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1. memory In the brain

-president
-first day of undergraduate

-apple

Our memory has multiple aspects
- recent and far-back
- events, places, facts, concepts
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1. Neuronal Networks In the Brain

10 000 neurons
3 km of wire




1. Systems for computing and information processing

Brain

Distributed architecture

10
(10  proc. Elements/neurons)
No separation of

processing and memory

Computer S

e

1 CPU

memory

INput
VVon Neumann architecture

(10 Ptransistors)




1. Systems for computing and information processing

1mm
10 000 neurons
3 km of wire
77 p
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& ?45‘”"‘, Distributed architecture
2 ‘ d 10
- ?q YOI 104 neurons
S8 10" connections/neurons

No separation of
processing and memory



1. Associations, Assoclative memory

Read this text NOW!




1. Associations, Assoclative memory

pattern completion/word recognition

atom
brai* brave
brain
brass
Noisy word List of words

brain

Output the closest one

Your brain fills in missing information:
‘auto-assoclative memory’




1. Associations, Assoclative memory

bral* brain ‘auto-associative memory’

bird

vacation —— beach

swan
‘associative memory’



Quiz 1: Connectivity and Assoclations

Tick one or several answers

A typical neuron In the brain makes connections

| ] To 6-30 neighbors

[ ] To 100-500 neurons nearby

[ ] To more than 1000 neurons nearby

| ] To more than 1000 neurons nearby or far away.

Assoclative memory Is involved

| | If you think of palm trees when you think of a beach

| | If partial information helps you to recall a complicated concept
| ] If a cue helps you to recall a memory




Computational Neuroscience: Neuronal Dynamics of Cognition
1 Introduction

)
- ( ”_ - networks of neuron

EEEEEEEEEEEEEEEEE

A: ASSOCIATIVE MEMORY - systems for computing
. - associative memory
in a Network of Neurons

2 Classification by similarity

Wuliram Gerstner 3 Detour: Magnetic Materials

EPFL, Lausanne, Switzerland

| | 4 Hopfield Model
Reading for this week:  S¥ICE
NEURONAL DYNAMICS s 5 Learning of Associations
-Ch. 17.1-17.2.4 "0, T

< Y > u
j - 7~ : ey
(© % o X @ 6 Stora e Ca aCIt
e | et .,”0' v
\@ " 6% I Y{ Bt
G .O/ Q#‘:‘ :15:. ".:'
=
b
AN
\ r

Cambridge Univ. Press



2. Classification by similarity: pattern recognition

_ Classification:
image comparison
with prototypes

A
B
T
L

Noisy Image
Prototypes



2. Classification by similarity: pattern recognition

Classification by closest prototype

X oM
)
] °* T

Noisy Image Prototype



2. Classification by similarity: pattern recognition

Classification by closest prototype

‘x— pT‘g X— P

|

Noisy image Prototypes



2. pattern recognition and Pattern completion
Aim: Understand Associlative Memory

Assoclative
Noisy memory/ ——  Full
image collective | image
computation
| < |
Partial Full
word word

Brain-style computation



Quiz 2: Closest prototype

Classification by closest prototype (tick one or several answers)
[ ] Needs a similarity measure

| | Needs a distance measure
| | Needs a method to find the maximum or minimum
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3. Detour: magnetism

Noisy magnet pure magnet



3. Detour: magnetism

Elementary magnet

5=+l

dynamics

S,(t+1) =sgn[p_S;(t)]
/ J

Sum over all
Interactions with |



3. Detour: magnetism

Anti-ferromagnet Elementary magnet
- - Sj=+1 Wy =+l
S =-1 Wy =1
dynamics
S (t+1) = sgn[z Wi S ()]

/j
Sum over all
Interactions with |



3. Detour: magnetism

Anti-ferromagnet Elementary magnet
- - Sj=+1 Wy =+l
S =-1 Wy =1
dynamics
S (t+1) = sgn[z Wi S ()]

/j
Sum over all
Interactions with |



3. Magnetism and memory patterns

Elementary pixel

m S =+1 "Wy =L
Hwy =+l
Si — '1
- Wij = -1
dynamics

S, (t+1) =sgn[>_ w;S; (1)]
Sum ove{all

Hopfield model: _ | o
Interactions with |

Several patterns—> next section



Exercise 1. Assoclative memory (1 pattern)

Elementary pixel

- m R

O neurons, connected all-to-all
- define appropriate weights:
what Is the weight
Wog =7
- what happens if neuron 7 1s +17

- what happens if 3 neurons wrong?

S =-1

dynamics
S (t+1) = sgn[z WS (t)]

/j
Sum over all
Interactions with |
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4. Single pattern

Elementary pixel

(target pattern) N
|

B p=+l | _
T,
Wi =
dynamics
S, (t+1) = sgn[z w; S (t)]
Sumj over all

Interactions with |



4. Hopfield Model of Associative Memory

Interactions
Wi = Z P Py
Yz,

/
Sum over all

prototypes
Prototype Prototype dynamics

R 52 S;(t+1) = SQ”[Z Wi S (0]
/j

Sum over all
several patterns interactions with |




4. Hopfleld Model of Assoclative Memory

This rule
Interactions s very good
w; = > pp% () forrandom
H patterns
Dattern Sum Ove/r all It does not work well
51 prototypes for correlated patters
Hopfield model (1982) dynamics
- several random patterns S. (t+1) _sgn[z WS . (t)] (2)
- fully connected network \

- binary neurons all interactions with |

- welghts (1); dynamics (2) J. Hopfield, 1982



4. Overlap: a measure of similarity

s Ccurrent state: (+1,-1,-1,+1,-1,+1,+1,-1)

