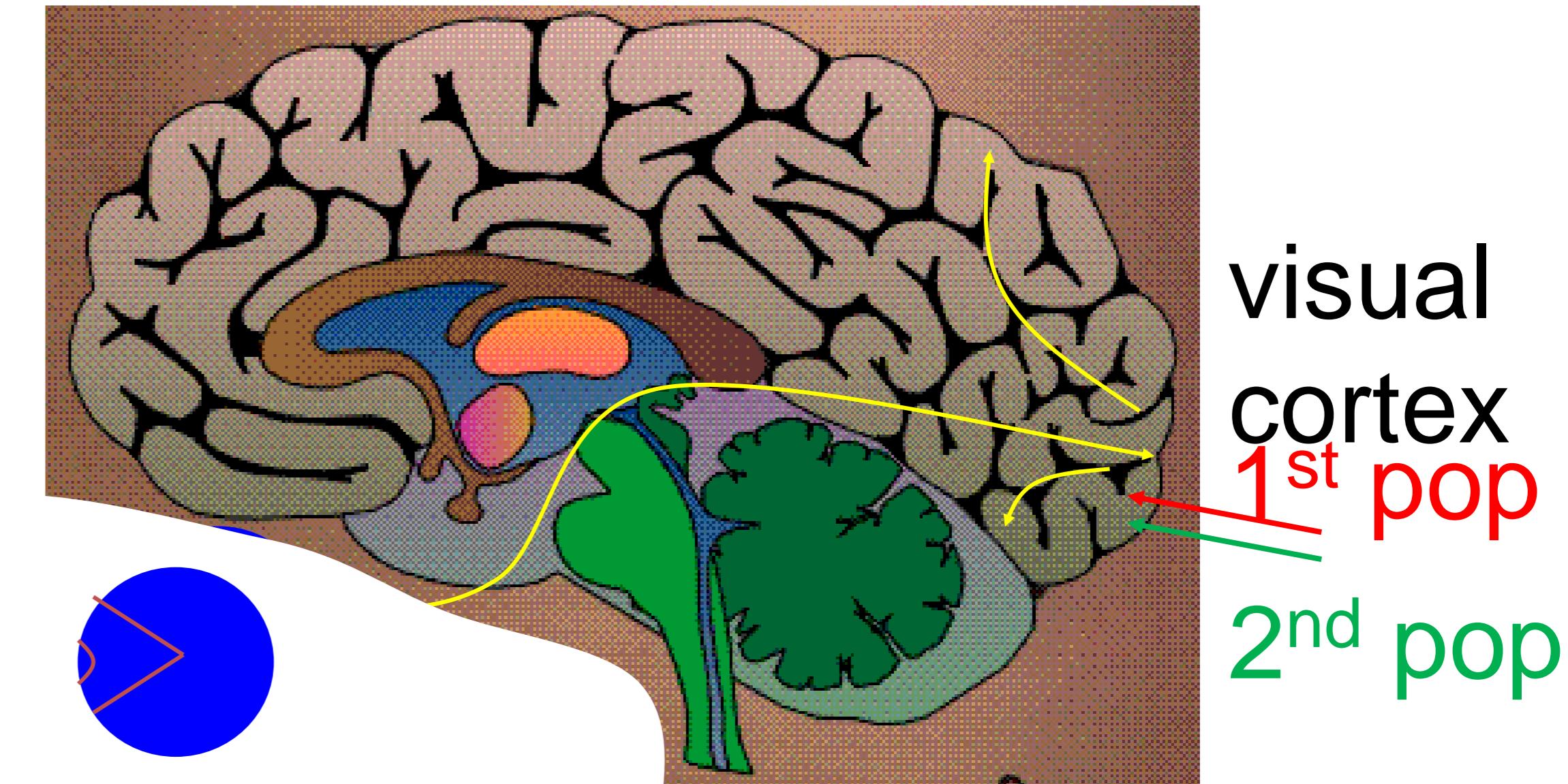
Orientation selective

## 2. Orientation Tuning and Orientation Maps

Receptive fields:  
**visual cortex V1**

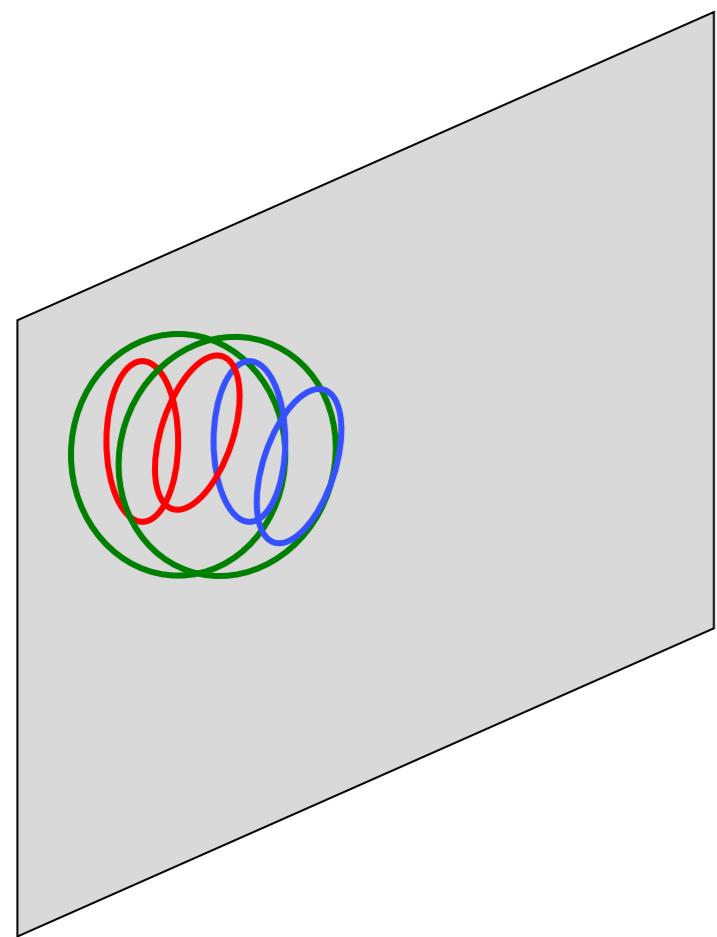
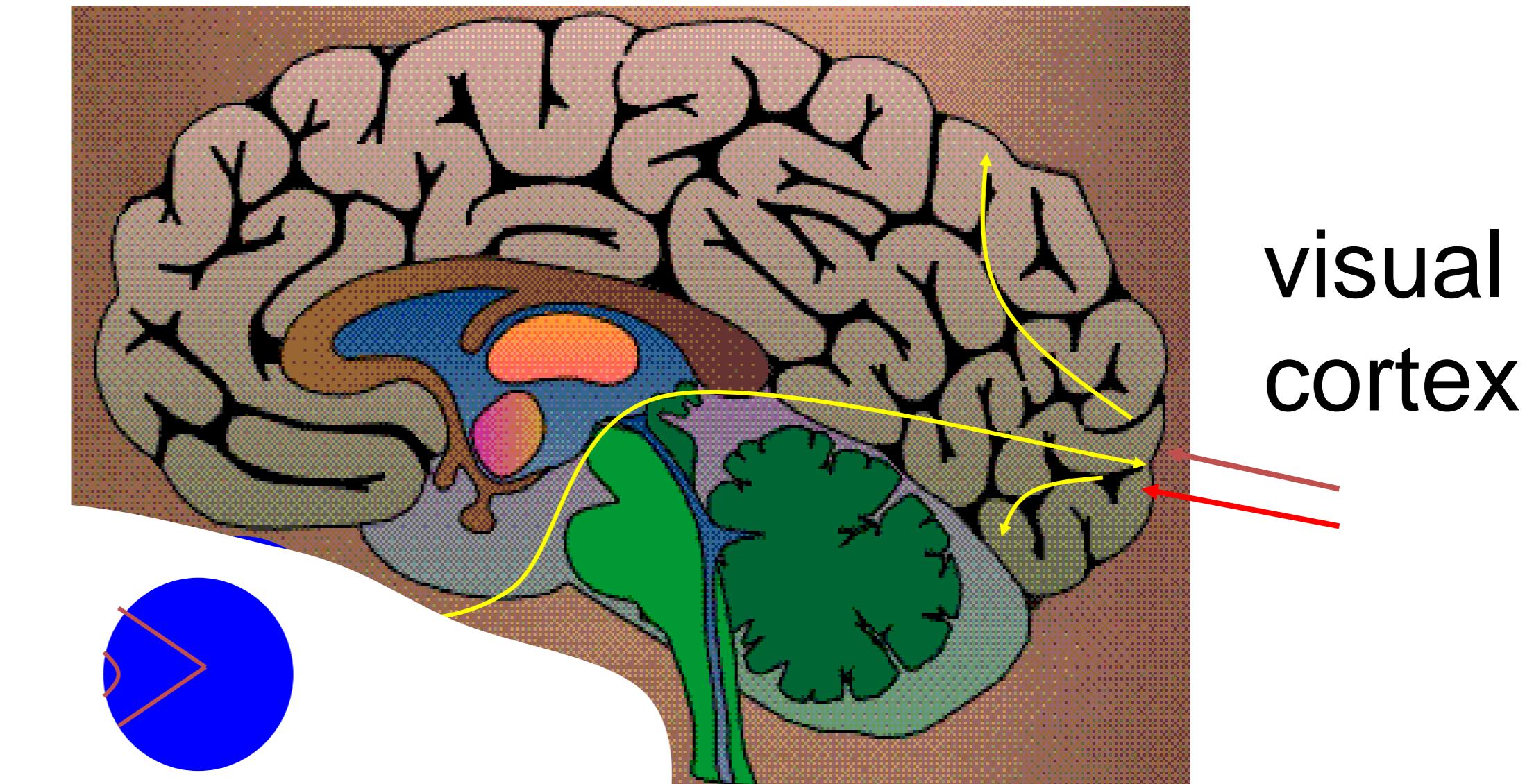


Orientation selective



**Neighboring neurons  
have similar properties**

## 2. Orientation Map



Neighboring cells in visual cortex  
Have similar preferred orientation:  
**cortical orientation map**

*Hubel and Wiesel 1968; Bonhoeffer&Grinvald, 1991;  
Bressloff&Cowan, 2002; Kaschube et al. 2010*

## 2. Orientation Map

---

### Receptive field

- set of stimulus features to which a neuron responds
- for visual neurons: location, orientation, color, ...

### Neighboring cells in visual cortex

- similar preferred orientation
- similar location of receptive field

→ candidate of ‘neuronal population’

## Quiz 2, now

The receptive field of a visual neuron refers to

- The localized region of space to which it is sensitive
- The orientation of a light bar to which it is sensitive
- The set of all stimulus features to which it is sensitive

The receptive field of a auditory neuron refers to

- The set of all stimulus features to which it is sensitive
- The range of frequencies to which it is sensitive

The receptive field of a somatosensory neuron refers to

- The set of all stimulus features to which it is sensitive
- The region of body surface to which it is sensitive

# Computational Neuroscience: Neuronal Dynamics of Cognition



## Neuronal Populations

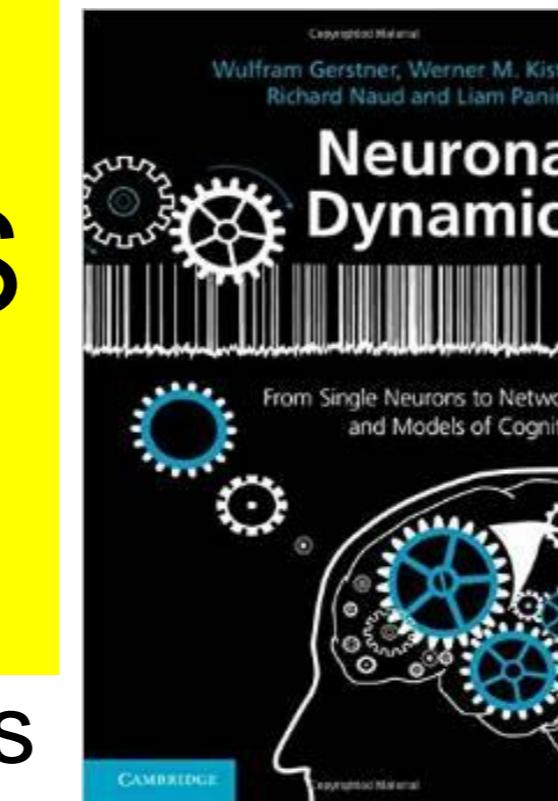
Wulfram Gerstner

EPFL, Lausanne, Switzerland

*Reading:*  
**NEURONAL DYNAMICS**

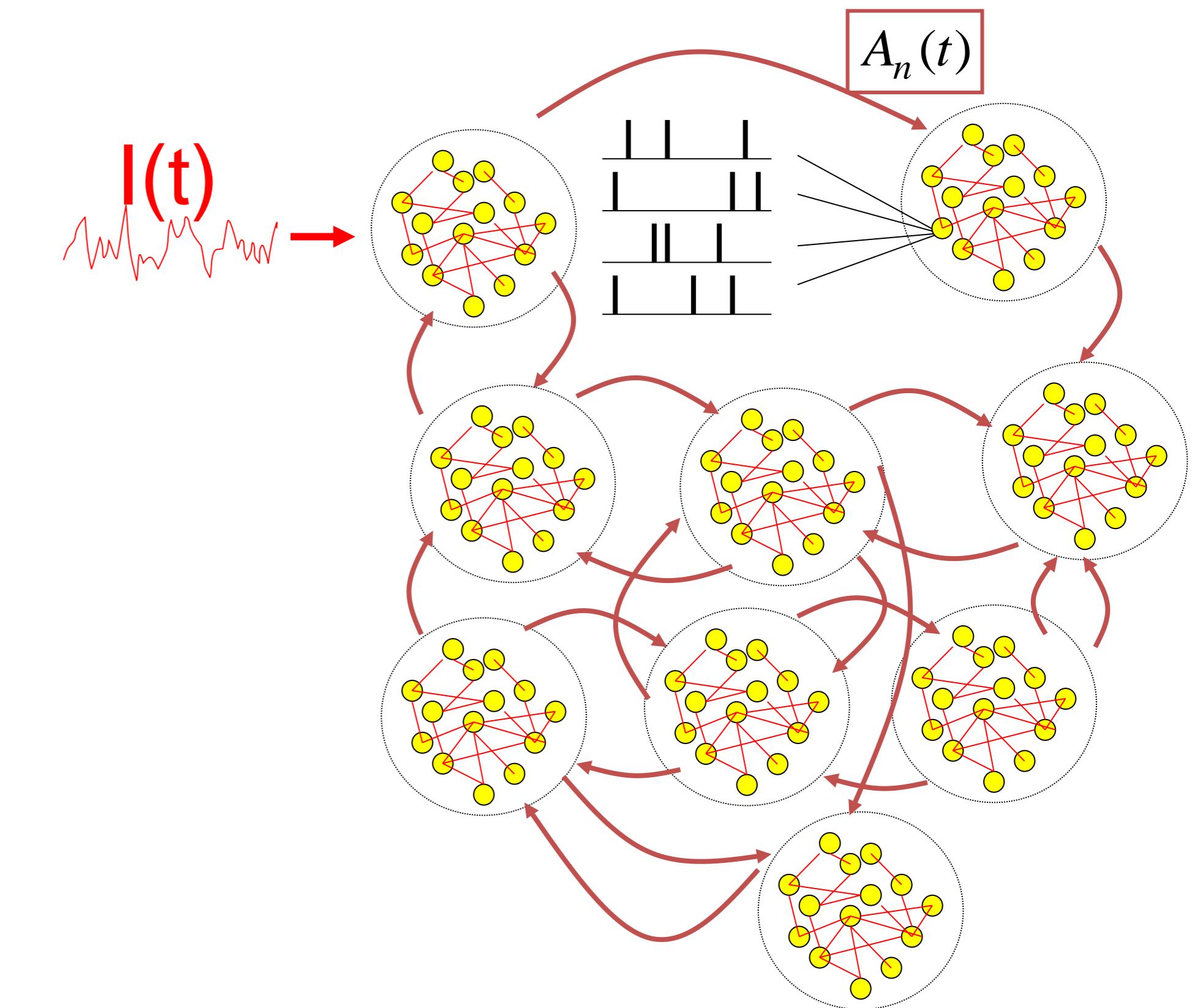
- Ch. 12.1 – 12.4.3  
(except Section 12.3.7)

Cambridge Univ. Press



- 1. Population activity**
  - definition and aims
- 2. Cortical Populations**
  - columns and receptive fields
- 3. Connectivity**
  - cortical connectivity
  - model connectivity schemes
- 4. Mean-field argument**
  - input to one neuron
- 5. Stationary mean-field**
  - asynchronous state: predict activity
- 6. Random Networks**
  - Balanced state

### 3. Interacting Populations in models



What are these populations?  
How are they connected?

### 3. A single model population

population = group of neurons  
with

- similar neuronal properties
- similar input
- similar receptive field
- similar connectivity



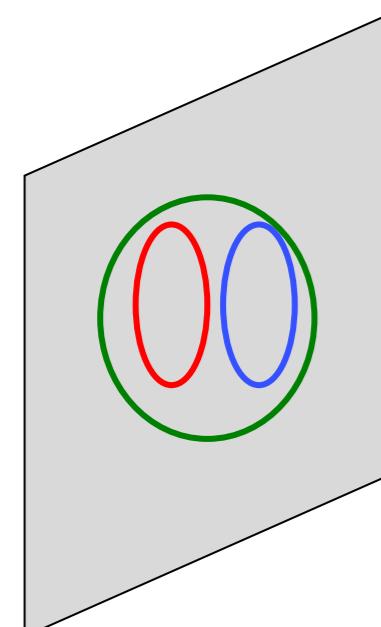
make this more precise

### 3. Cortical orientation map and cortical column

population = group of neurons with

- similar neuronal properties
- similar input
- similar receptive field
- similar connectivity

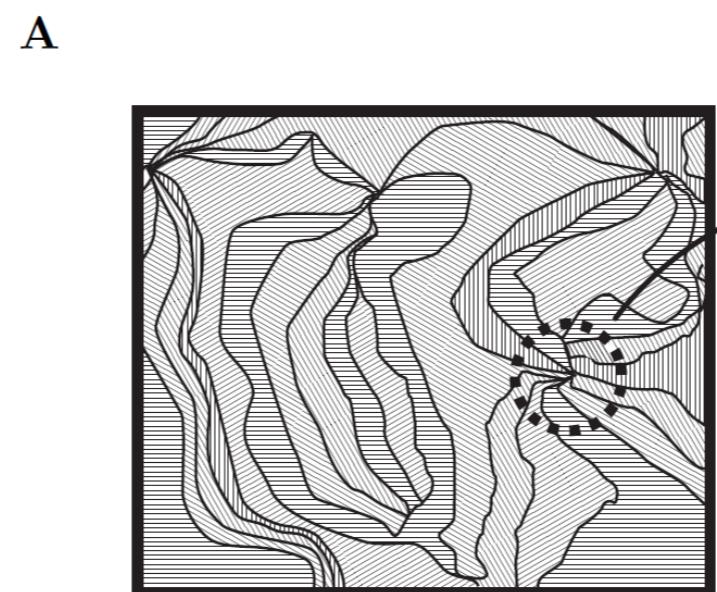
→ make this more precise



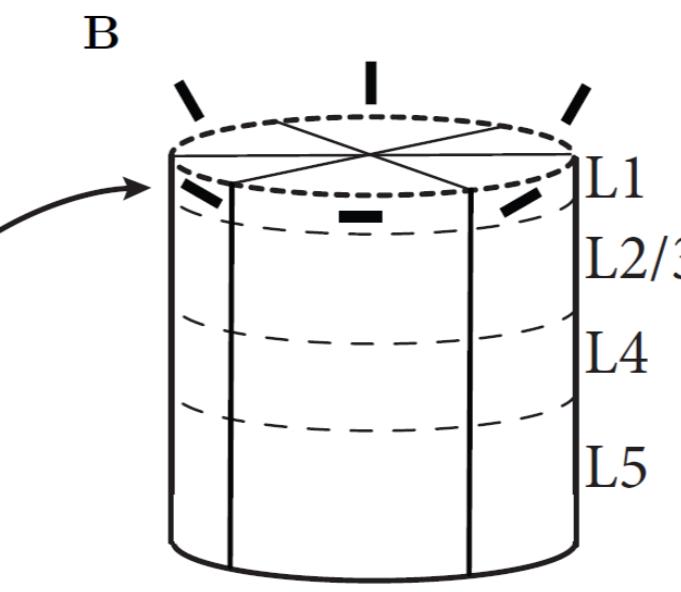
Rec. Field on Screen

cortical orientation map

Sheet of visual cortex      cortical column



A

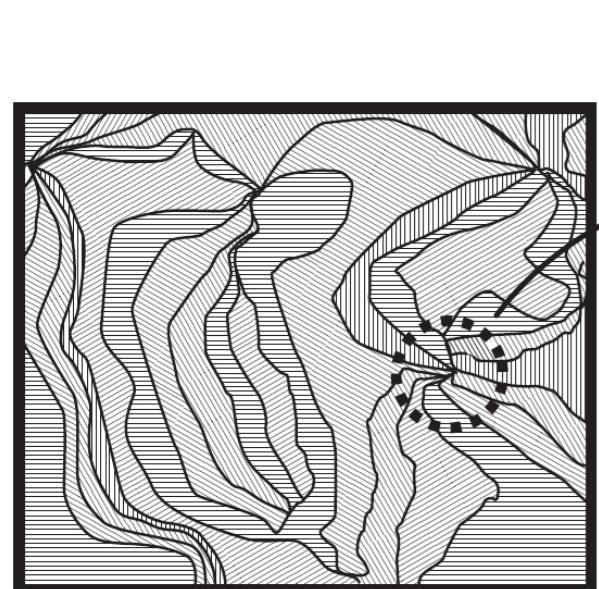
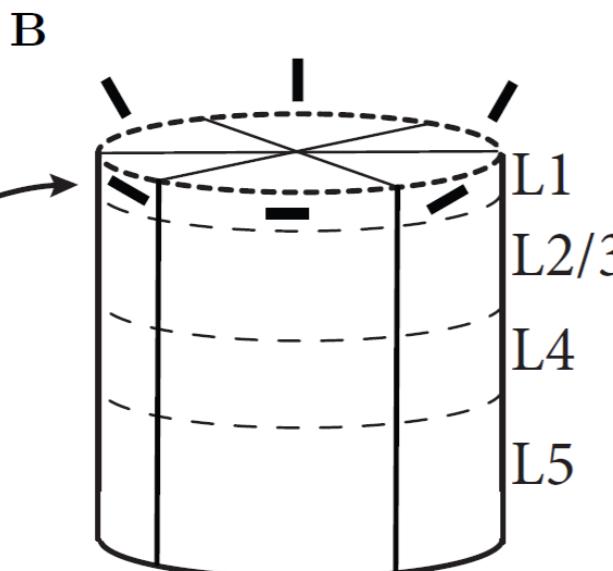
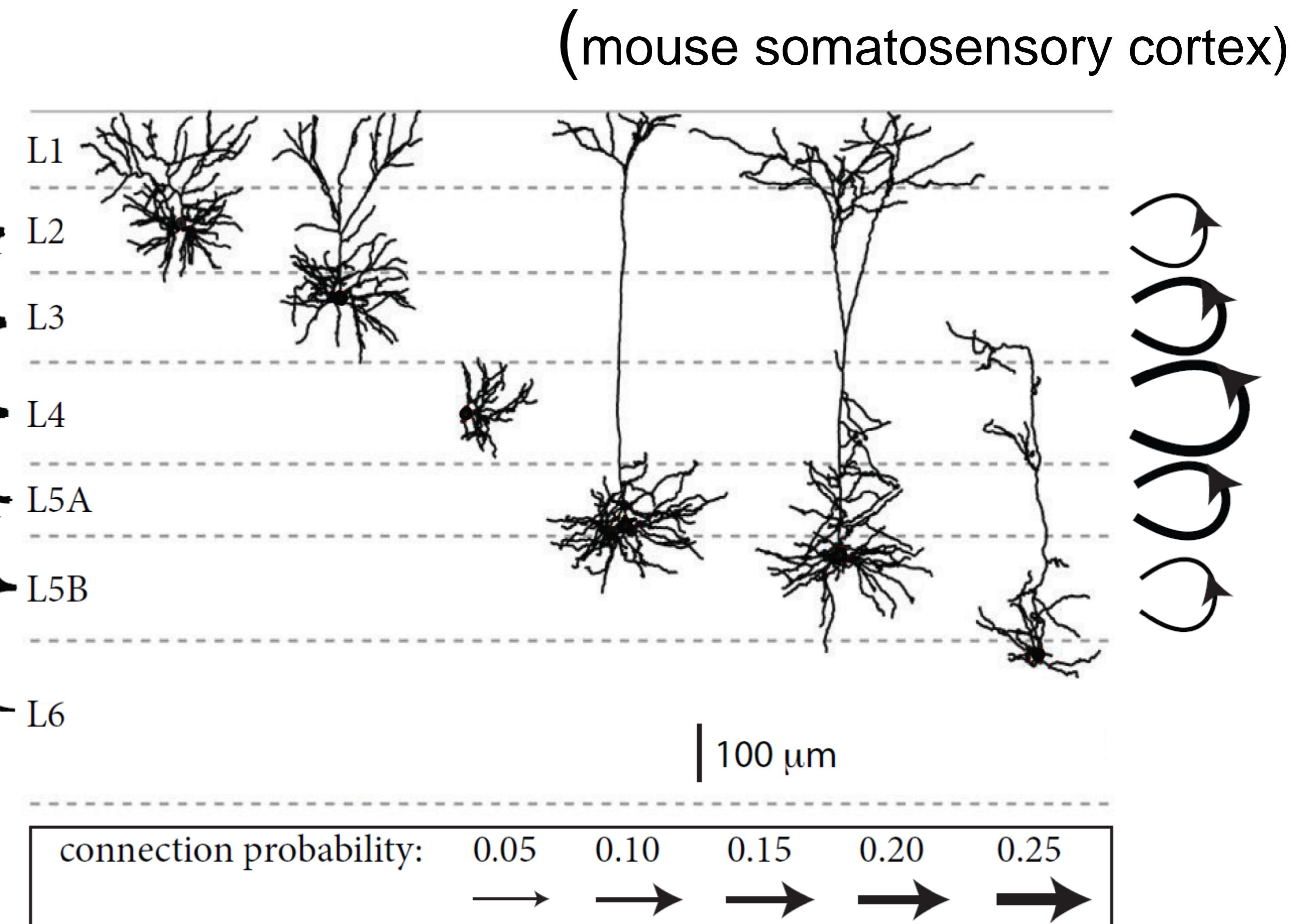