= ¥ iarget pattern, (+1,+1,-1,+1,-1,-1,-1,-1)
prototype

-

overiap (1) =3, b, (1

-




4. Hopfield Model of Associative Memory

Si(t+1) :Sgn[zwijsj(t)] W :Zp_ﬂp,_,

m“(t+1) :%Zj pi'S; (t+1)



4. Hopfield Model of Associative Memory

Interacting neurons

_
-
I
H
- B
Prototype
p* Finds the closest prototype Computation

i.e_. r_na>_<ima| angrlap - without CPU.
(similarity) - without explicit

Hopfield model memory unit



4. Correlated patterns, orthogonal patterns

target pattern, (+1,-1,+1,+1,-1,+1,+1,-1)
prototype 3

= target pattern, (+1,+1,-1,+1,-1,-1,-1,-1)
prototype 7

Similarity of two patterns:

Orthogonal patterns:

. Random patterns
overlap m“(t) = NZj p¥'S (t)



Exercise 2 (now)

“m

.

Assume 4 orthogonal patterns.
At time t=0, overlap with
pattern 3, no overlap with other patterns.

Calculate the overlap at t=1!

Wi = NL Z piﬂ pf
S (t+1) = sgn[z W, S ()]
J
Sum over a{
Interactions with |
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5. Learning of Associlations

Where do the connections come from?

_pe N
W..

NS ]

K NOSt

Hebbian Learning

When an axon of cell | repeatedly or persistently
takes part in firing cell I, then j's efficiency as one
of the cells firing 1 IS Increased Hebb. 1949

- local rule
- simultaneously active (correlations)



5. Hebbian Learning of Associations




5. Hebbian Learning of Associations

item memorized



5. Hebbian Learning: Associative Recall

Recall:
Partial info

item recalled



5. Learned concepts

Activity of neurons in human brain

IR R |
N7 VR ——

F i ¢ —
SYDNEY
OPERA
I

Image: Neuronal Dynamics,
Gerstner et al.,

Cambridge Univ. Press (2014),
Adapted from Quiroga et al. (2005),

assembly Of NEUroNS nature 435:1102-1107




5. Assoclative Recall

Tell me the exddshape
R tHE TR R A it S

be as fast as possible:

time

101 of




5. Assoclative Recall

Tell me the cOlOFT
for the following list of 5 items:

Stroop effect: time
Slow response: hard to work
Against natural associations




5. Assoclative Recall

Hierarchical organization of
Associlative memory

animals

- \
birds fish

Name %s fast as possible

an example of a bird
swan (or goose or raven or ...)

Write down first letter: s for swan or r for raven ...



5. Assoclative Recall

name as fast as possible
an example of a




5. Assoclative Recall

Associlative memory

animals

- \
birds fish

/

- Assoclations can be very strong!

- It I1s hard to go against natural associations!

- Different aspects of a ‘concept’ are bound together!
- Assocations have been learned!




Quiz 3: Assocations

The Stroop effect implies that you are faster,

If the color does not match the meaning of the color-word
] Yes

'] No

Hebbian learning strengthens links between neurons that
| ] are simultaneously active
[ ] belong to the same ‘concept’ (assembly)
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g Interactions

7
/

Prototype Prototype

1 p2 Sum over all
p prototypes

Question: How many prototypes can be stored?

dynamics Si(t+1) = sgn[Z Wi, Sj (t)]

a

all interactions with |




6. Storage capacity: How many prototypes can be stored?

-Assume we start directly in one pattern (say pattern 7 )
-Pattern must stay

S;(t+1) =sgn[>_ w;S; (1)]

Interactions (1)

1
Wi = NZ p;’ pf
7



6. Storage capacity: How many prototypes can be stored?

=
m

B Random patterns

Prototype Prototype Interactions (1) W, = NZ p” pf
i 5 p
p* P
Dynamics (2) Si (t+1) = Sgn[z Wi Sj (t)]
J

Minimal condition: pattern Is fixed point of dynamics

-Assume we start directly in one pattern (say pattern V )
-Pattern must stay

Attention: Retrieval requires more (pattern completion)



Q: How many prototypes can be stored?

A: If too many prototypes, errors (wrong pixels) show up.
The number of prototypes M that can be stored

IS proportional to number of neurons N;
memory load = M/N

M N

S,(t+1)=p/sgn[l+3+ > > p“p/pip)]

u=l u=v =1

— piv Sgn[l_ aiv]

Error-free if \
. mage: Neuronal Dynamics,
S (t+1)=p’ Gaussian e e nal by

Cambridge Univ. Press (2014),



6. Storage capacity. How many prototypes can be stored?

Random walk with steps

Standard deviation

Mo N
Si(t+1)=p/sgn[l+% >, > p{pipipj]
u=l,u>v J=1 _
= p. sgnf[l—a’]
Error-free if \ a
Si (t —+ 1) — in Gaussian I(raneartgten:el:leettjzrjal Dynamics,

Cambridge Univ. Press (2014),



- This week: Understand Assoclative Memory

Associative
Partial memory/ -, Ful
information collective concept

t t .
« )
e </
> A
X A
Y y
R 4
J \
Sy Z R %8
N
o
A
AN vl“ Q .‘\\
N

Brain-style computation

- Memory stored in connections

- Many memories can be stored in same network

- Retrieval of memories without centralized controller

- Interactions of neurons makes network converge to most similar pattern
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The end

Documentation:
http://neuronaldynamics.epfl.ch/

* Neuronal

Online html version available %% Dynamics
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