B

*Hubel and Wiesel 1968;  
Bonhoeffer&Grinvald, 1991*

# 3 local cortical connectivity across layers

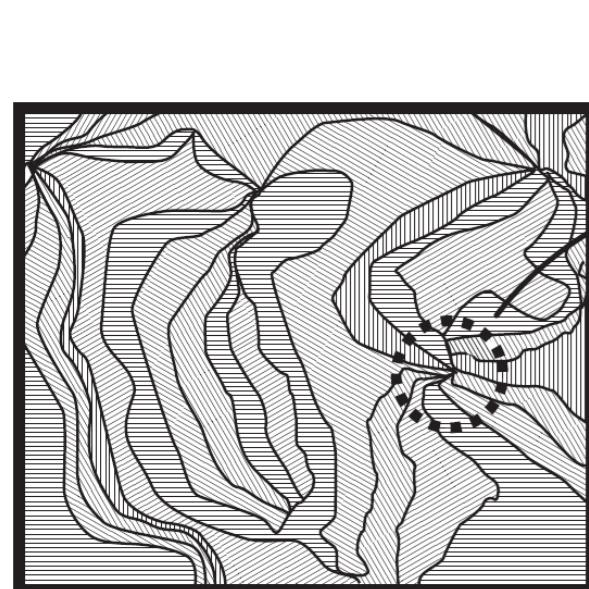
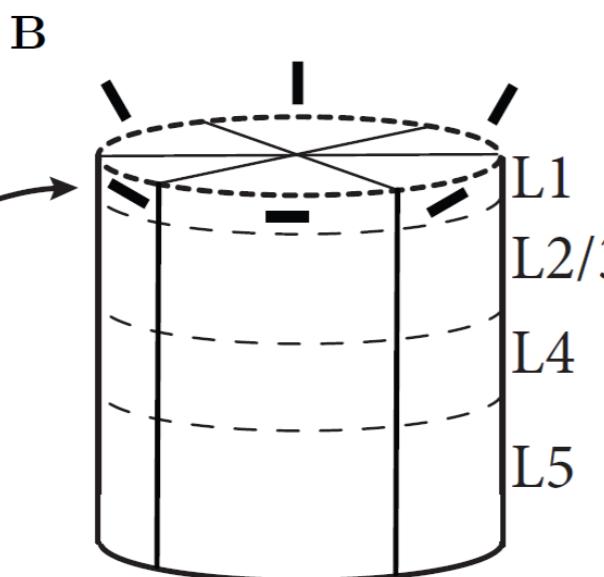
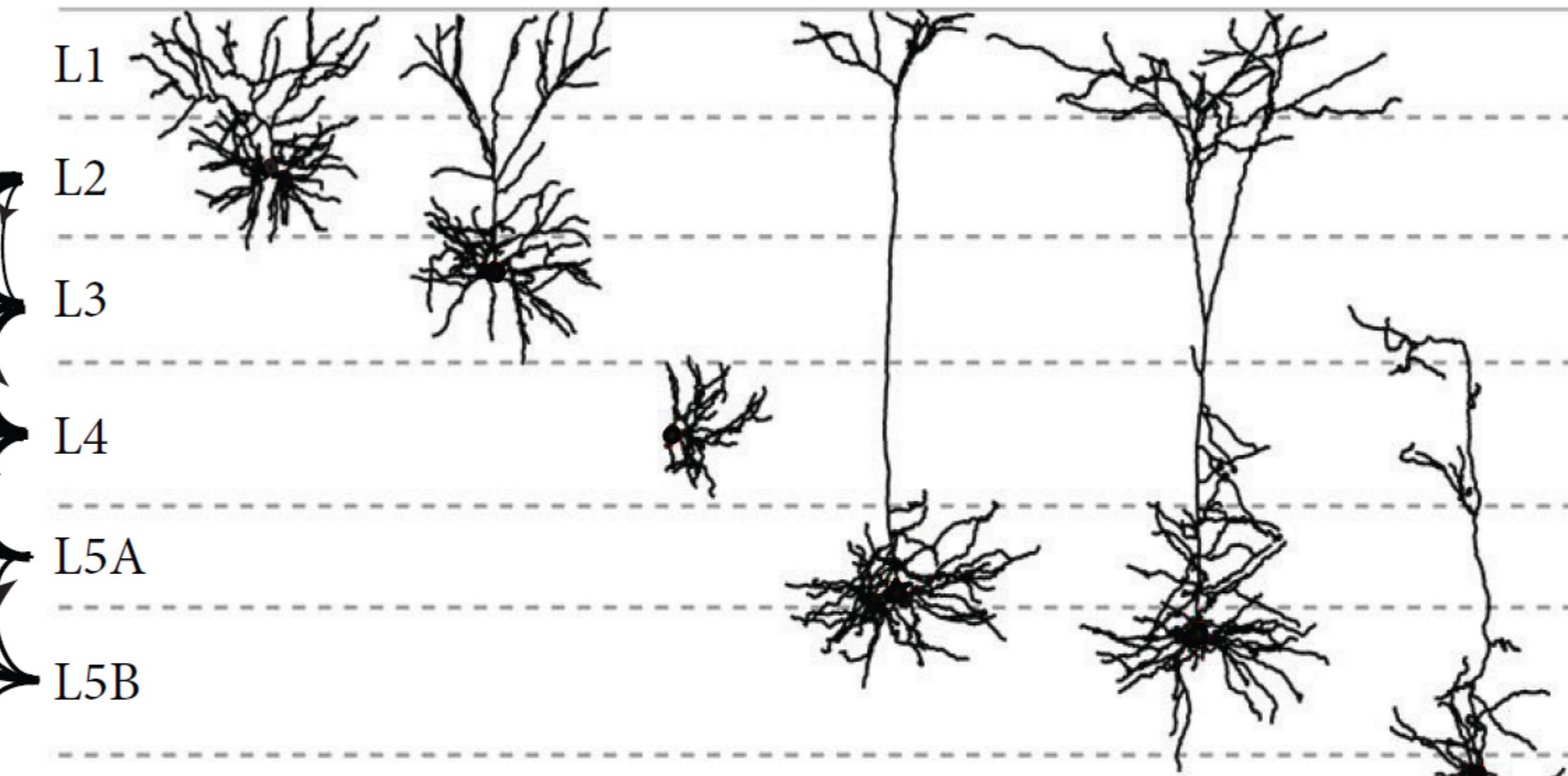
Here:  
Excitatory neurons



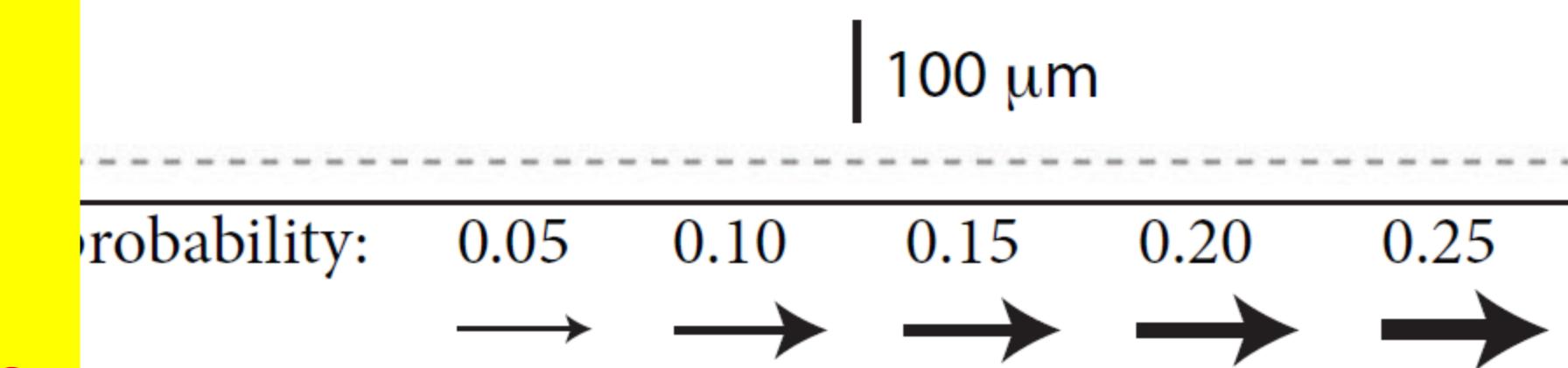
*Lefort et al. NEURON, 2009*

# 3 local cortical connectivity across layers

Here:  
Excitatory neurons



1 population =  
all neurons of given type  
in one layer of same column  
(e.g. excitatory in layer 3)



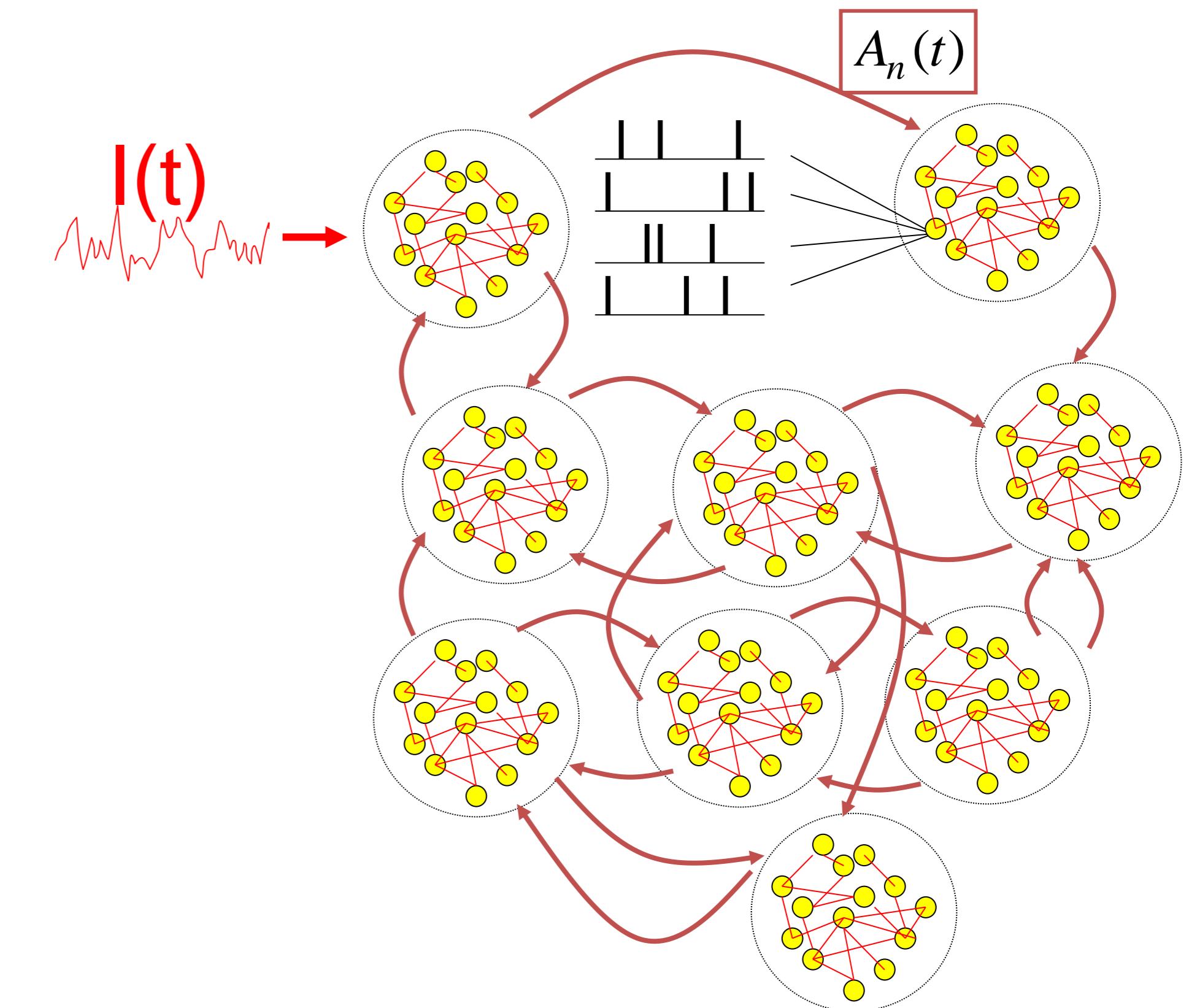
*Lefort et al. NEURON, 2009*

### 3. Interacting Populations in models

Connection probability:

- within population
- across population

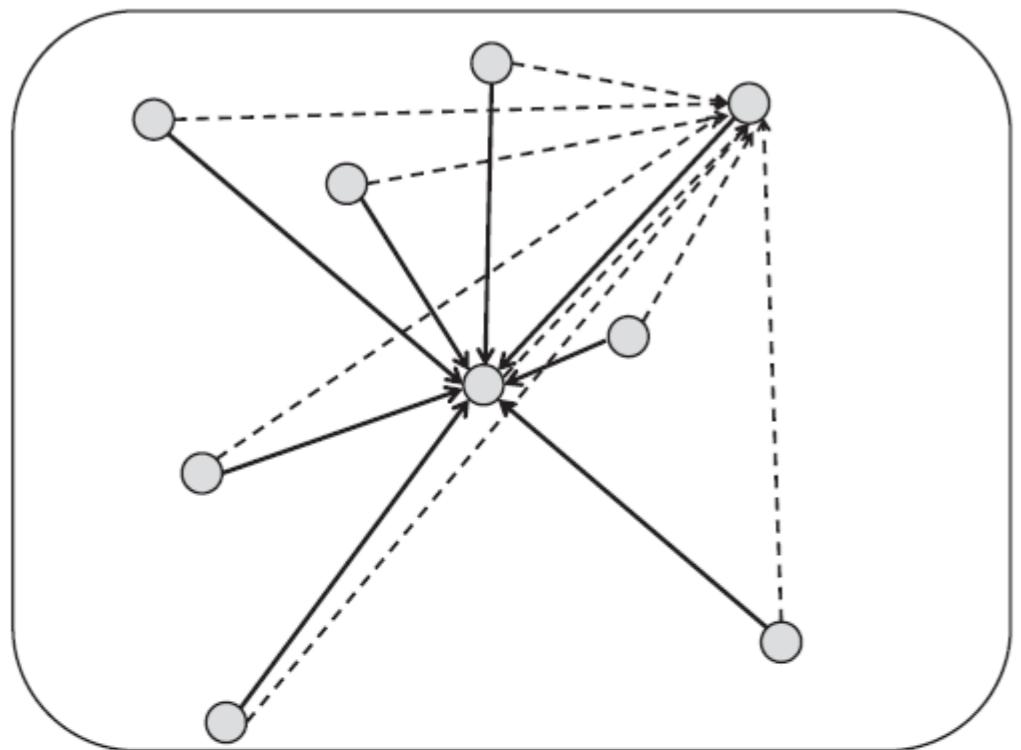
1 population =  
all neurons of given type  
in one layer of same column  
(e.g. excitatory in layer 3)



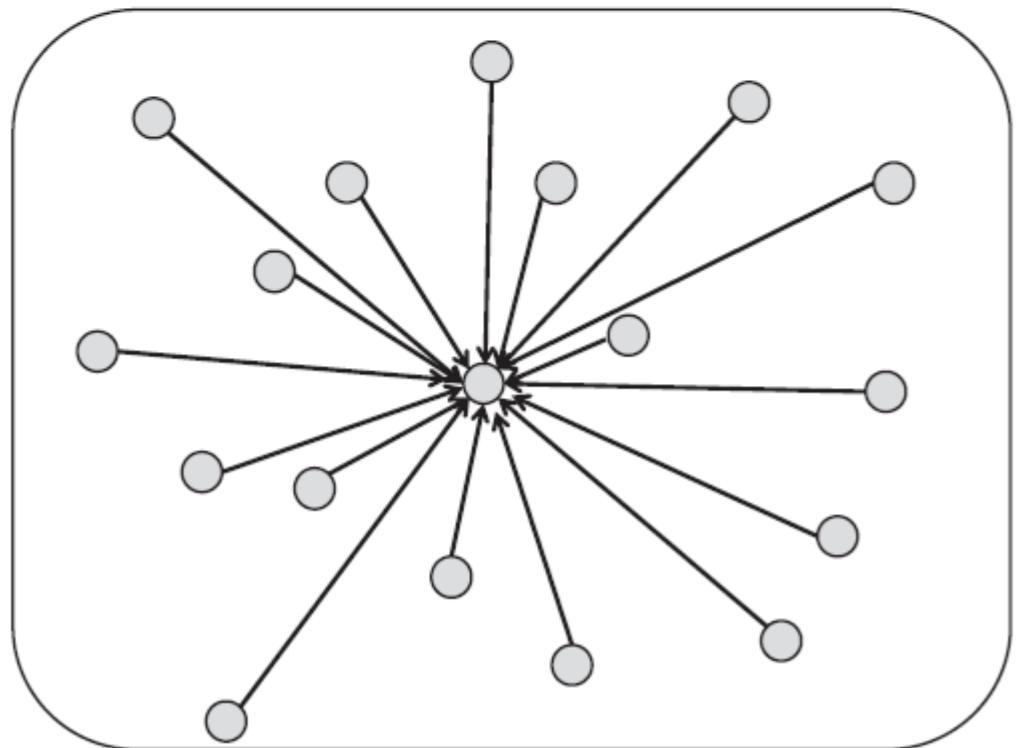
### 3. Connectivity schemes (models)

full connectivity  
all-to-all

$N=5000$   
neurons



$N=10000$   
neurons



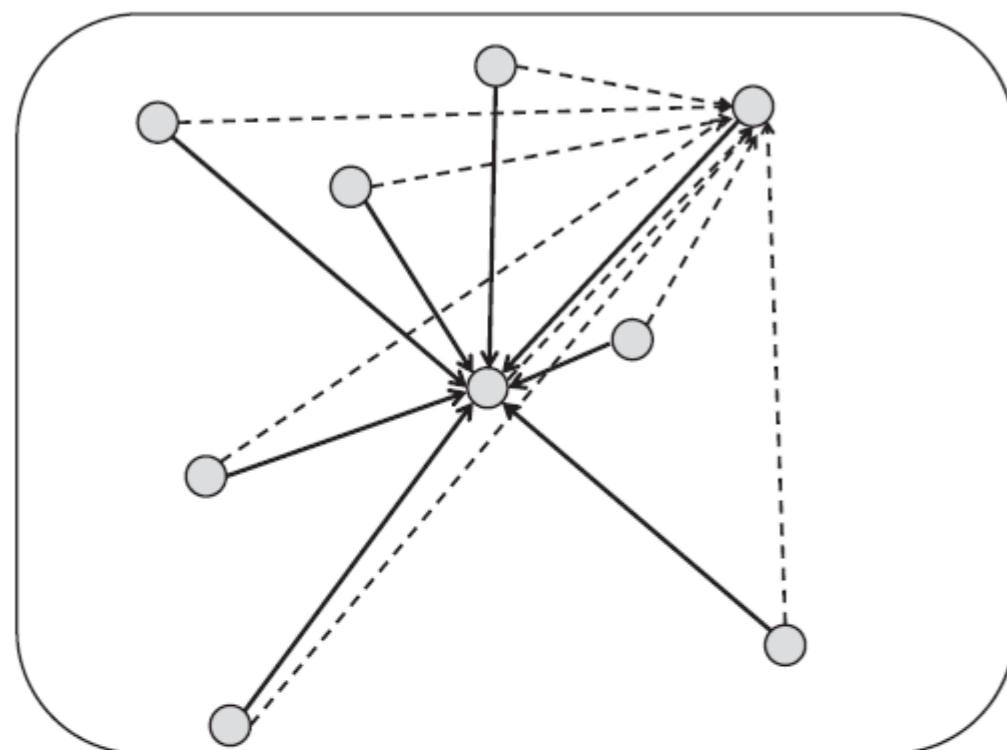
Each neuron receives  
 $N$  connections

*Image: Gerstner et al.  
Neuronal Dynamics (2014)*

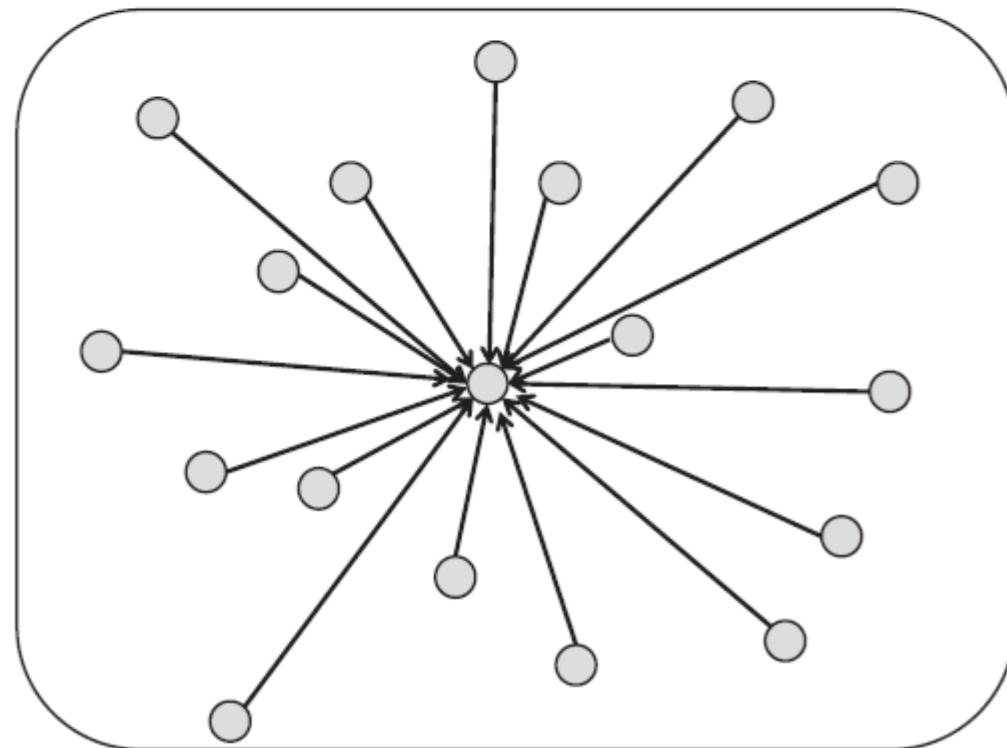
### 3. Connectivity schemes (models)

full connectivity  
all-to-all

$N=5000$   
neurons

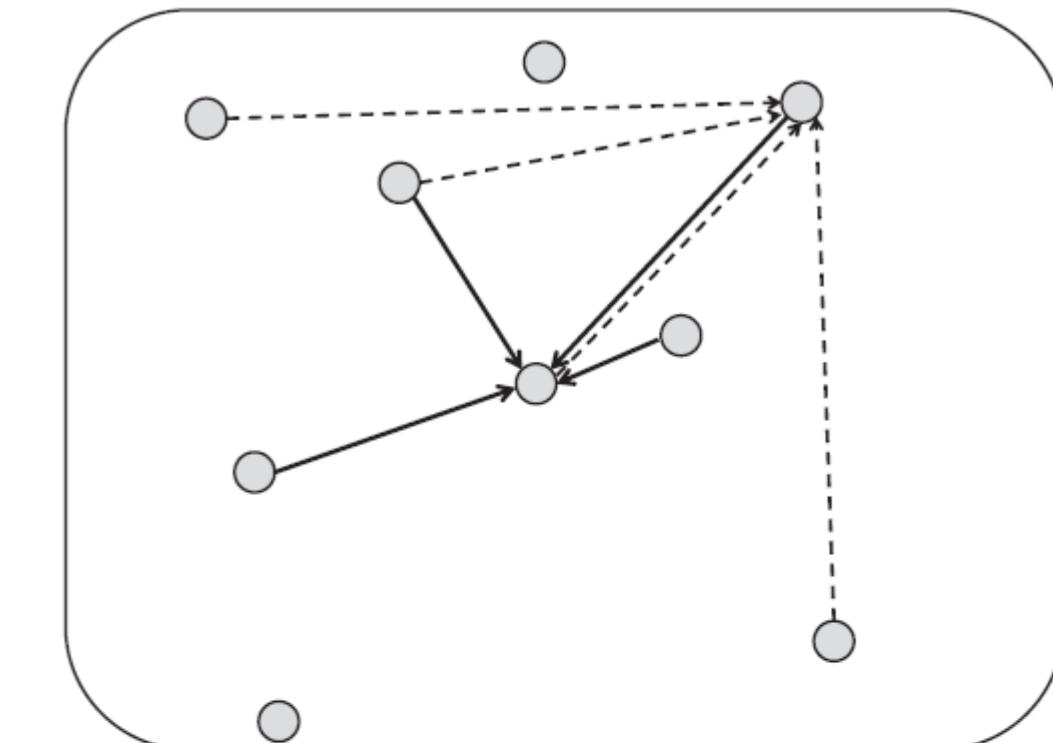
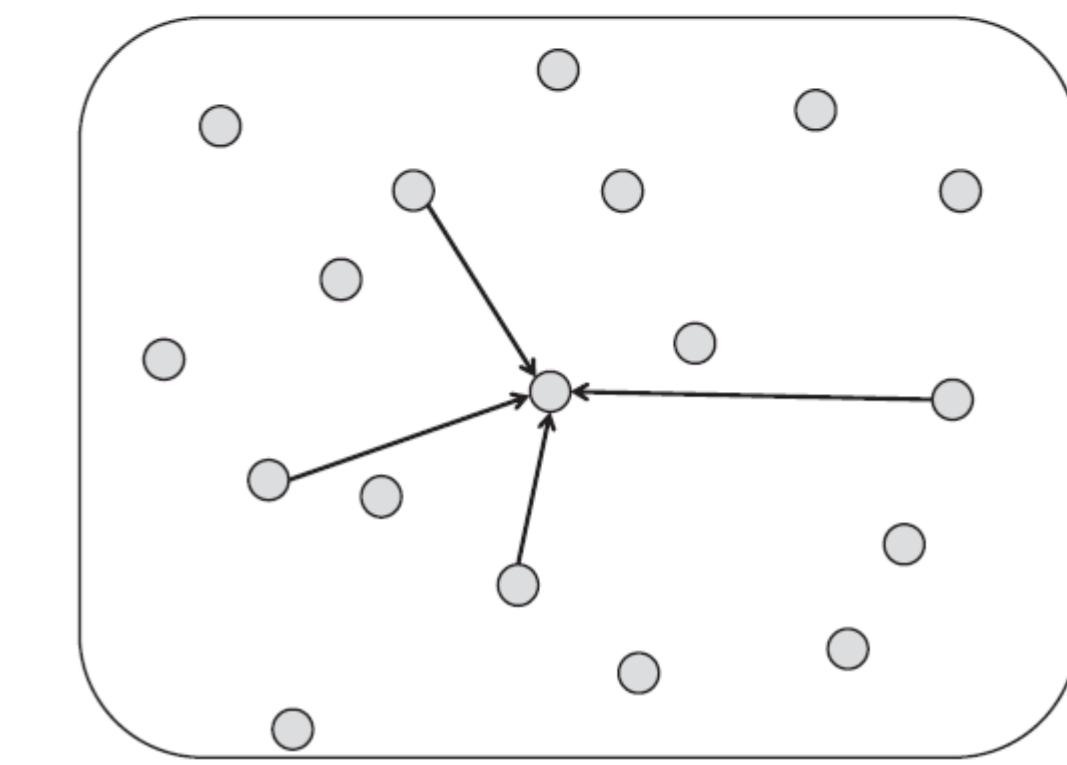


$N=10000$   
neurons



Each neuron receives  
 $N$  connections

Random connectivity  
w. number  $K$  of inputs fixed

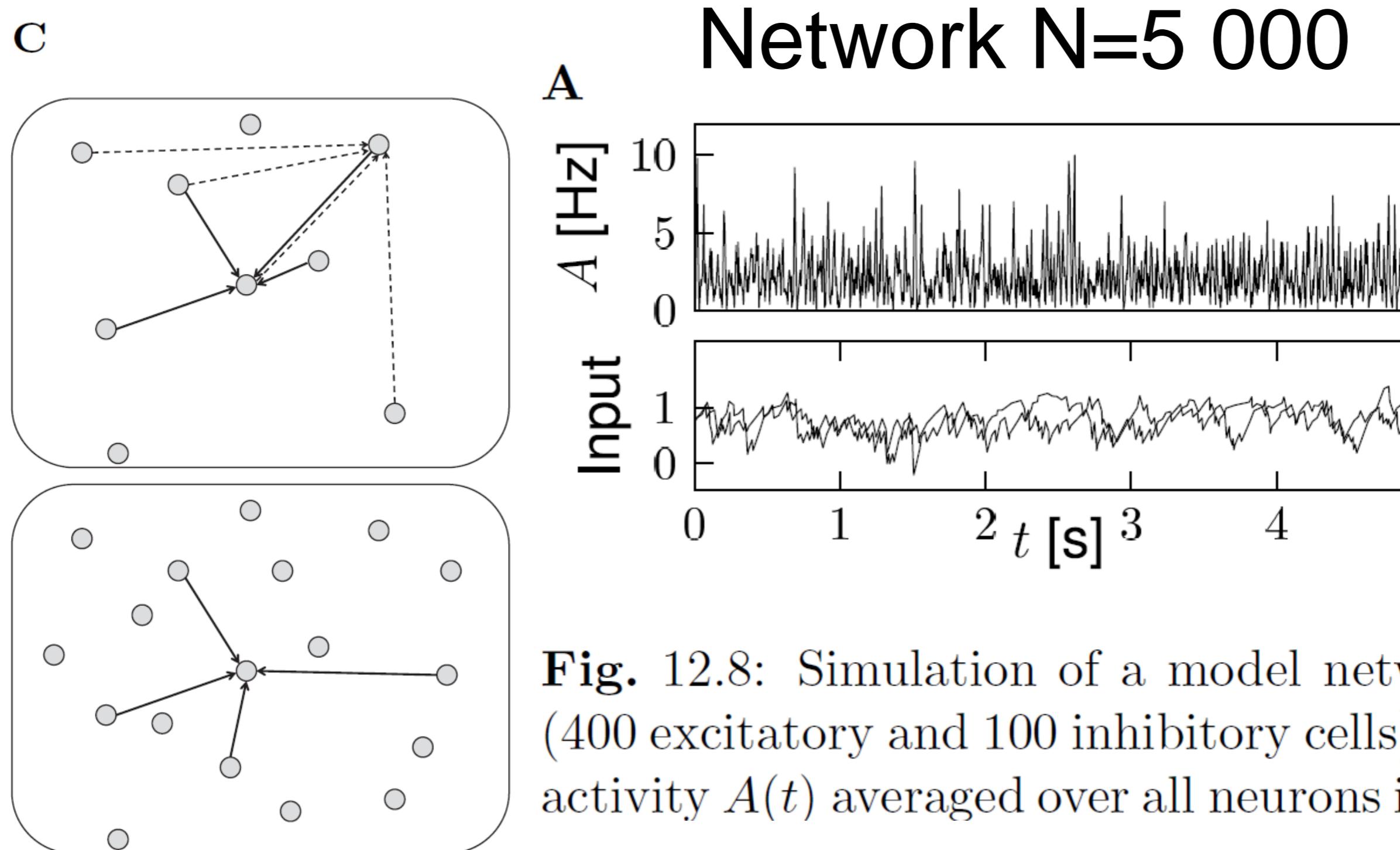


*Image: Gerstner et al.  
Neuronal Dynamics (2014)*

Each neuron receives  
 $K$  connections

### 3 Random connectivity – fixed number of inputs

random: number of inputs  $K=500$ , fixed

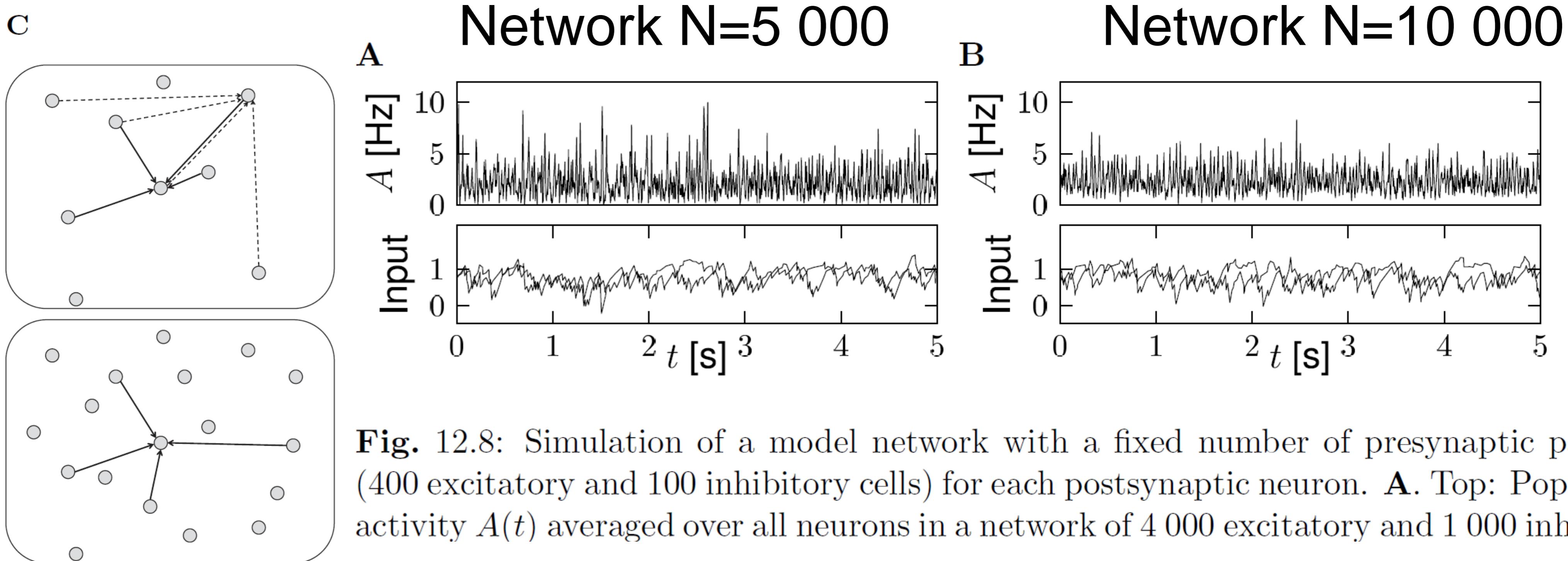


**Fig. 12.8:** Simulation of a model network with a fixed number of presynaptic partners (400 excitatory and 100 inhibitory cells) for each postsynaptic neuron. **A.** Top: Population activity  $A(t)$  averaged over all neurons in a network of 4 000 excitatory and 1 000 inhibitory

*Image: Gerstner et al.  
Neuronal Dynamics (2014)*

### 3 Random connectivity – fixed number of inputs

random: number of inputs  $K=500$ , fixed

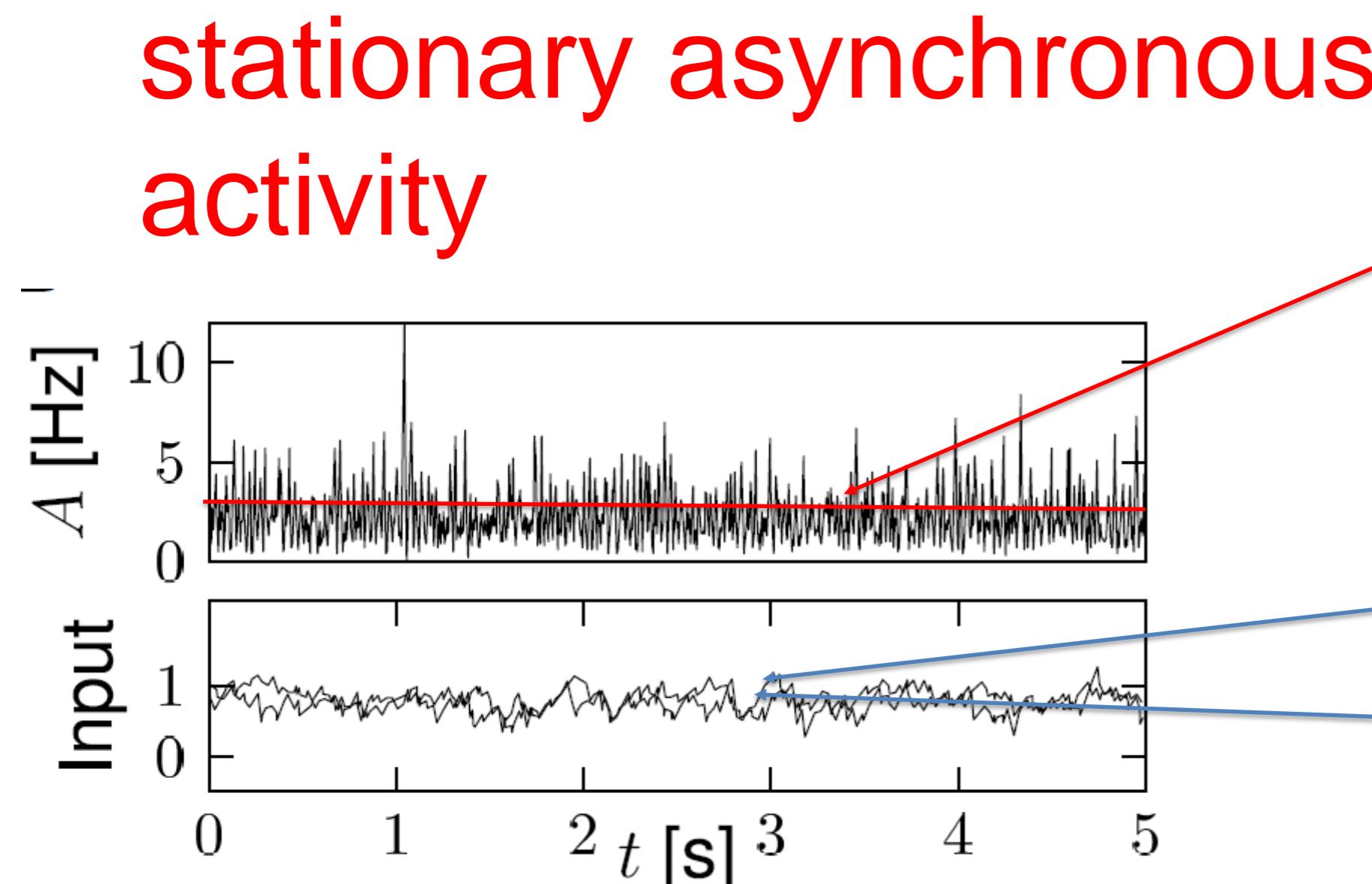


**Fig. 12.8:** Simulation of a model network with a fixed number of presynaptic partners (400 excitatory and 100 inhibitory cells) for each postsynaptic neuron. **A.** Top: Population activity  $A(t)$  averaged over all neurons in a network of 4 000 excitatory and 1 000 inhibitory

*Image: Gerstner et al.  
Neuronal Dynamics (2014)*

### 3. Random Connectivity: stationary asynchronous activity

Observations:



- $A(t)$  is nearly constant
- $A(t)=A_0$  independent of  $N$

Input is nearly identical  
for different neurons  
(and nearly constant)

### 3. Random Connectivity network: population activity

Can we mathematically  
predict the population activity?

given

- connection probability  $p$  and
- weight  $w_{ij}$
- properties of individual neurons
- large population

Can we mathematically define  
stationary asynchronous activity?

## Quiz 3, now

You simulate a network of 5000 neurons or 10000 neurons. In both networks you have randomly selected 500 input connections for each neuron. You observe that the population activity fluctuations around a stationary value.

- [ ] The connectivity in the first network is 10 percent.
- [ ] The connectivity in the second network is 10 percent.
- [ ] Since there are twice as many neurons, the value of the stationary population activity increases by a factor of 2 when you compare the network of 10000 neurons with that of 5000 neuron.
- [ ] The value of the average input into one neuron increases by a factor of 2 when you compare the network of 10000 neurons with that of 5000 neuron.

# Computational Neuroscience: Neuronal Dynamics of Cognition



## Neuronal Populations

Wulfram Gerstner

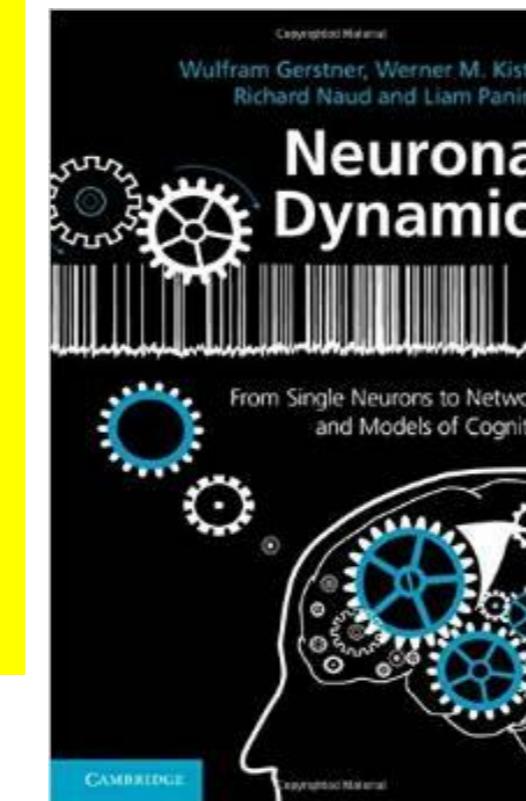
EPFL, Lausanne, Switzerland

### Reading:

#### NEURONAL DYNAMICS

- Ch. 12.1 – 12.4.3  
(except Section 12.3.7)

Cambridge Univ. Press



1. Population activity
  - definition and aims
2. Cortical Populations
  - columns and receptive fields
3. Connectivity
  - cortical connectivity
  - model connectivity schemes

4. Mean-field argument
  - stationary asynchronous activity
  - input to one neuron
5. Stationary mean-field
  - asynchronous state: predict activity
6. Random Networks
  - Balanced state

## 4. Review and aims

Can we mathematically predict the population activity?

given

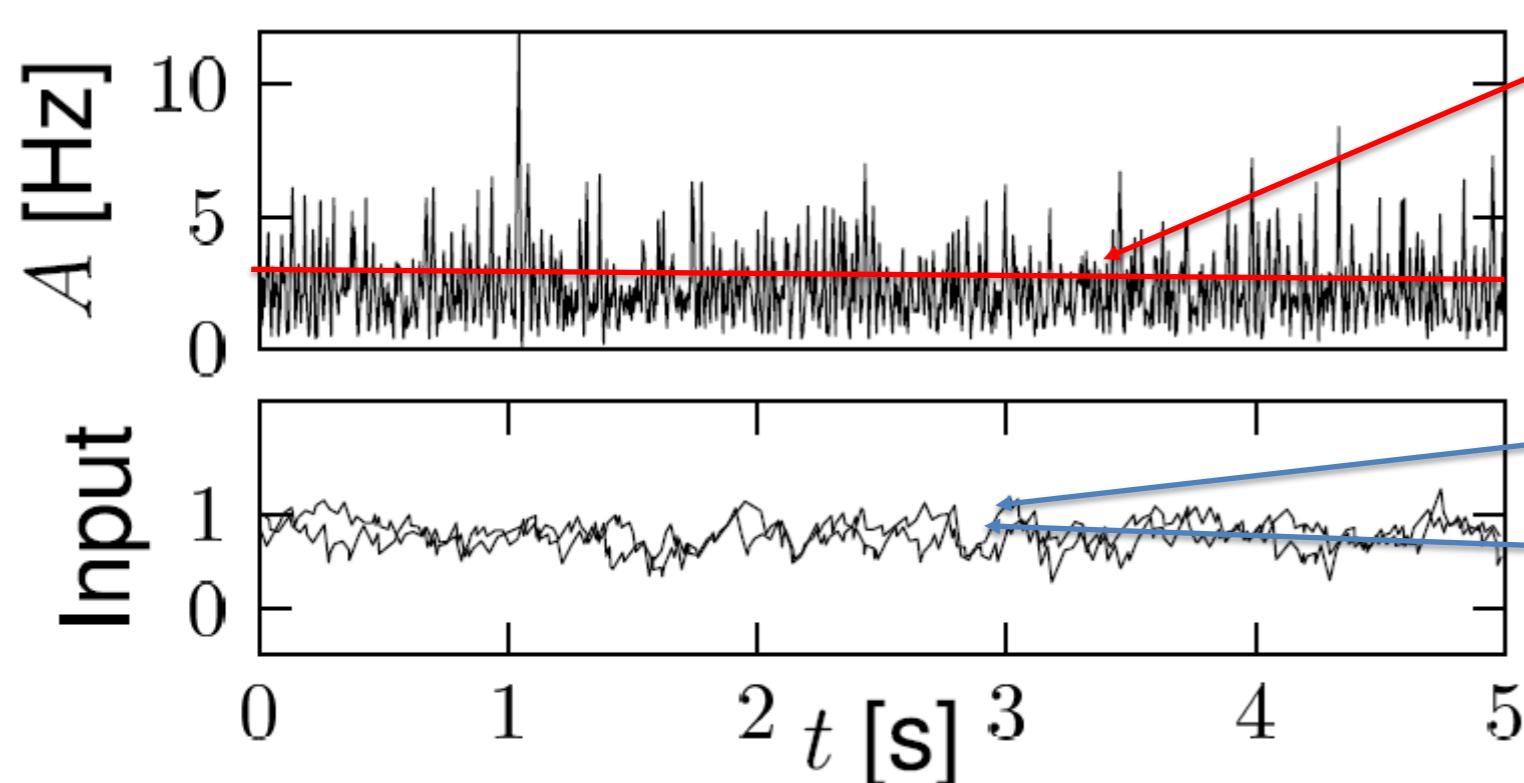
- connection probability  $p$  and
- weight  $w_{ij}$
- properties of individual neurons
- large population

Can we mathematically define stationary asynchronous activity?

## 4. Review: stationary asynchronous activity

Observations:

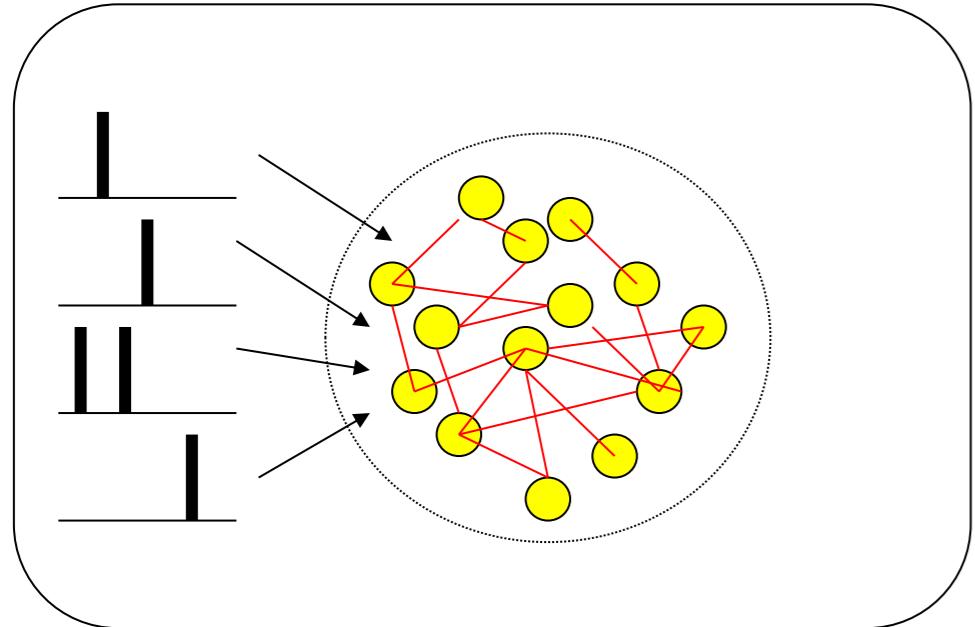
stationary asynchronous activity



- $A(t)$  is nearly constant
- $A(t)=A_0$  independent of  $N$

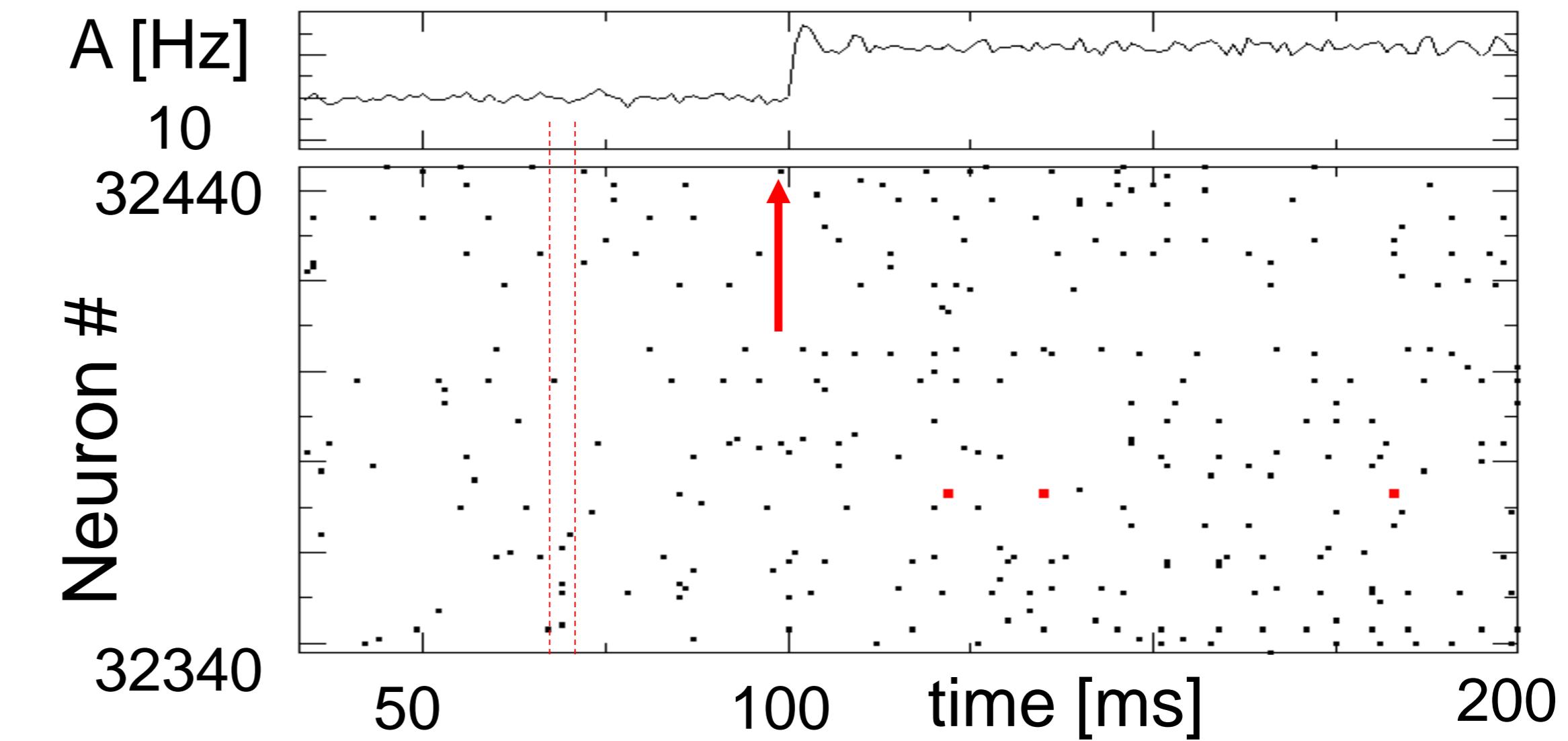
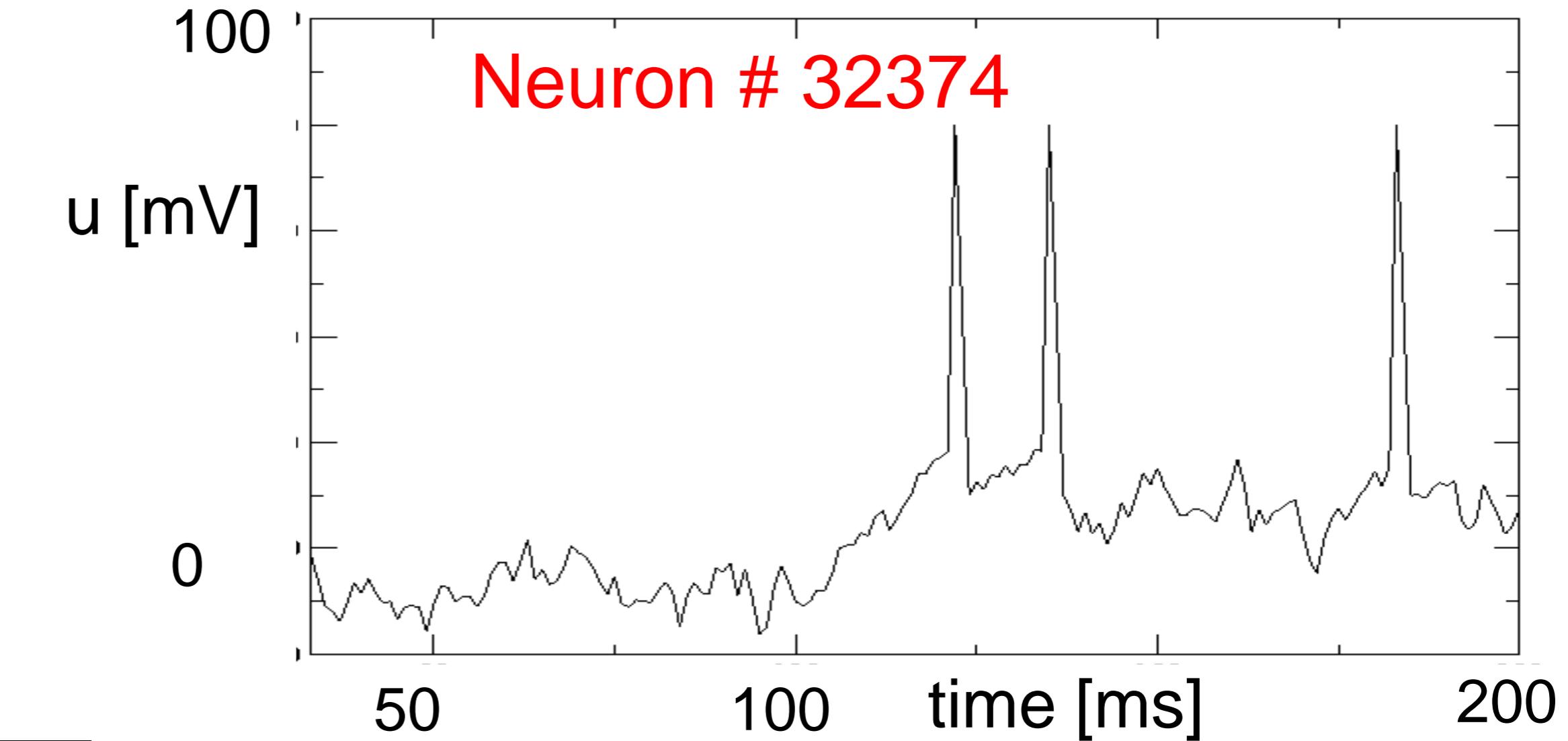
Input is nearly identical  
for different neurons  
(and nearly constant)

# 4. asynchronous firing / asynchronous state

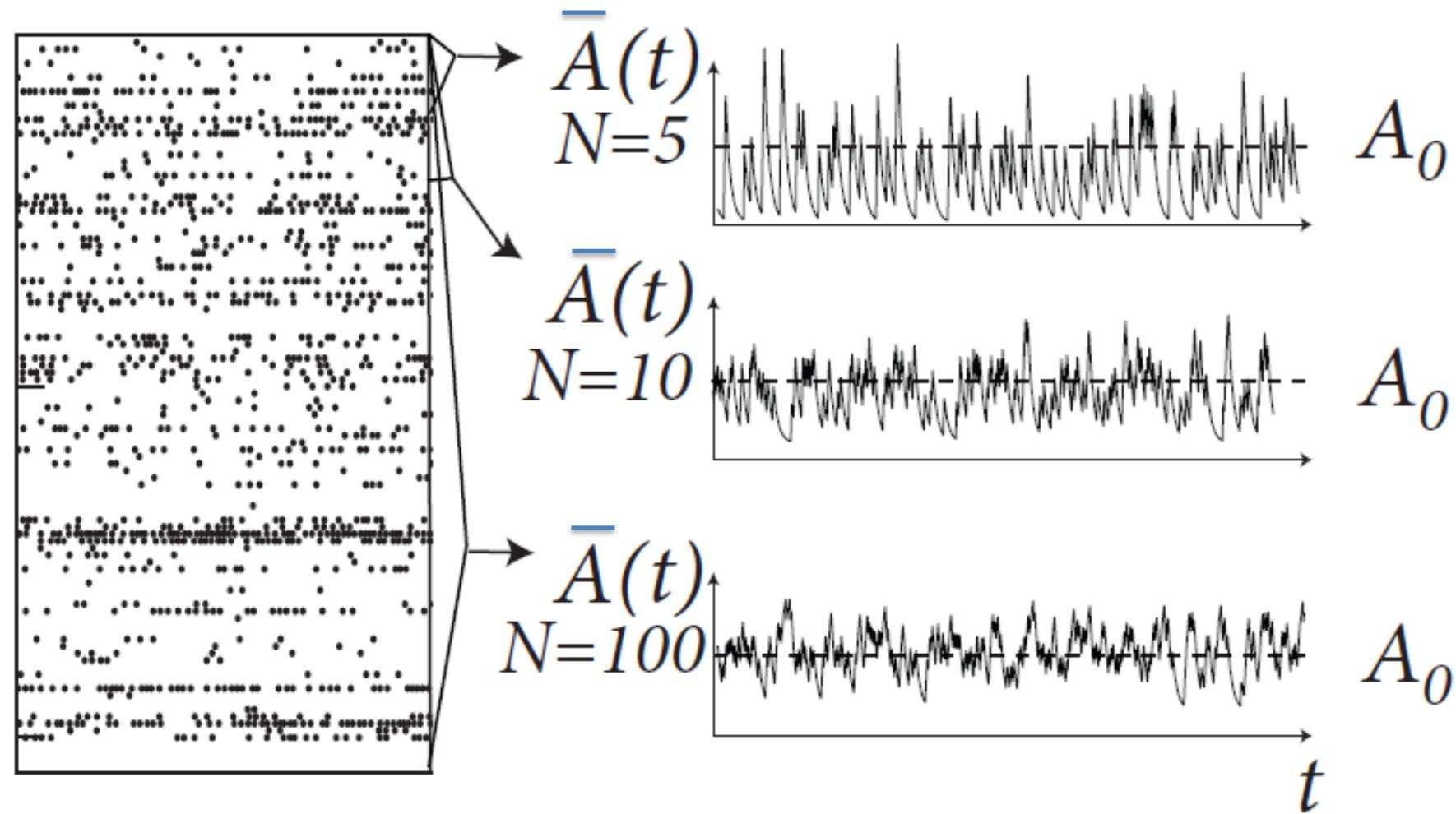


input {  
low rate  
- high rate

Population  
- 50 000 neurons  
- 20 percent inhibitory  
- randomly connected



## 4. asynchronous state



- Definition of  $A(t)$
- filtered  $A(t)$
- $\langle A(t) \rangle$

Image: Gerstner et al.  
Neuronal Dynamics (2014)

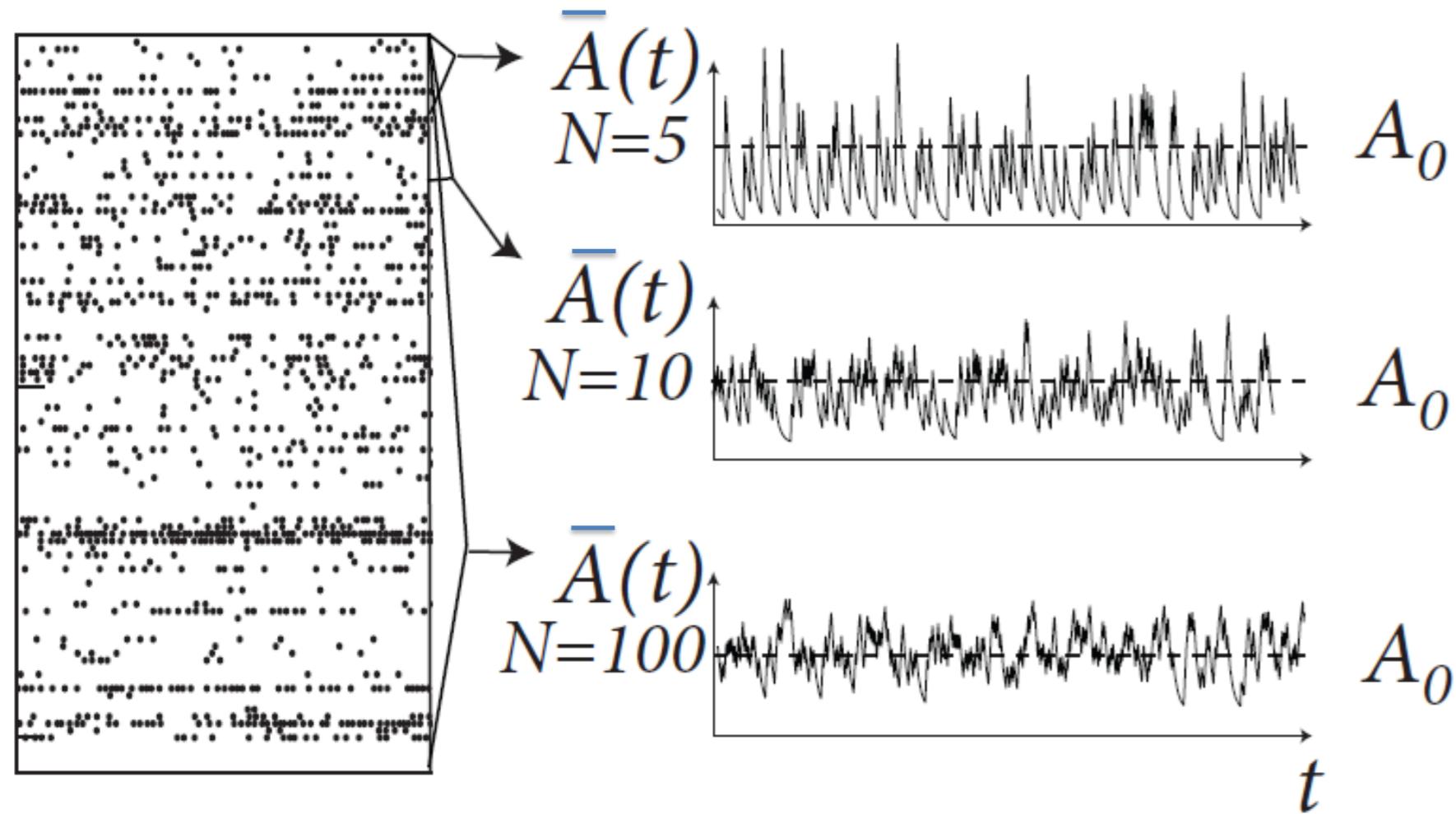
*Asynchronous state*

$\langle A(t) \rangle = A_0 = \text{constant}$

## 4. asynchronous state

*Asynchronous state*

$$\langle A(t) \rangle = A_0 = \text{constant}$$



- filtered  $A(t)$
- convergence in weak sense

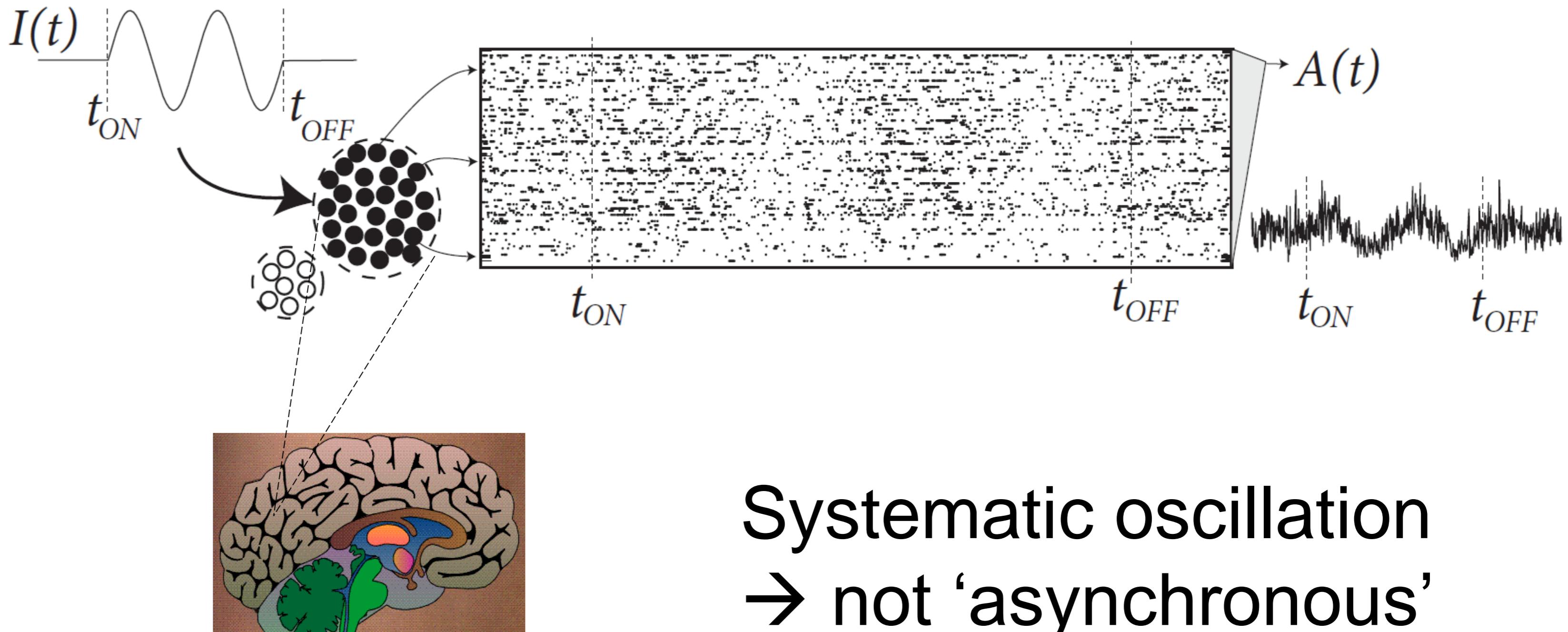
*Image: Gerstner et al.  
Neuronal Dynamics (2014)*

Weak convergence in Hilbert space:

[https://en.wikipedia.org/wiki/Weak\\_convergence\\_\(Hilbert\\_space\)](https://en.wikipedia.org/wiki/Weak_convergence_(Hilbert_space))

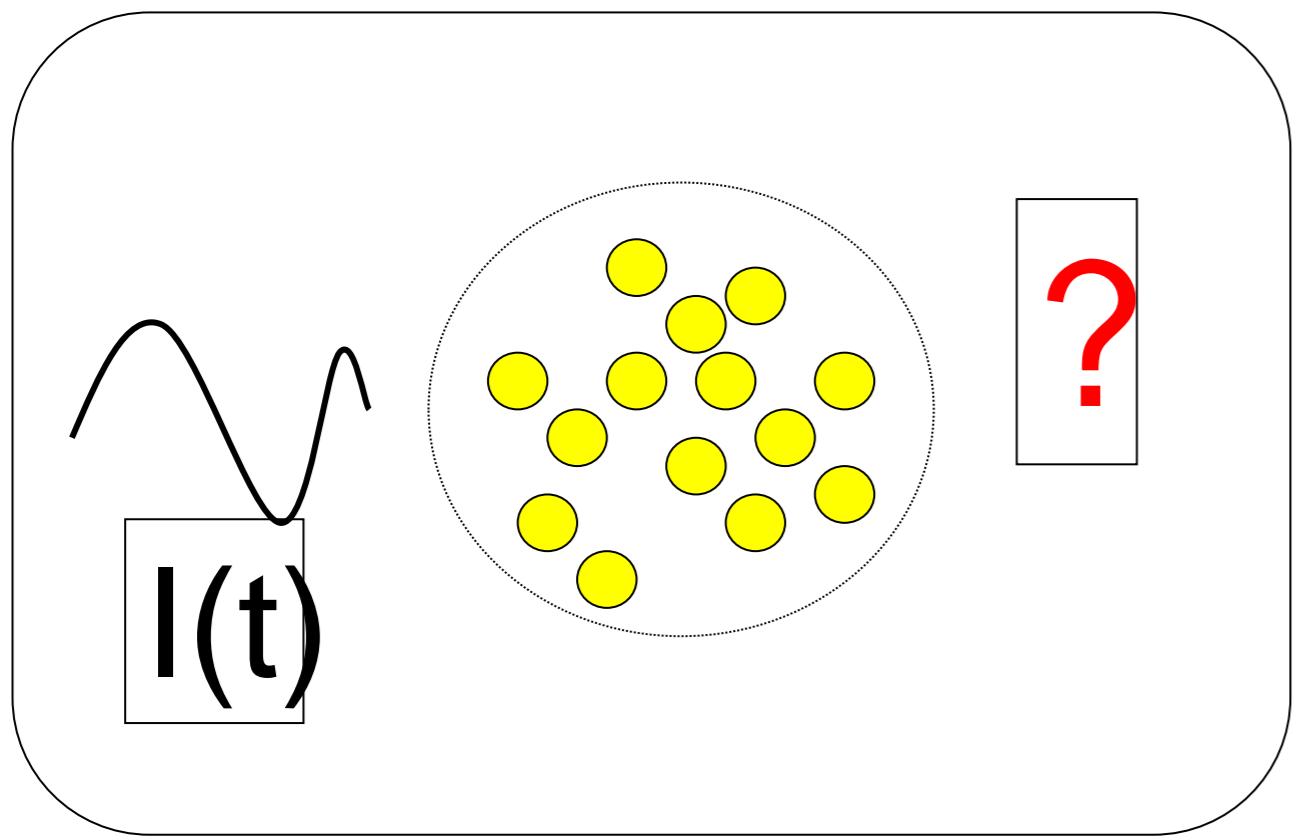
## 4. asynchronous state – counter examples, $\langle A(t) \rangle$ not constant

population of neurons  
with similar properties



Brain

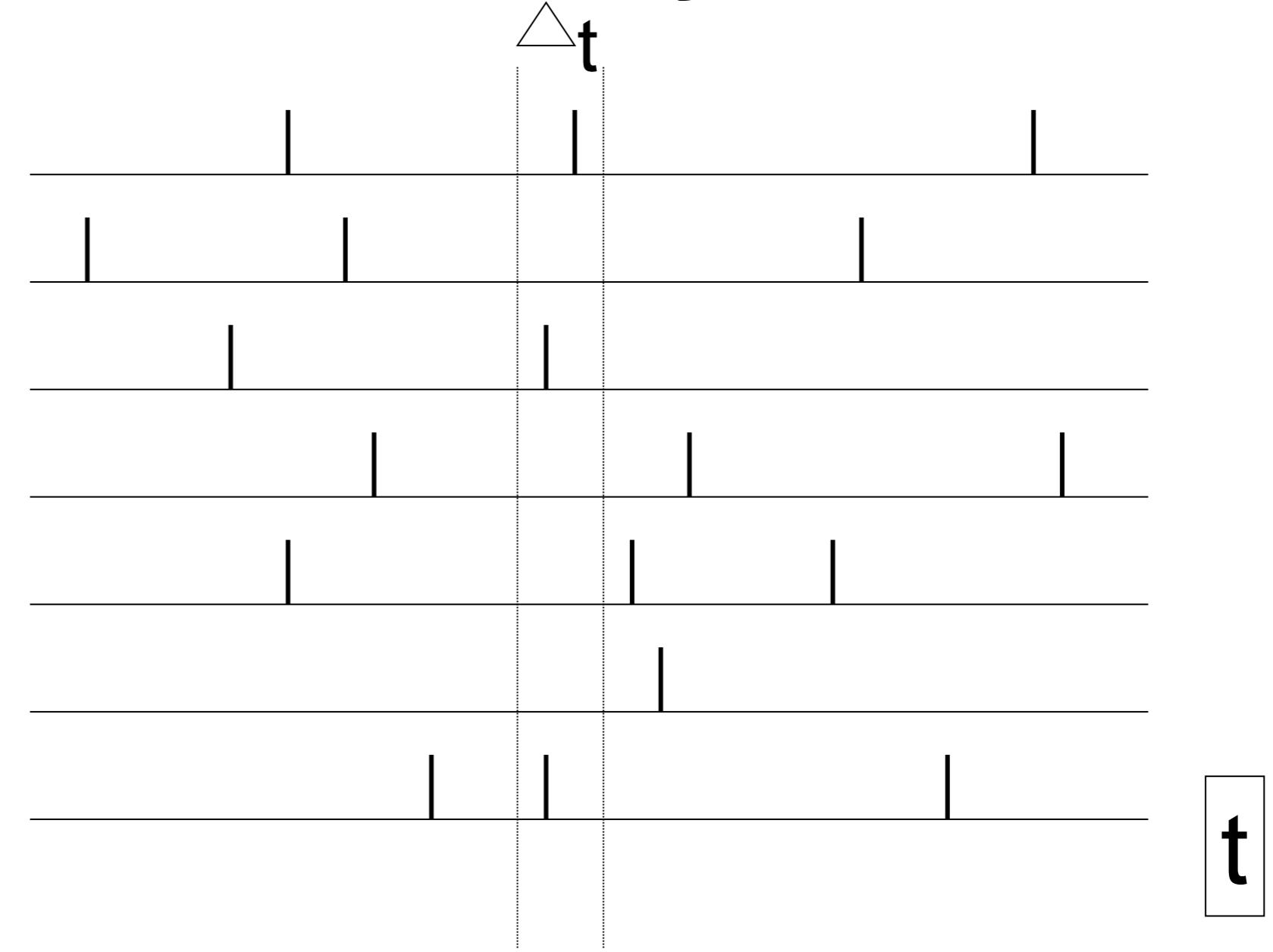
# 4. asynchronous state in a homogeneous network



## Homogeneous network:

- all neurons are 'the same'
- all synapses are 'the same'
- each neuron receives input from  $k$  neurons in network
- each neuron receives the same (mean) external input

## population activity?



population activity

$$A(t) = \frac{n(t; t + \Delta t)}{N \Delta t}$$

# Computational Neuroscience: Neuronal Dynamics of Cognition



## Neuronal Populations

Wulfram Gerstner

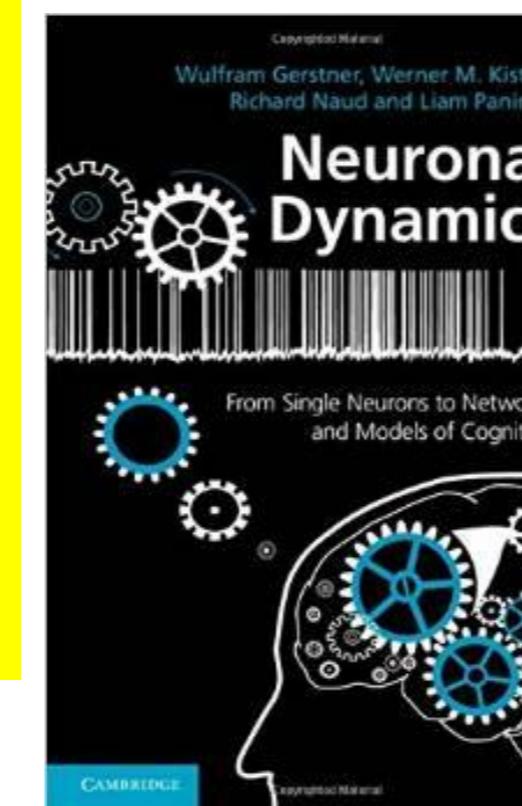
EPFL, Lausanne, Switzerland

### Reading:

#### NEURONAL DYNAMICS

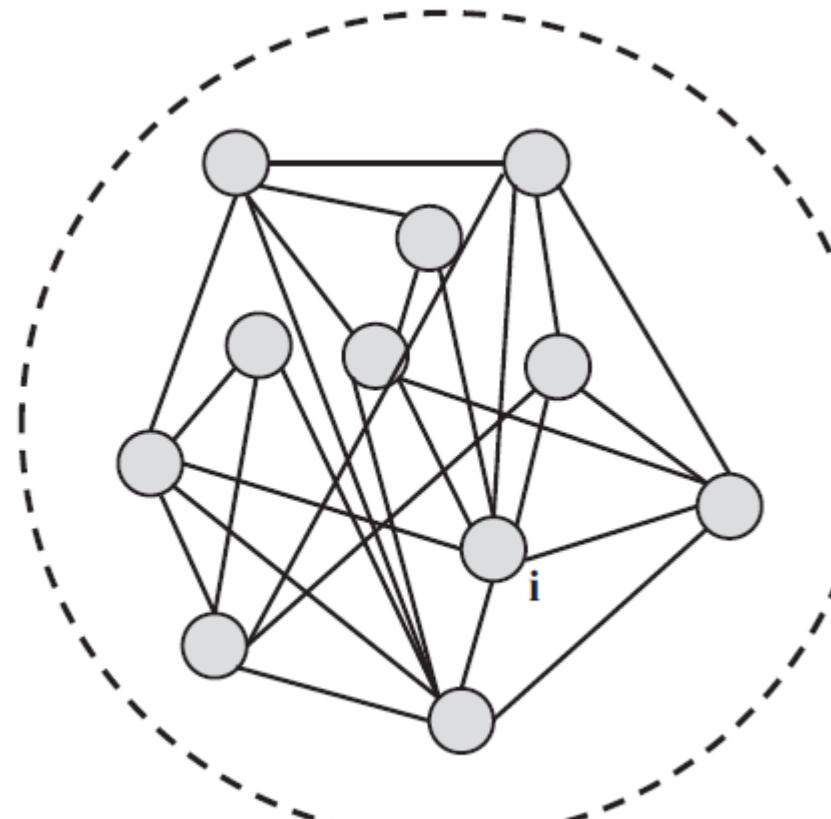
- Ch. 12.1 – 12.4.3  
(except Section 12.3.7)

Cambridge Univ. Press

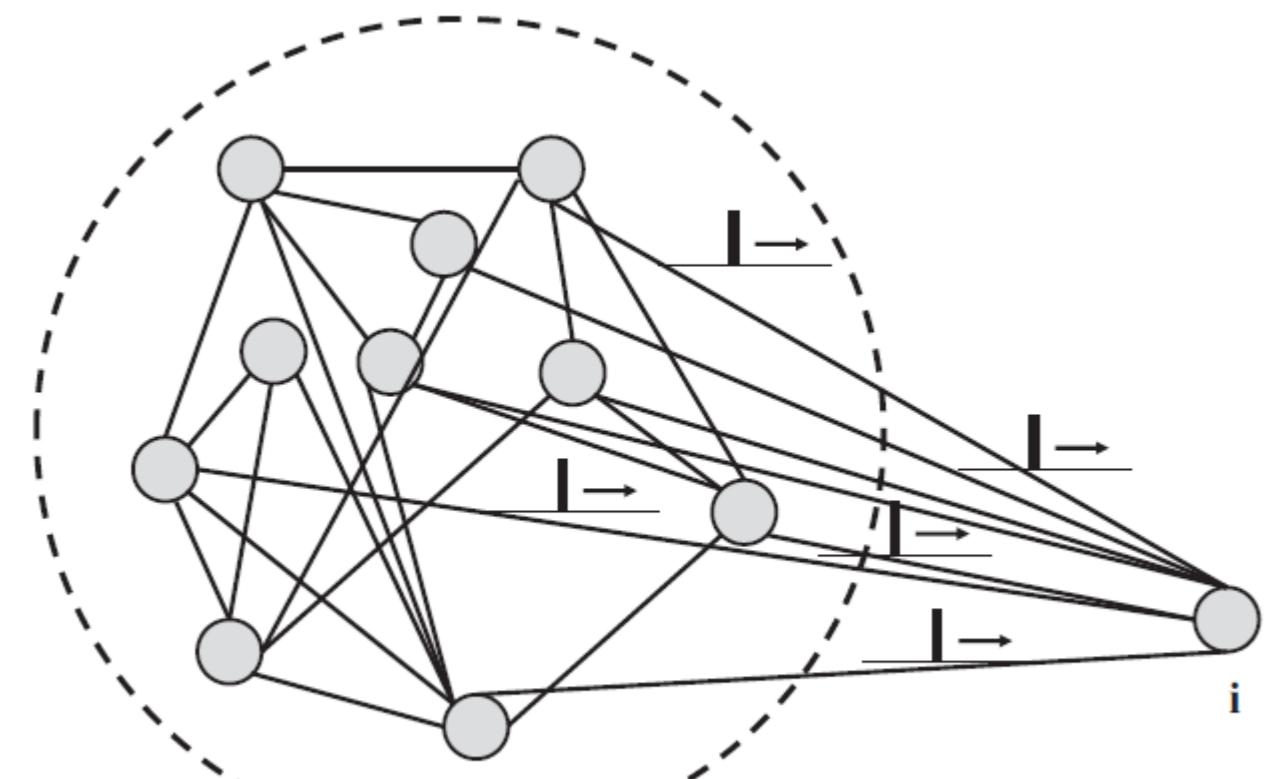


- 1. Population activity**
  - definition and aims
- 2. Cortical Populations**
  - columns and receptive fields
- 3. Connectivity**
  - cortical connectivity
  - model connectivity schemes
- 4. Mean-field argument**
  - stationary asynchronous activity
  - input to one neuron
- 5. Stationary mean-field**
  - asynchronous state: predict activity
- 6. Random Networks**
  - Balanced state

## 4. mean-field arguments (full connectivity)

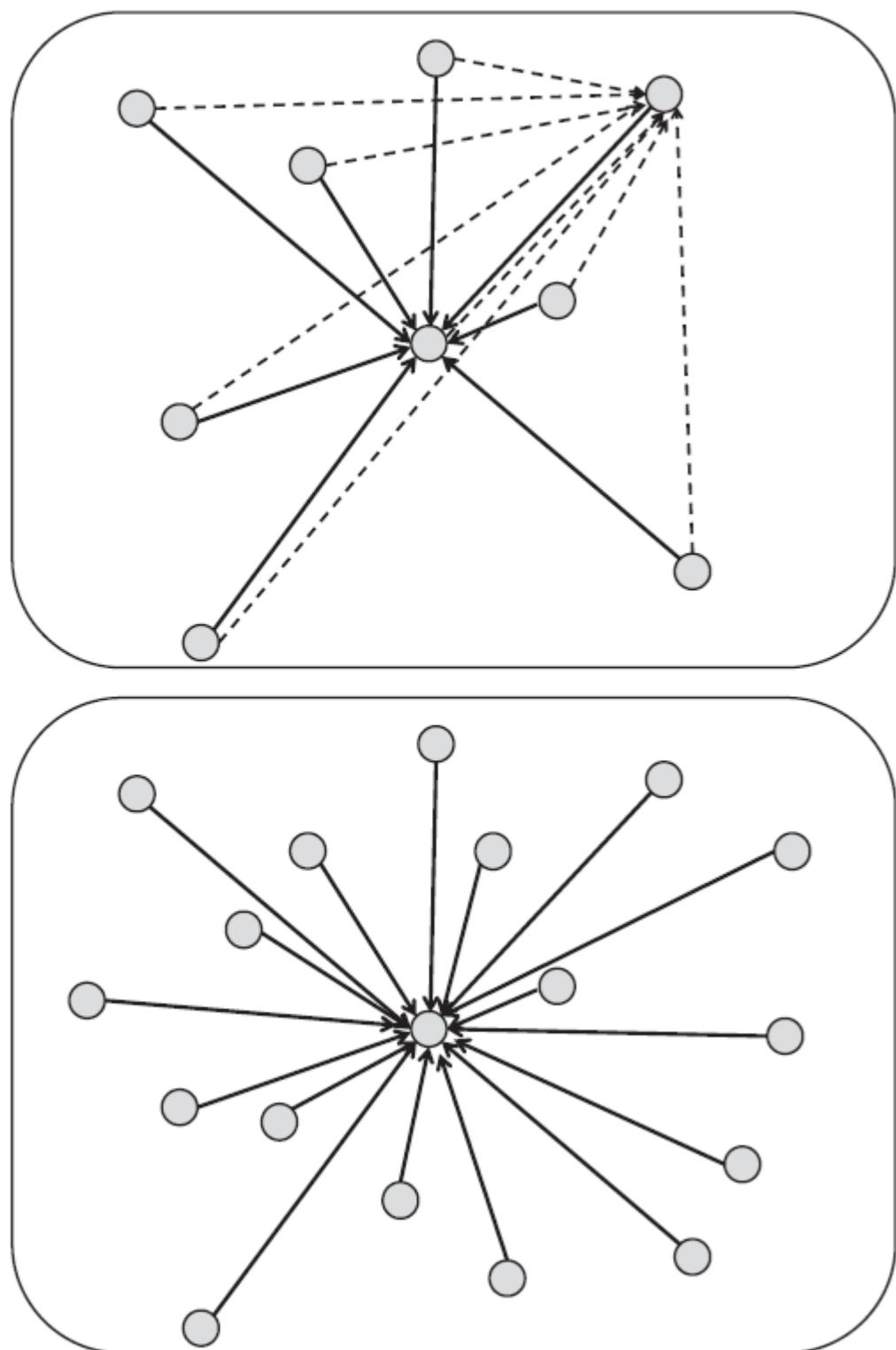


Input to neuron  $i$



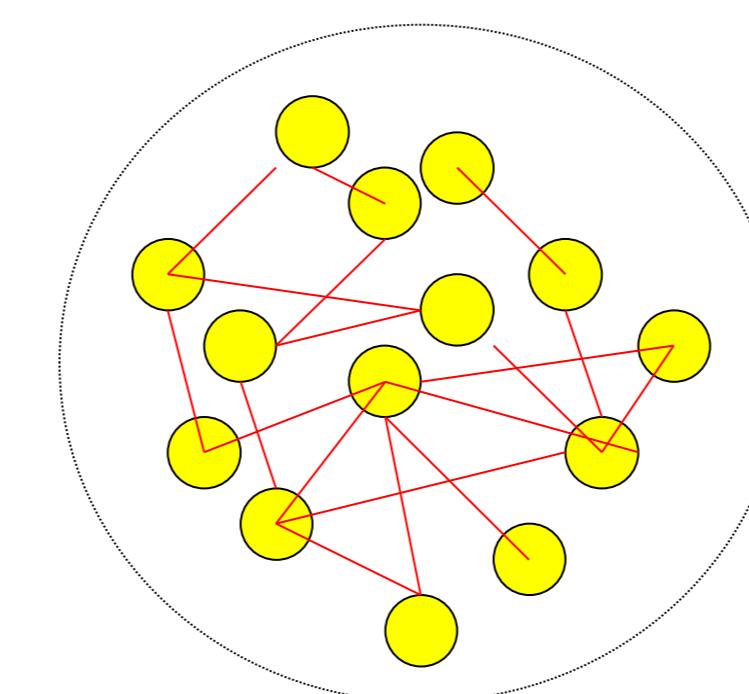
## 4. mean-field arguments (full connectivity)

A



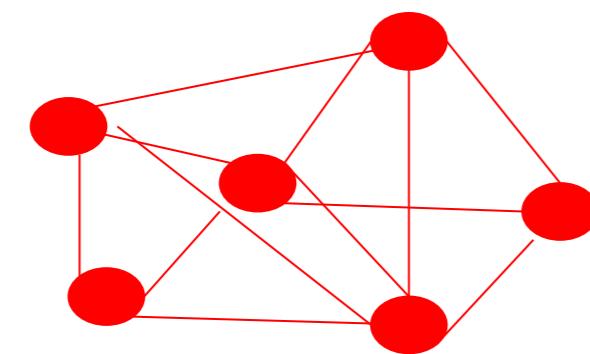
B

# Full connectivity



## 4. mean-field arguments (full connectivity)

### Fully connected network



fully  
connected  
 $N \gg 1$

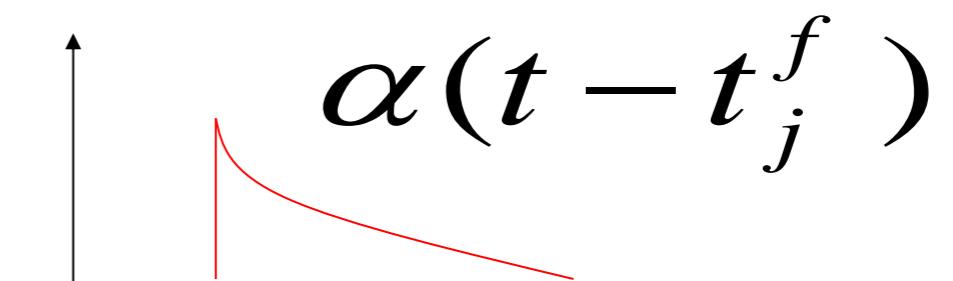
Synaptic coupling

$$w_{ij} = w_0$$

$$I(t) = I^{ext}(t) + I^{net}(t)$$

$$I^{net}(t) = \sum_j \sum_f w_{ij} \alpha(t - t_j^f)$$

All spikes, all neurons



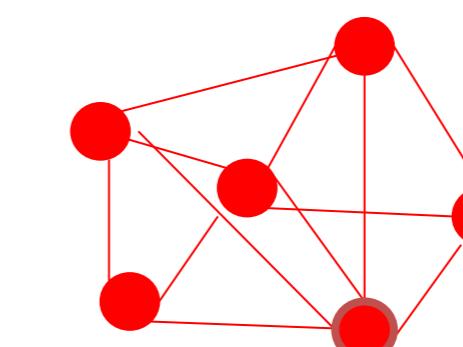
## 4. mean-field arguments (full connectivity)

All neurons receive the same total input current  
(‘mean field’)

$$I_i(t) = J_0 \int \alpha(s) A(t-s) ds + I^{ext}(t)$$

Index  $i$  disappears

$$w_{ij} = \frac{J_0}{N}$$



fully  
connected

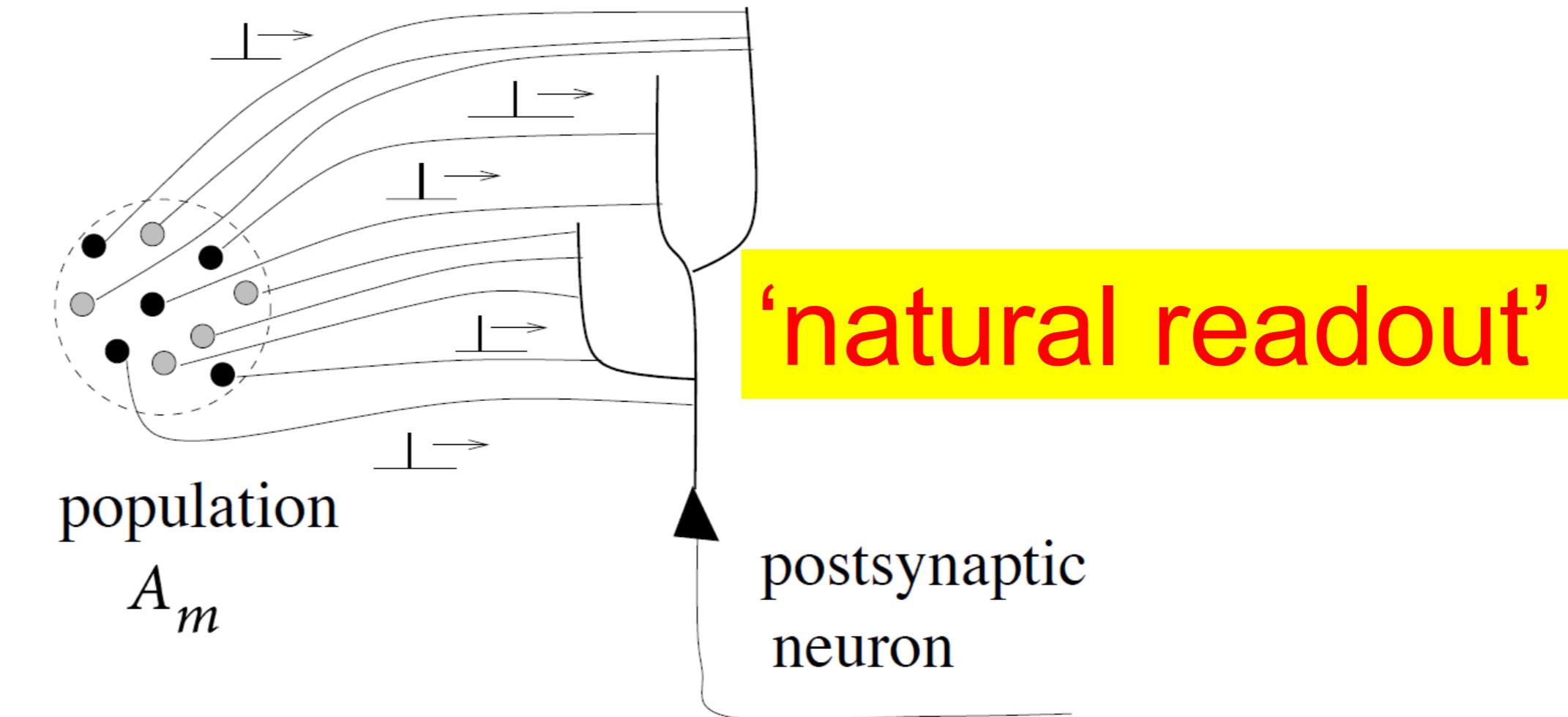
$$I^{net}(t) = \sum_j \sum_f w_{ij} \alpha(t - t_j^f) + I^{ext}(t)$$

All spikes, all neurons

## 4. mean-field arguments (full connectivity)

All neurons receive the same total input current  
(‘mean field’)

$$I_i(t) = J_0 \int \alpha(s) A(t-s) ds + I^{ext}(t)$$



## Quiz 4, now

In a fully connected homogeneous network of 5000 neurons, the total input into neuron  $i=10$

- [ ] is the same as the input into its neighbors ( $i=9$  and  $i=11$ )
- [ ] is the same as the input into the neuron  $i=3564$
- [ ] depends on the population activity of the network
- [ ] is always constant

# Computational Neuroscience: Neuronal Dynamics of Cognition



## Neuronal Populations

Wulfram Gerstner

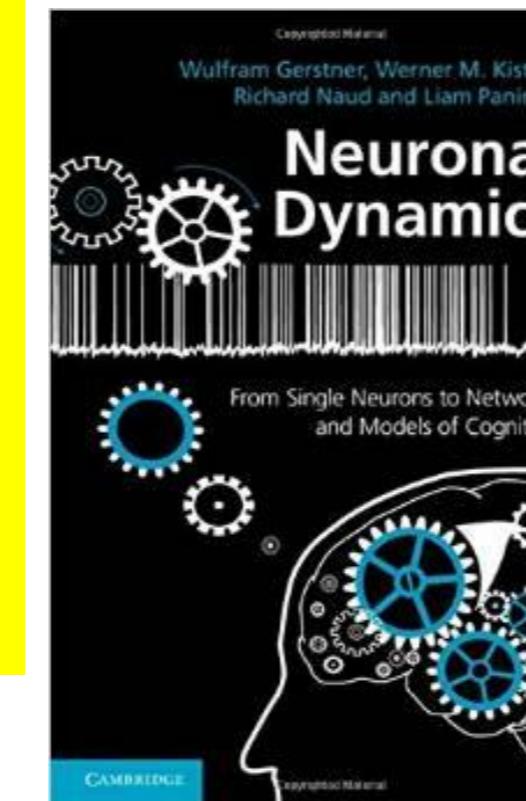
EPFL, Lausanne, Switzerland

*Reading:*

### NEURONAL DYNAMICS

- Ch. 12.1 – 12.4.3  
(except Section 12.3.7)

Cambridge Univ. Press



### 1. Population activity

- definition and aims

### 2. Cortical Populations

- columns and receptive fields

### 3. Connectivity

- cortical connectivity
- model connectivity schemes

### 4. Mean-field argument

- input to one neuron

### 5. Stationary mean-field

- asynchronous state: predict activity

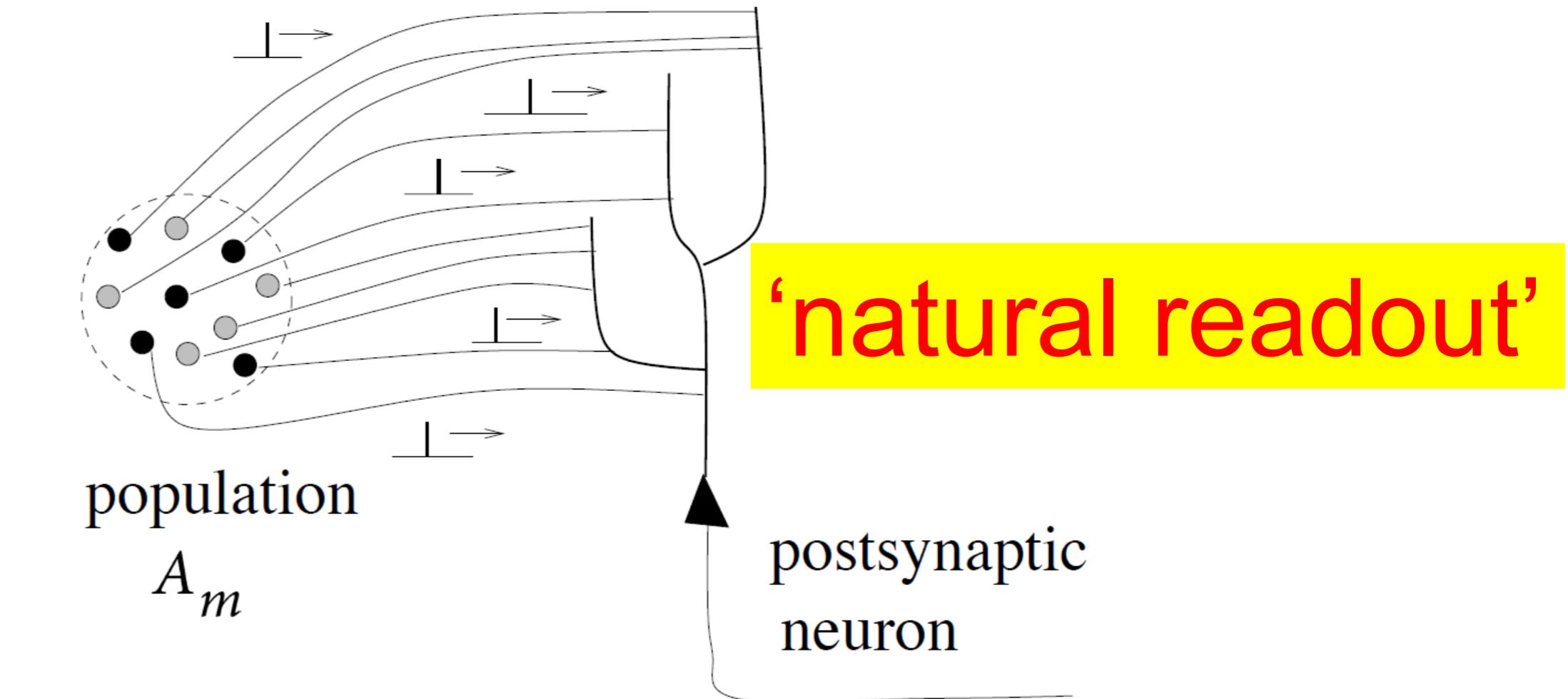
### 6. Random Networks

- Balanced state

## 5. Review and aims: predict activity

- all neurons receive the same input current
- population activity drives input

→ Predict population activity?



## 5. mean-field arguments: asynchronous state

Assume all variables are constant in time:

Stationary state

$$I_i(t) = J_0 \int \alpha(s) A(t-s) ds + I^{ext}(t)$$



$$(1) \quad I_0 = [J_0 q A_0 + I_0^{ext}]$$

Firing rate? Population rate?

## 5. mean-field argument: f-I curve of single neuron

---

$$I_0 = [J_0 q A_0 + I_0^{ext}]$$

Firing rate?

## 5. mean-field argument: population rate = single neuron rate

---



## 5. mean-field arguments: population activity (asynchr. state)

Input is constant and identical for all neurons

$$(1) \quad I_0 = [J_0 q A_0 + I_0^{ext}] \quad q = \int \alpha(s) ds$$

frequency (single-neuron gain function)

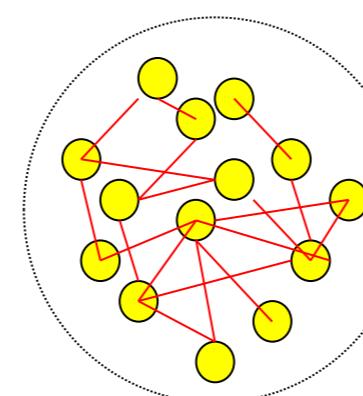
$$(2) \quad \nu = g(I_0)$$

Homogeneous network

All neurons are identical,

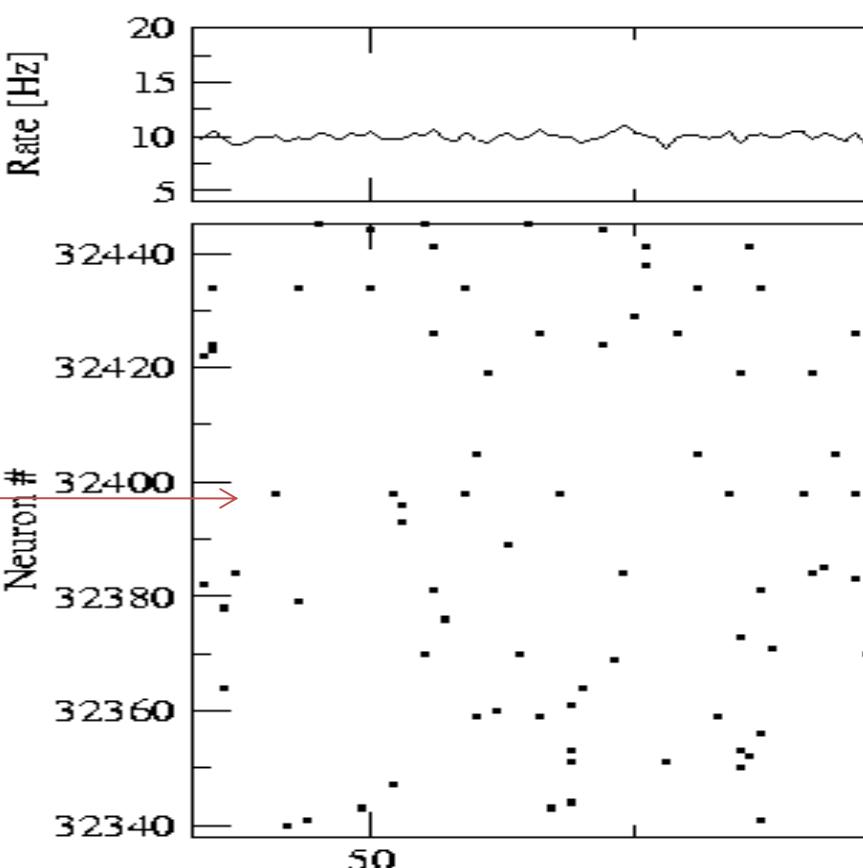
**Single neuron rate = population rate**

$$(3) \quad \nu = A_0$$



Single  
neuron

$$A(t) = A_0 = \text{const}$$



## 5. stationary solution: population activity (asynchr. State)

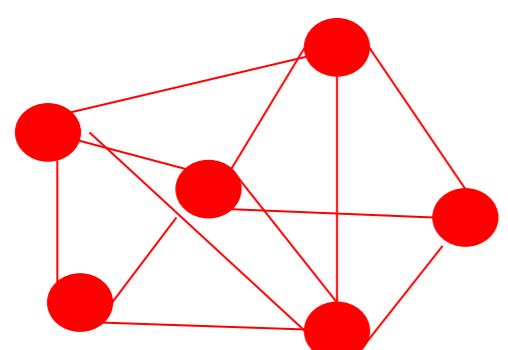
Stationary solution

=asynchronous state

$$(1) \quad I_0 = [J_0 q A_0 + I_0^{ext}]$$

$$(2) \quad \boxed{\nu = g(I_0)}$$

$$(3) \quad \boxed{\nu = A_0}$$



fully  
connected

$N \gg 1$

$$\boxed{\nu = g(I_0) = A_0}$$



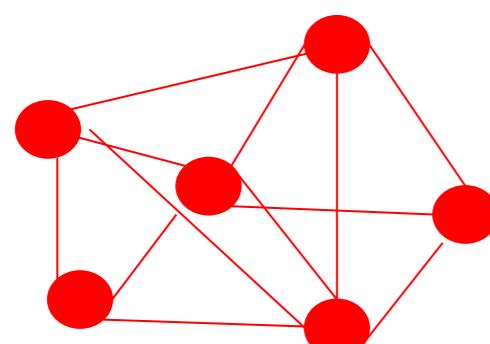
## 5. stationary solution: population activity (asynchr. state)

Stationary solution  
=asynchronous state

$$(1) \quad I_0 = [J_0 q A_0 + I_0^{ext}]$$

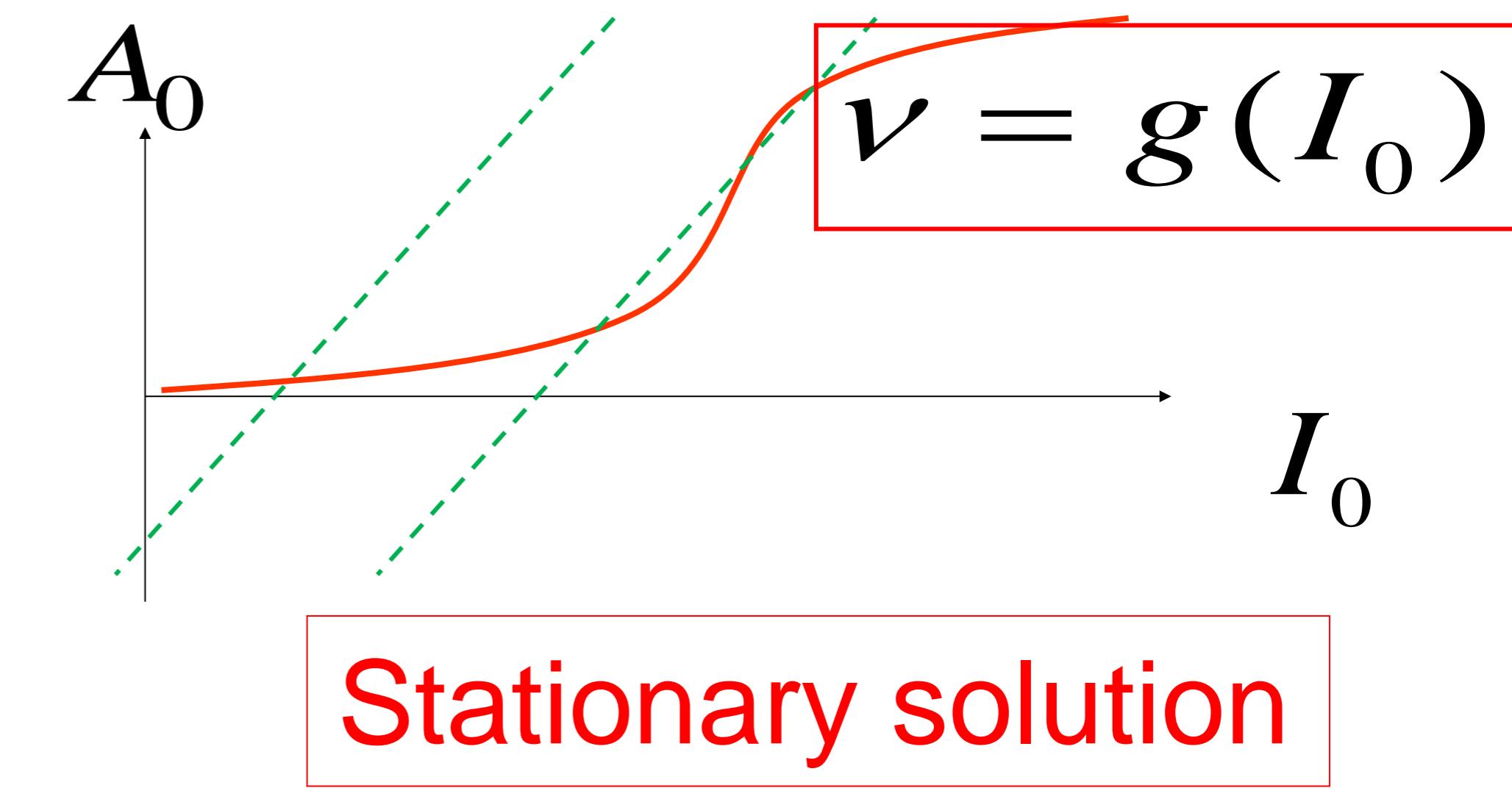
$$(2) \quad \nu = g(I_0)$$

$$(3) \quad \nu = A_0$$



fully  
connected  
 $N \gg 1$

Homogeneous network, stationary,  
All neurons are identical,  
Single neuron rate = population rate



## 5. stationary solution: population activity (asynchr. state)

### Single Population

- homogeneous
- full connectivity
- stationary state/asynchronous state

**Single neuron rate = population rate**

$$A_0 = \nu = g(I_0) = g(J_0 q A_0 + I_0^{ext})$$

## 5. stationary solution: population activity (asynchr. state)

### Single Population

- homogeneous
- full connectivity
- stationary state/asynchronous state

### Single neuron rate = population rate

$$A_0 = \nu = g(I_0) = g(J_0 q A_0 + I_0^{ext})$$



### What is this function $g$ ?

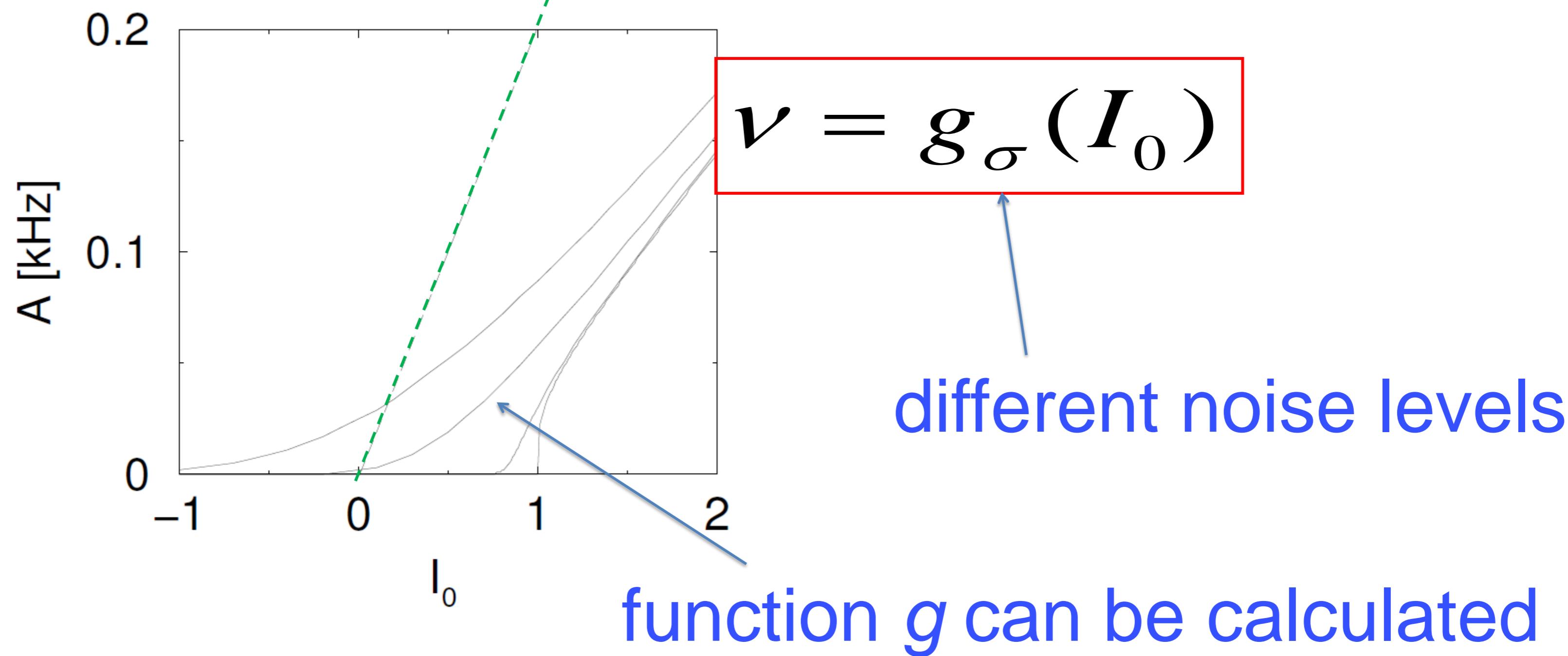
Examples:

- leaky integrate-and-fire (with noise)
- Spike Response Model (with noise)
- Hodgkin-Huxley model

## 5. stationary solution: integrate-and-fire neurons

$$I_0 = J_0 q A_0 + I_0^{ext}$$

$$[I_0 - I_0^{ext}] / J_0 q = A_0$$



## 5. gain function is noise-dependent

Gain-function  $g$  =frequency-current relation = f-I curve

function  $g$  can be calculated analytically or measured in  
**single-neuron simulations/single-neuron experiments**

$$\nu = g_\sigma(I_0)$$

different noise levels

## 5. stationary solution: population activity (asynchr. state)

### Single Population

- homogeneous
- full connectivity
- stationary state of asynchronous firing

### Single neuron rate = population rate

$$A_0 = \nu = g(I_0) = g(J_0 q A_0 + I_0^{ext})$$

### Gain function for constant input

- available for many neurons
- available for many neuron models

**Limited to stationary state.**

# Computational Neuroscience: Neuronal Dynamics of Cognition



## Neuronal Populations

Wulfram Gerstner

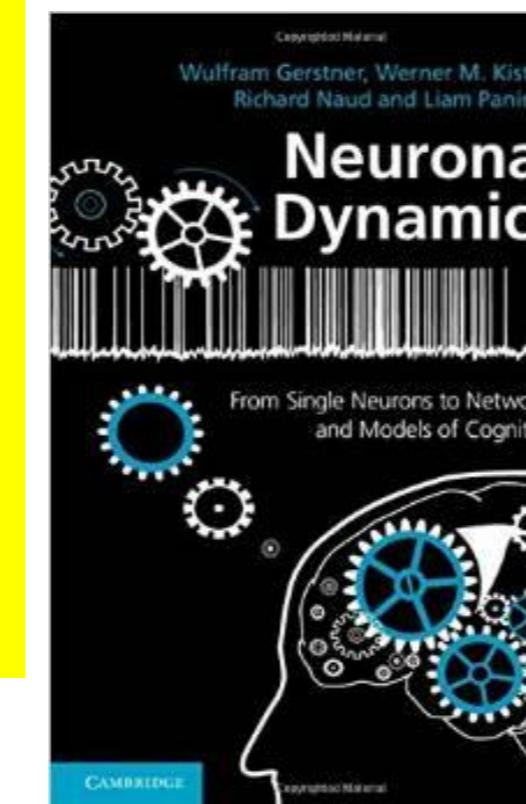
EPFL, Lausanne, Switzerland

*Reading:*

### NEURONAL DYNAMICS

- Ch. 12.1 – 12.4.3  
(except Section 12.3.7)

Cambridge Univ. Press



### 1. Population activity

- definition and aims

### 2. Cortical Populations

- columns and receptive fields

### 3. Connectivity

- cortical connectivity
- model connectivity schemes

### 4. Mean-field argument

- input to one neuron

### 5. Stationary mean-field

- asynchronous state: predict activity

### 6. Random Networks

- Balanced state

## 6. mean-field arguments (random connectivity)

**So far:  
Full connectivity**

**More realistic:  
random connectivity**

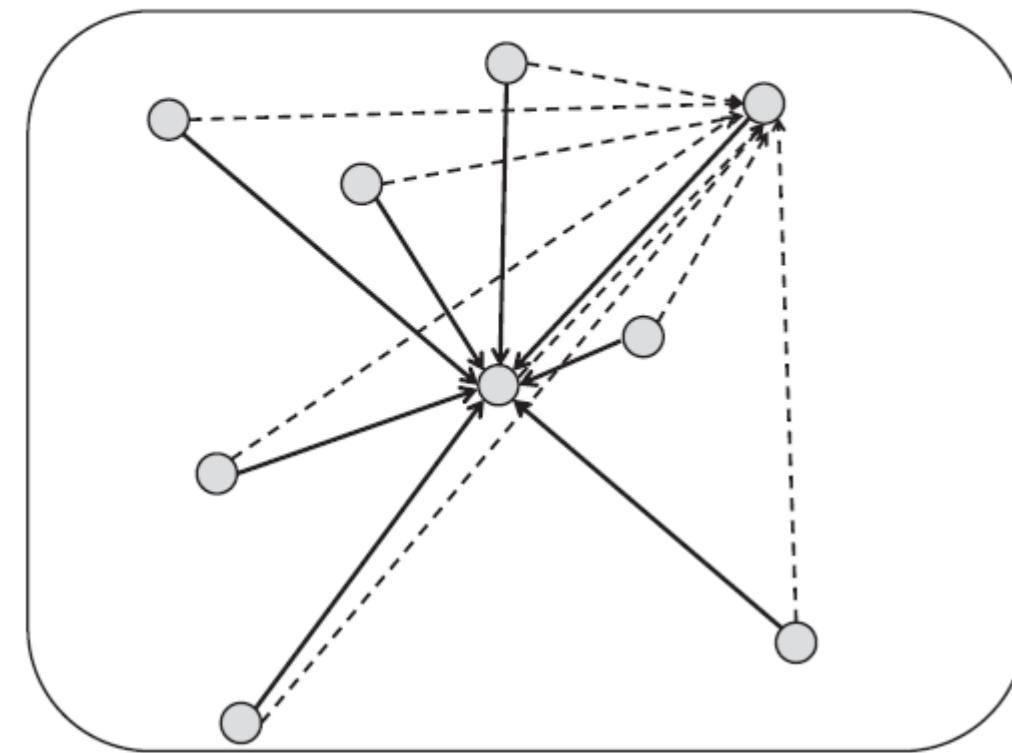
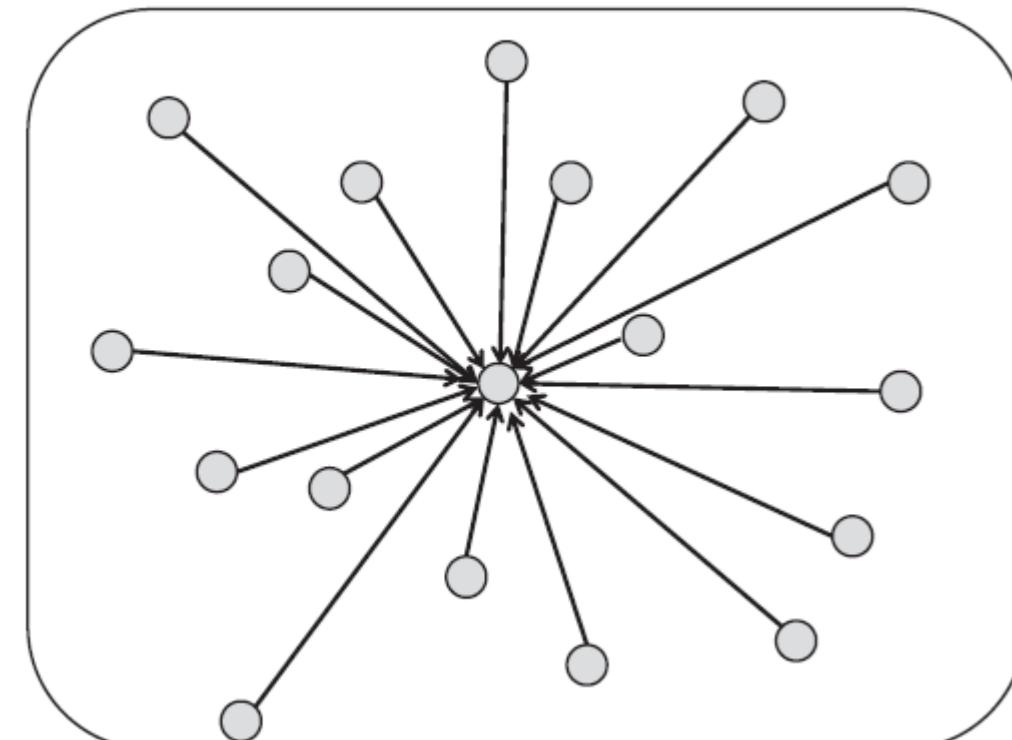
Can we repeat the  
mean-field arguments?

## 6. mean-field arguments (random connectivity)

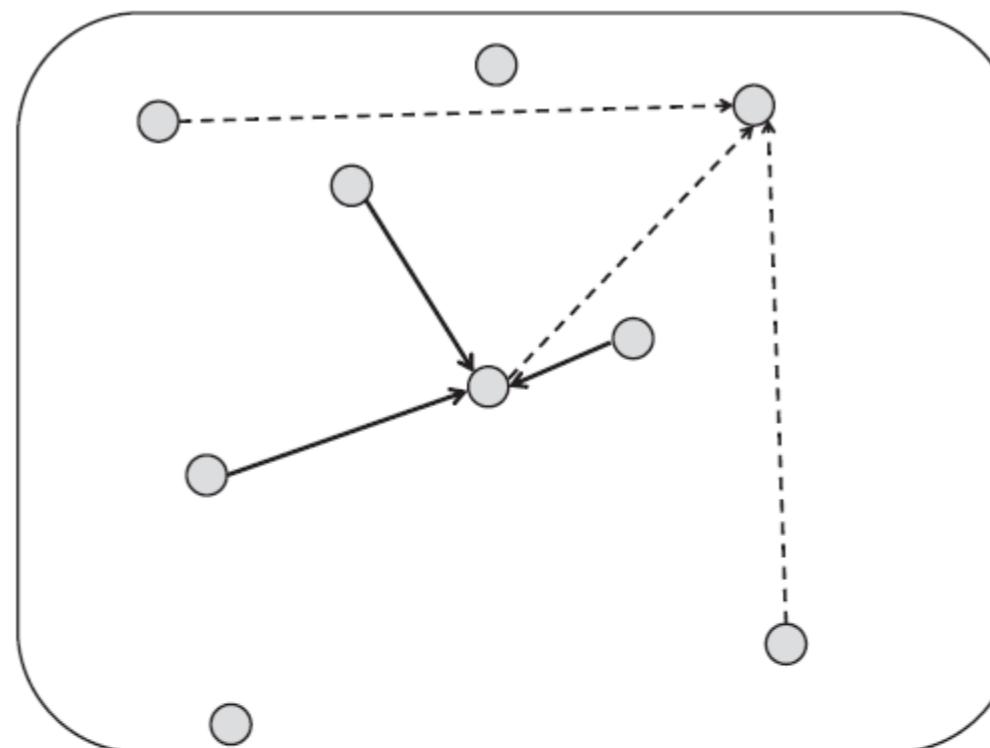
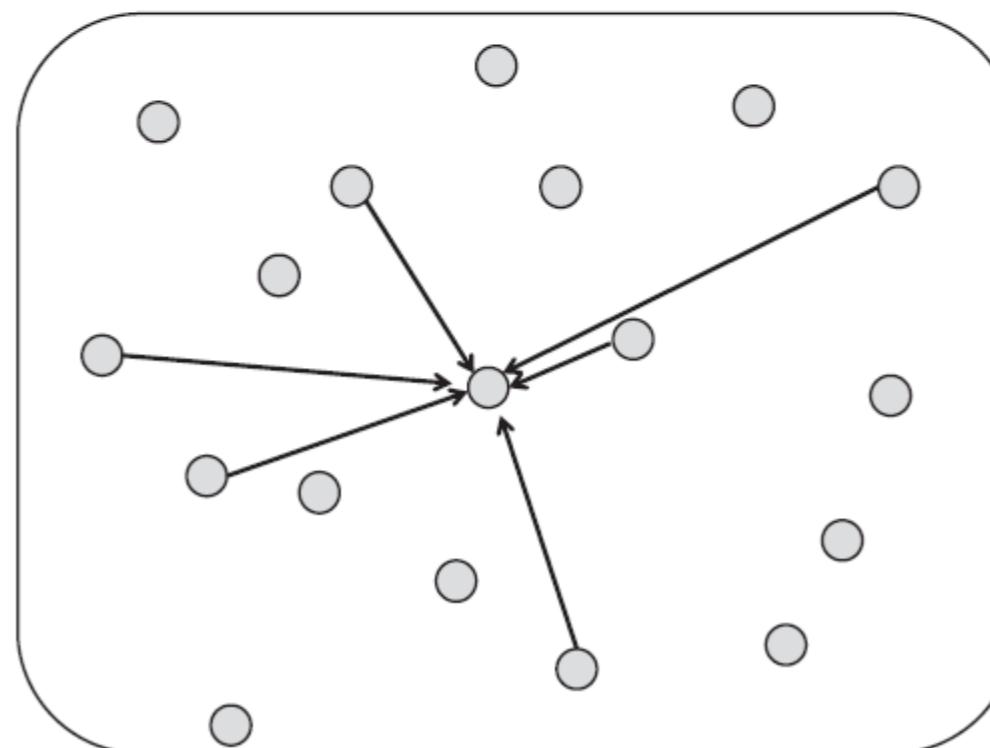
# random connectivity

full connectivity

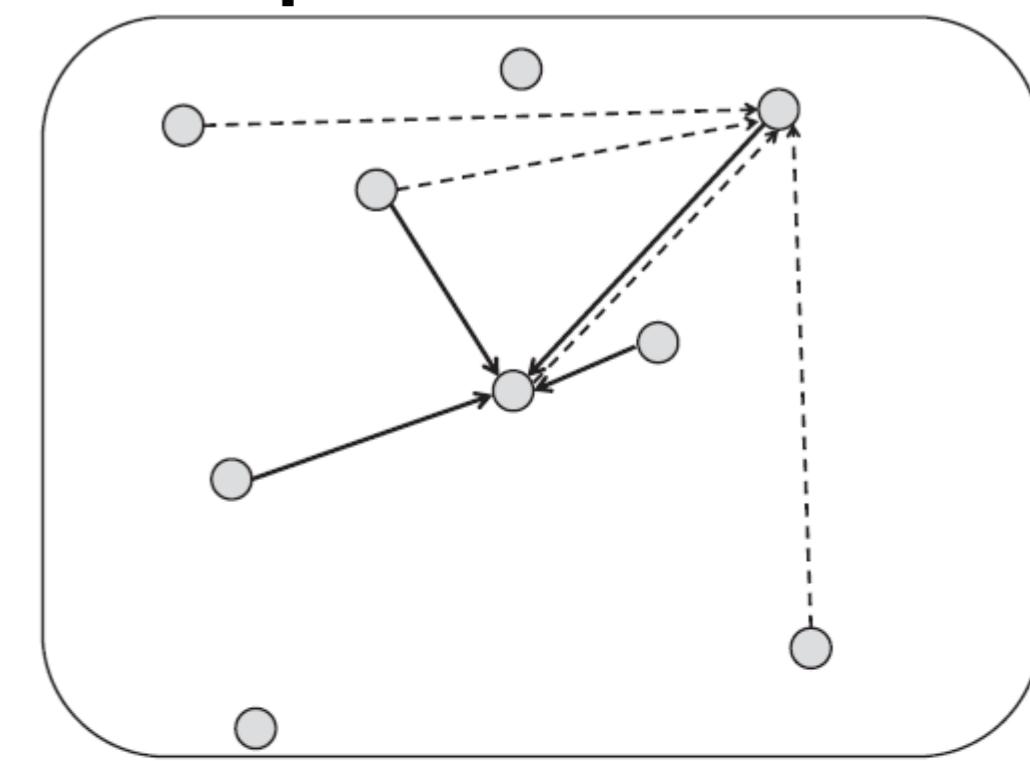
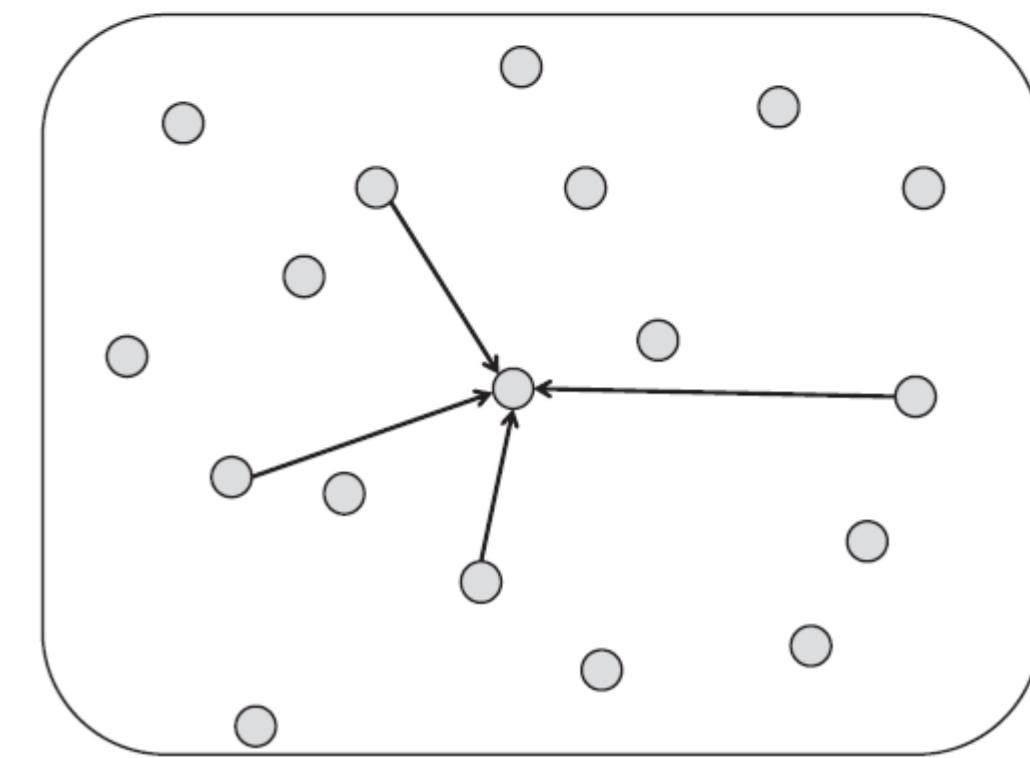
A



random: prob  $p$  fixed



random: number  $K$   
of inputs fixed

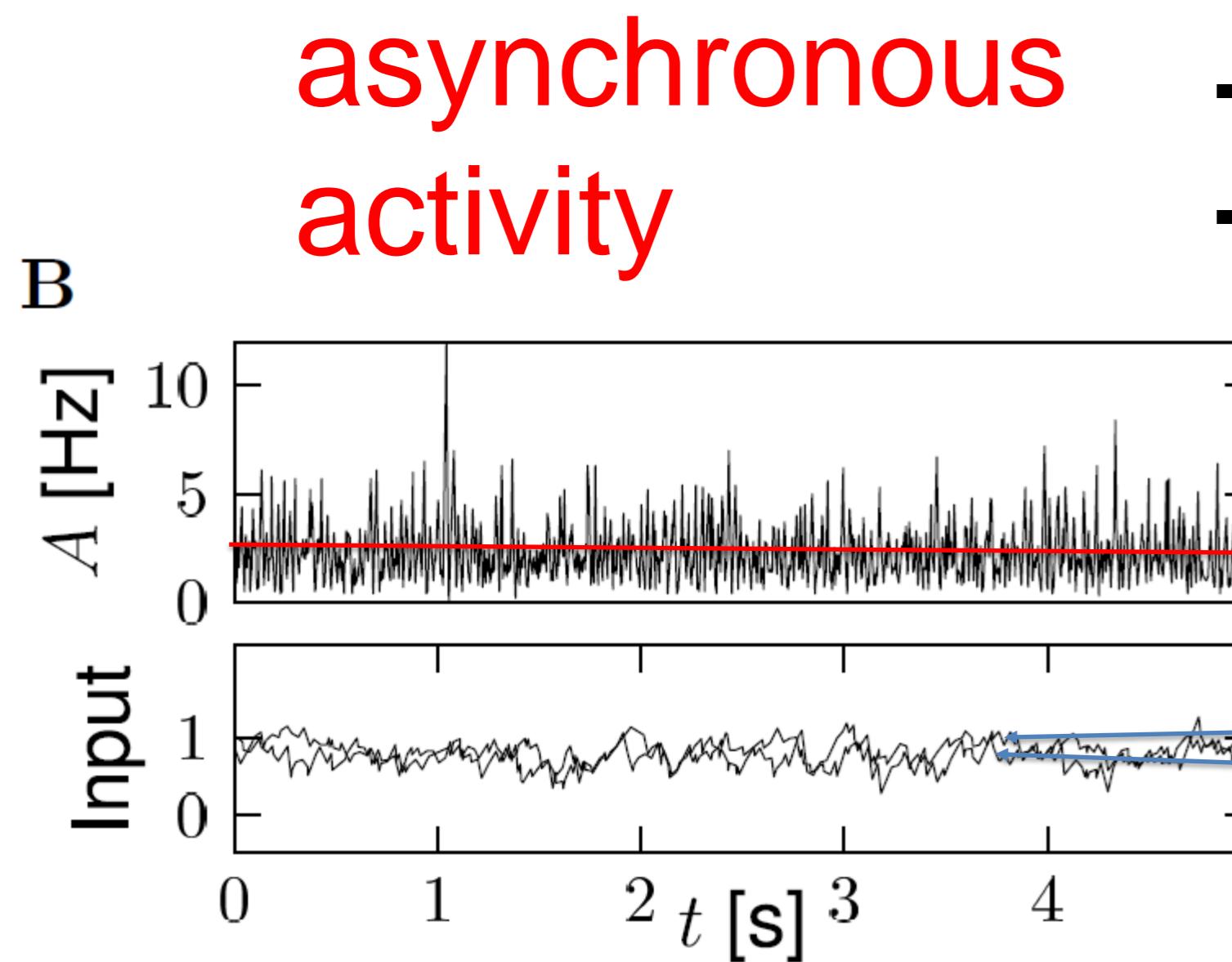


## 6. Review - Random Connectivity: fixed $p$

Can we mathematically predict the population activity?

given

- connection probability  $p$  and weight  $w_{ij}$
- properties of individual neurons
- large population



Input is nearly identical for different neurons

## 6. Integrate-and-Fire neurons

Integrate-and-fire with  
stochastic spike arrival

For any arbitrary neuron in the population

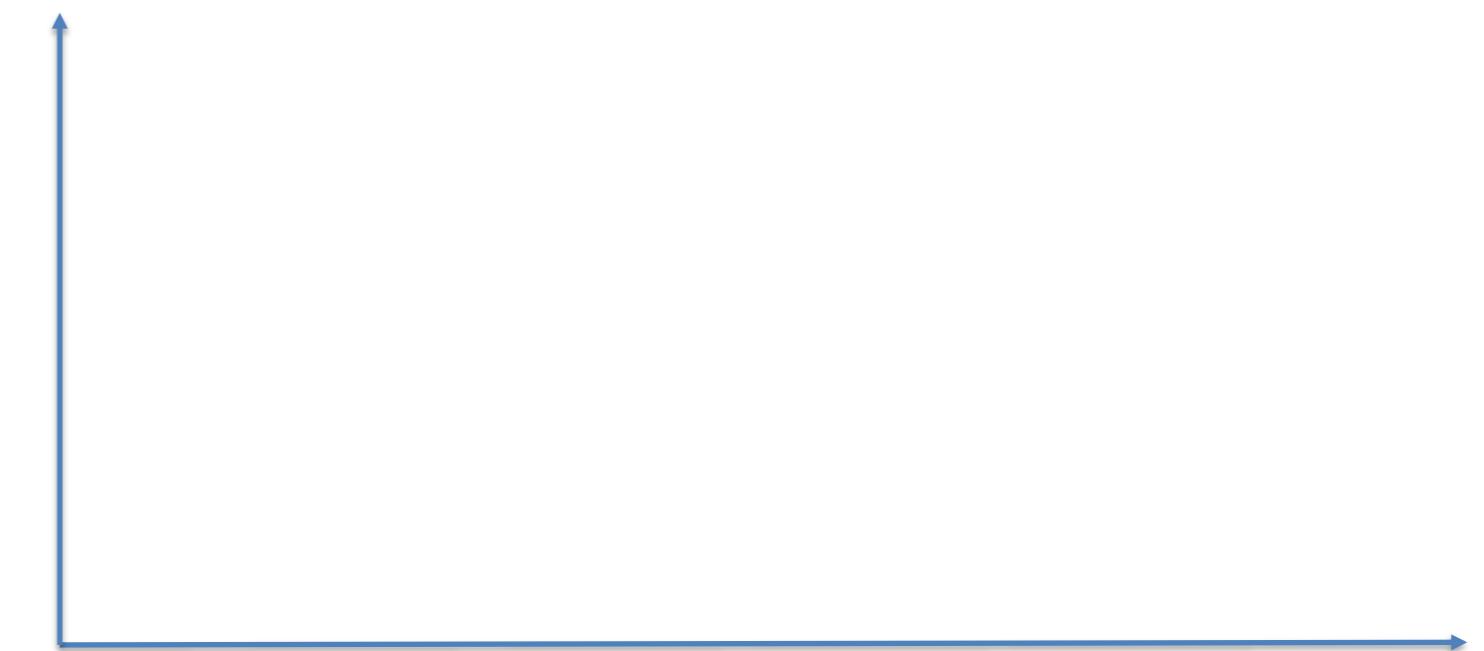
$$\tau \frac{d}{dt} u_i = -u + I_i$$

if  $u_i = \vartheta$ : "reset"

$$I_i = \sum_{k,f} w_{ik} \alpha(t - t_k^f)$$

EPSC

excitatory input spikes



## 6. Network of integrate-and-fire neurons (random connectivity)

Integrate-and-fire neurons with stochastic spike arrival

For any arbitrary neuron in the population

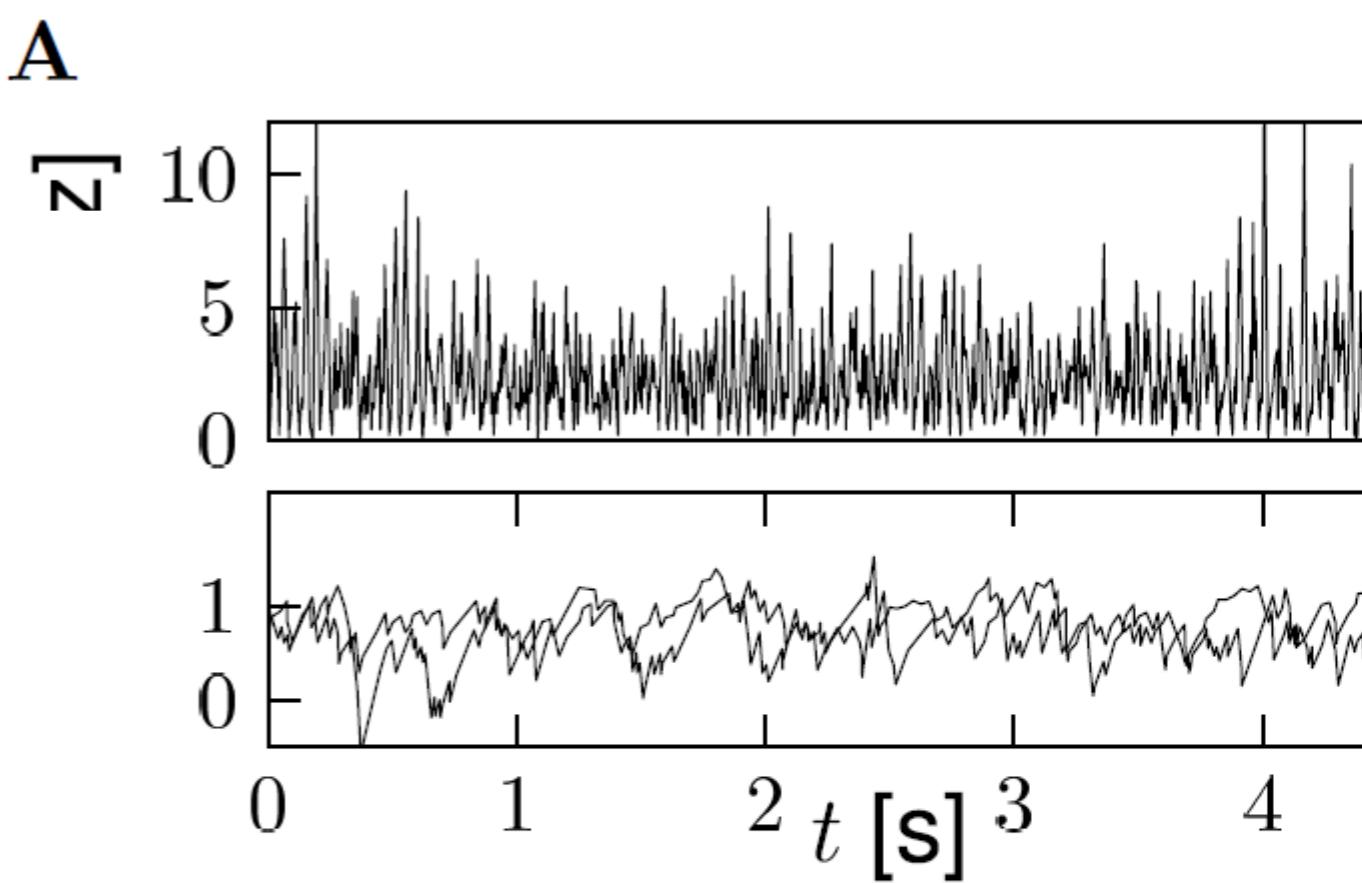
$$\tau \frac{du_i}{dt} = -u_i + I_i$$

if  $u_i = \vartheta$ : "reset"

$$I_i = \sum_{k,f} w_{ik} \alpha(t - t_k^f)$$

EPSC

excitatory input spikes



Can we predict the mean current?

## 6. mean-field argument: random connectivity

$$w_{ij} = \frac{w_0}{pN}$$



$$A_0 = \nu = g(I_0) = g(J_0 w_0 A_0 + I_0^{ext})$$

## 6. mean-field arguments (random connectivity)

random: probability  $p=0.1$  fixed, weights chosen as  $w_{ij} = \frac{w_0}{pN}$

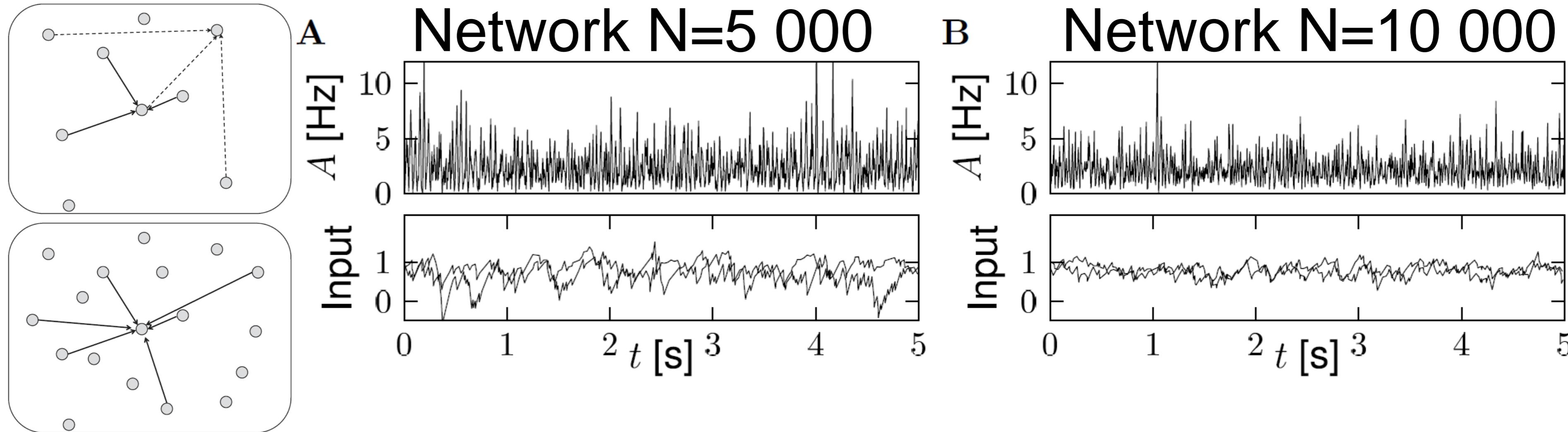


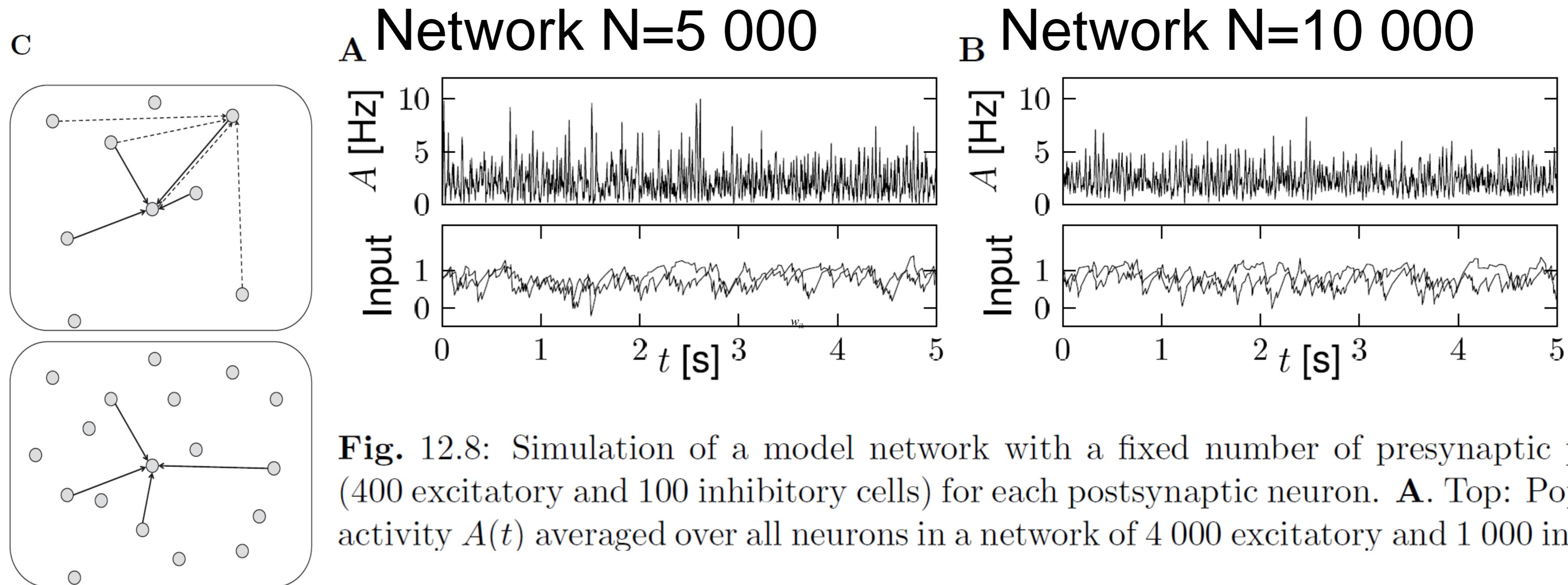
Fig. 12.7: Simulation of a model network with a fixed connection probability  $p = 0.1$ . A. Top: Population activity  $A(t)$  averaged over all neurons in a network of 4 000 excitatory and 1 000 inhibitory neurons. Bottom: Total input current  $I_i(t)$  into two randomly chosen

fluctuations of  $A$  decrease  
fluctuations of  $I$  decrease

Image: Gerstner et al.  
Neuronal Dynamics (2014)

## 6. Random connectivity – fixed number of inputs

random: input connections  $K=500$  fixed, weights chosen as  $w_{ij} = \frac{w_0}{K}$



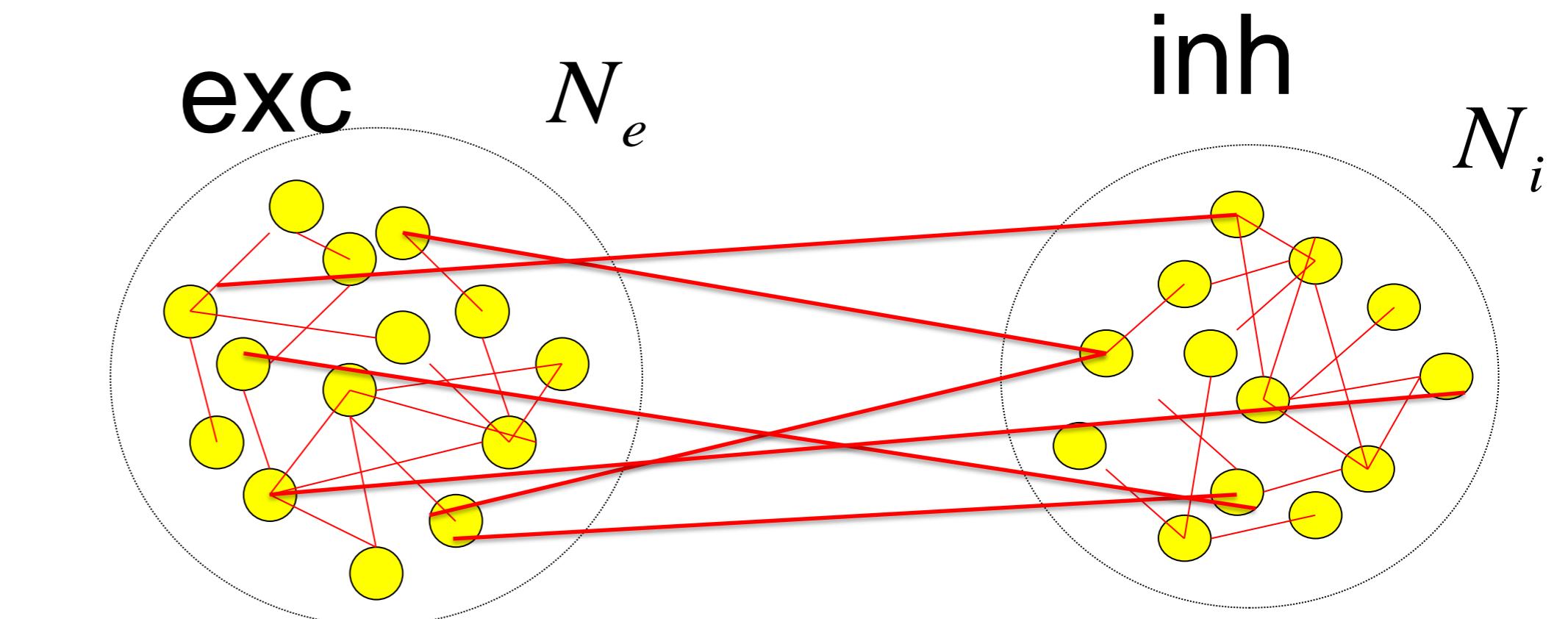
**Fig. 12.8:** Simulation of a model network with a fixed number of presynaptic partners (400 excitatory and 100 inhibitory cells) for each postsynaptic neuron. **A.** Top: Population activity  $A(t)$  averaged over all neurons in a network of 4 000 excitatory and 1 000 inhibitory

Image: Gerstner et al.  
Neuronal Dynamics (2014)

fluctuations of  $A$  decrease  
fluctuations of  $I$  remain

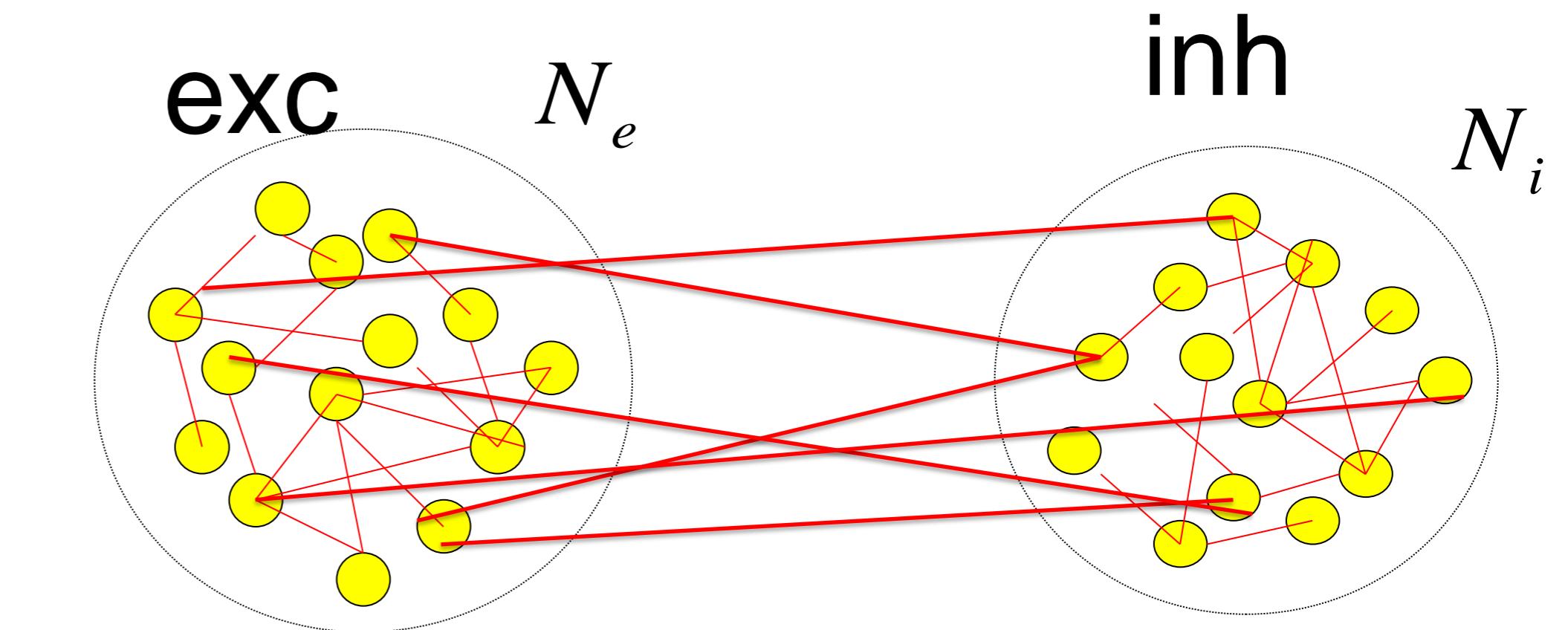
# 6. Connectivity schemes – random, fixed p, but balanced

$$I_i = \sum_{k,f} w_{ik} \alpha^{exc}(t - t_k^f) - \sum_{k,f} w_{ik} \alpha^{inh}(t - t_k^f)$$



# 6. Connectivity schemes – random, fixed p, but balanced

$$I_i = \sum_{k,f} w_{ik} \alpha^{exc}(t - t_k^f) - \sum_{k,f} w_{ik} \alpha^{inh}(t - t_k^f)$$



make network bigger, but  
-keep mean input close to zero

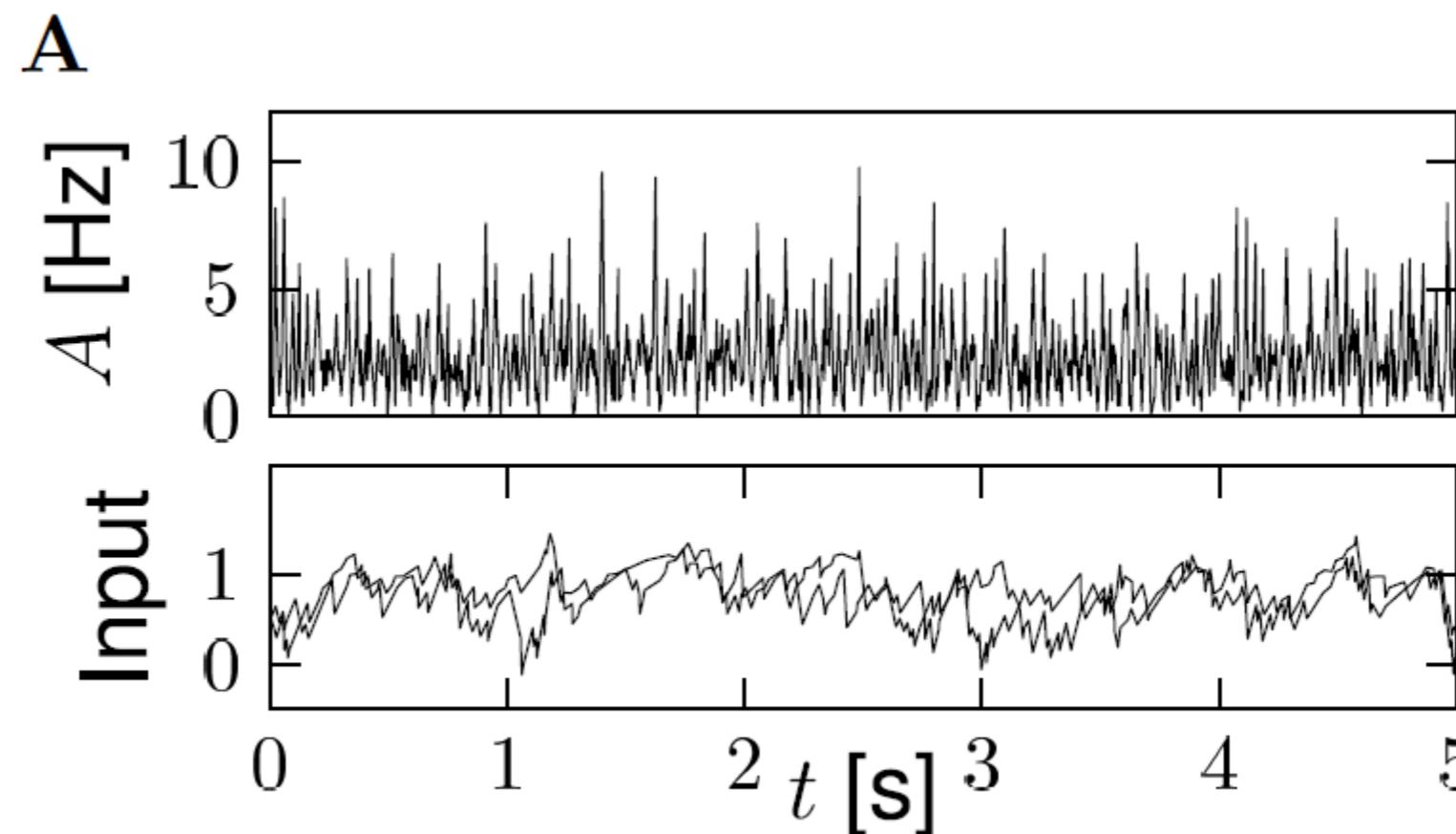
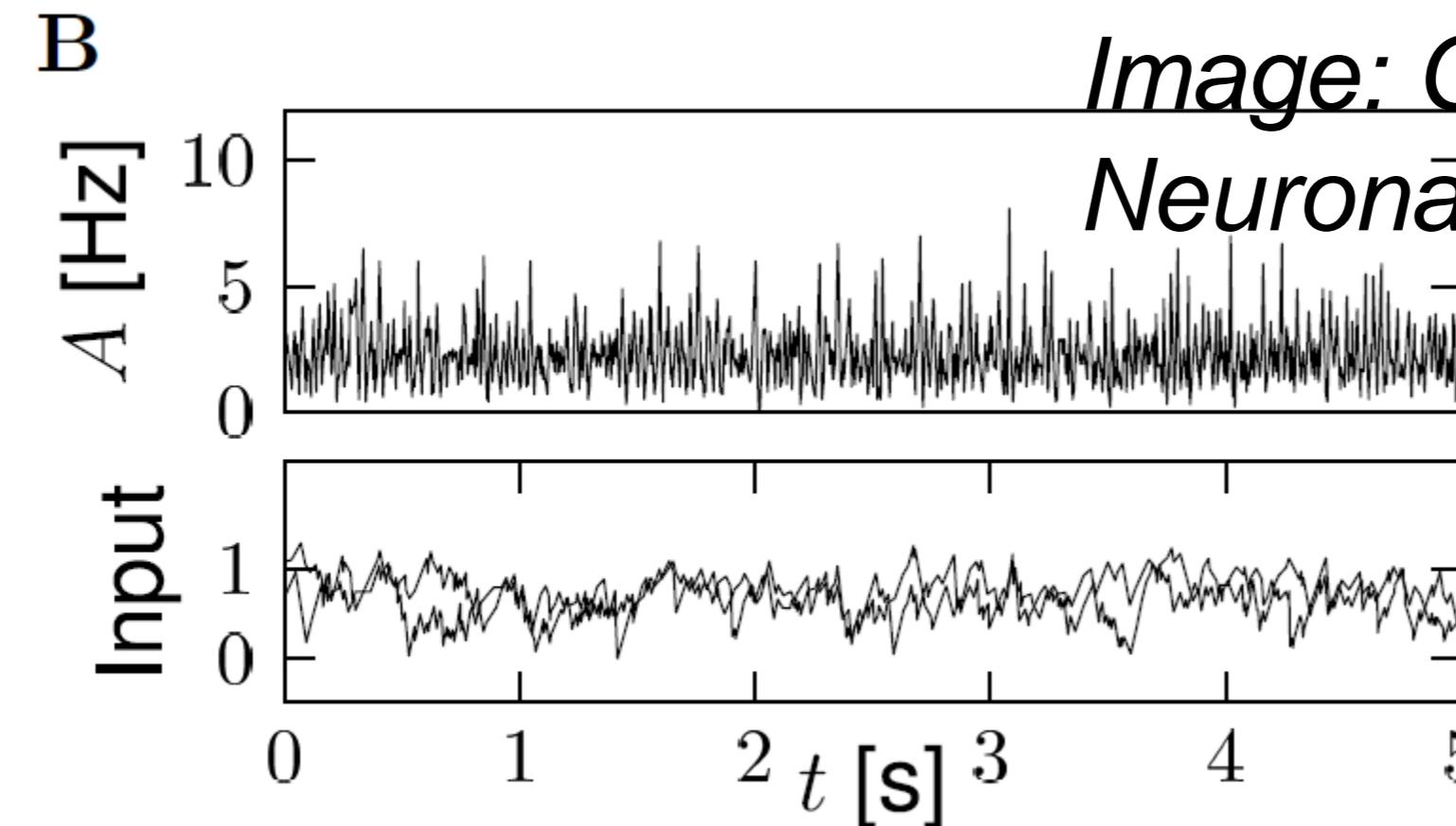
$$p N_e J_e = -p N_i J_i$$

-keep variance of input

$$w_{ij} = \frac{J_e}{\sqrt{pN}}$$

$$w_{ij} = \frac{J_i}{\sqrt{pN}}$$

# 6. Connectivity schemes – random, fixed $p$ , but balanced



**Fig. 12.9:** Simulation of a model network with balanced excitation and inhibition and fixed connectivity  $p = 0.1$  **A.** Top: Population activity  $A(t)$  averaged over all neurons in a network of 4 000 excitatory and 1 000 inhibitory neurons. Bottom: Total input current  $I_i(t)$  into two randomly chosen neurons. **B.** Same as A, but for a network with 8 000 excitatory and 2 000 inhibitory neurons. The synaptic weights have been rescaled by a factor  $1/\sqrt{2}$  and the common constant input has been adjusted. All neurons are leaky integrate-and-fire units with identical parameters coupled interacting by short current pulses.

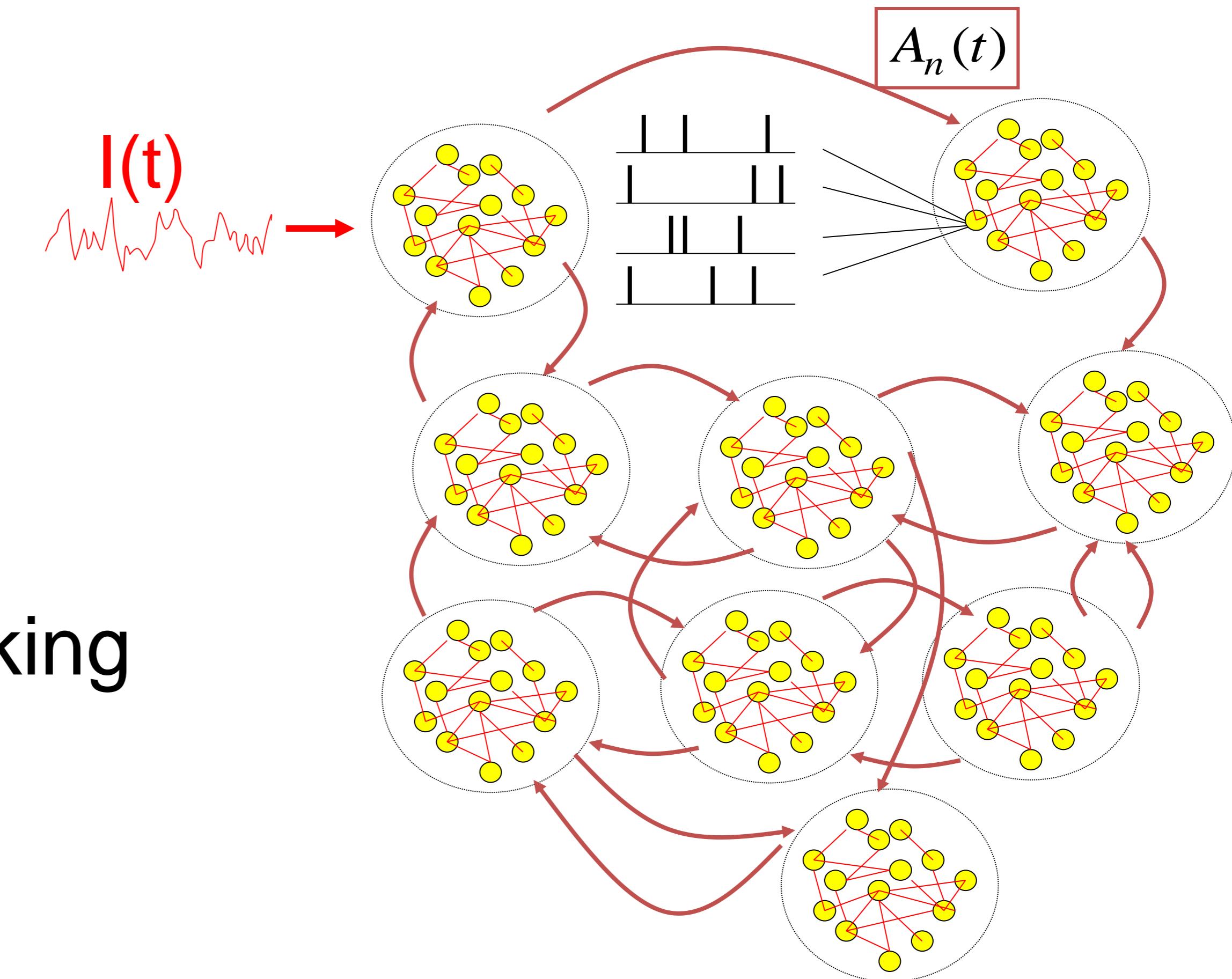
fluctuations of  $A$  decrease



fluctuations of  $I$  become ‘smoother’

# 6. Neuronal populations: outlook

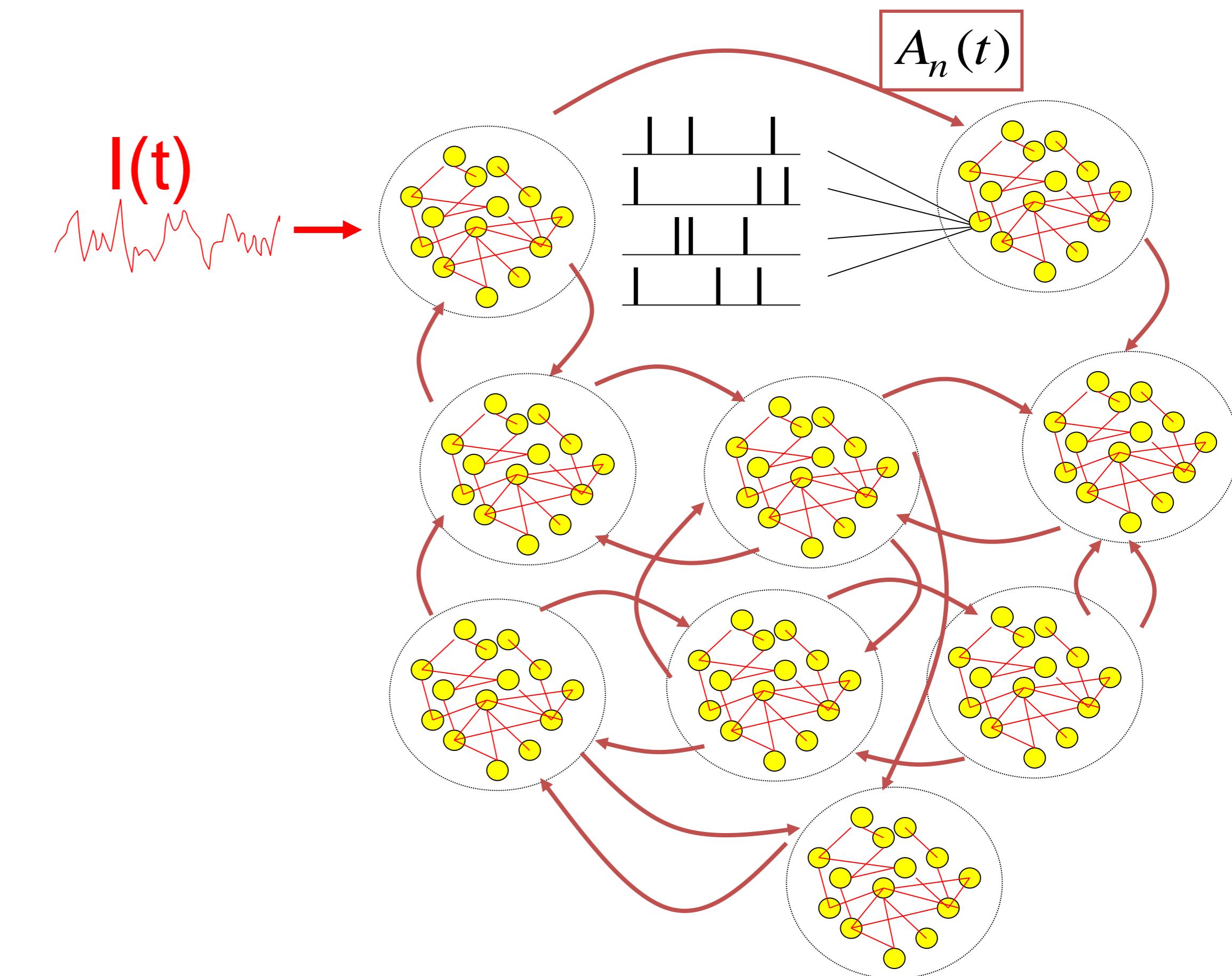
One population  
→ multiple populations



Application to visual cortex  
→ visual processing

Application to decision making  
→ competitive networks

# 6. Summary: Neuronal Populations



# 6. Selected References: Neuronal Populations

## Receptive fields, columns, and cortical connectivity

D. H. Hubel and T. N. Wiesel (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex.. *J. Physiol. (London)* 160, pp. 106–154.

T. Bonhoeffer and A. Grinvald (1991) Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns.. *Nature* 353, pp. 429–431.

S. Lefort, C. Tomm, J.C.F. Sarria and C.C.H. Petersen (2009) The excitatory neuronal network of the c2 barrel column in mouse primary somatosensory cortex. *neuron* 61: 301-316.. *Neuron* 61, pp. 301–316.

## Modeling populations

H. R. Wilson and J. D. Cowan (1972) Excitatory and inhibitory interactions in localized populations of model neurons.. *Biophys. J.* 12, pp. 1–24.

C. van Vreeswijk and H. Sompolinsky (1996) Chaos in neuronal networks with balanced excitatory and inhibitory activity. *Science* 274, pp. 1724–1726.

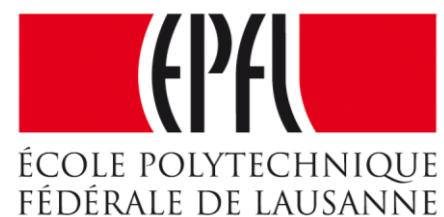
N. Brunel (2000) Dynamics of sparsely connected networks of excitatory and inhibitory neurons. *Computational Neuroscience* 8, pp. 183–208.

W. Gerstner (2000) Population dynamics of spiking neurons: fast transients, asynchronous states and locking. *Neural Computation* 12, pp. 43–89.

**For those not familiar with the Dirac delta:** <https://www.youtube.com/watch?v=l3hvrx33lZc>

**More info on neuron models:** <http://lcn.epfl.ch/~gerstner/NeuronalDynamics-MOOC1.html>

# Computational Neuroscience: Neuronal Dynamics of Cognition



## Neuronal Populations

*The end*

Documentation:

<http://neuronaldynamics.epfl.ch/>

Online html version available

*Reading:*

**NEURONAL DYNAMICS**

- Ch. 12.1 – 12.4.3  
(except Section 12.3.7)

Cambridge Univ. Press

