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-president

-first day of undergraduate

-apple

Our memory has multiple aspects

- recent and far-back

- events, places, facts, concepts

1. memory in the brain



1. memory in the brain



10 000 neurons

3 km of wire

1mm

1. Neuronal Networks in the Brain



1. Systems for computing and information processing

Brain Computer

CPU

memory

input

Von Neumann architecture

(10    transistors)
1 CPU

Distributed architecture
10

(10    proc. Elements/neurons)

No separation of 

processing and memory

10



Distributed architecture
10

10        neurons

No separation of 

processing and memory

4
10    connections/neurons

1. Systems for computing and information processing

10 000 neurons

3 km of wire

1mm



Read this text NOW!

I find it rea*l* amazin* t*at y*u ar* 

abl* to re*d  t*is tex* despit* th* fac* 

*hat more t*an t*ent* perc*n* of t** 

char*cte*s a*e mis*ing.

*his mean* t*at you* brai* i* abl* ** fill 

in missin* info*matio*. 

1. Associations, Associative memory



Noisy word

pattern completion/word recognition

brain

List of words

brai*

atom

brave

brain

brass

Output the closest one

Your brain fills in missing information:

‘auto-associative memory’

1. Associations, Associative memory



brainbrai* ‘auto-associative memory’

1. Associations, Associative memory

swan bird

beach vacation
‘associative memory’



Quiz 1: Connectivity and Associations

A typical neuron in the brain makes connections

[ ] To 6-30 neighbors

[ ] To 100-500 neurons nearby

[ ] To more than 1000 neurons nearby

[ ] To more than 1000 neurons nearby or far away.

Associative memory is involved

[ ] If you think of palm trees when you think of a beach

[ ] If partial information helps you to recall a complicated concept

[ ] If a cue helps you to recall a memory

Tick one or several answers
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image

2. Classification by similarity: pattern recognition

Classification:

comparison

with prototypes

A
B

T

Z

Prototypes
Noisy image



Prototype
Noisy image

Classification by closest prototype

2. Classification by similarity: pattern recognition

Tpx



PrototypesNoisy image

Classification by closest prototype

AT pxpx −−

2. Classification by similarity: pattern recognition



Noisy 

image

Aim: Understand Associative Memory
Associative

memory/

collective

computation

Brain-style computation

Full  

image

Partial 

word

Full  

word

2.  pattern recognition and Pattern completion



Quiz 2: Closest prototype

Classification by closest prototype (tick one or several answers)

[ ] Needs a similarity measure

[ ] Needs a distance measure

[ ] Needs a method to find the maximum or minimum
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3. Detour: magnetism

S

N



Noisy magnet pure magnet 

3. Detour: magnetism



Elementary magnet

Si = +1

Si = -1

3. Detour: magnetism

dynamics

Sum over all

interactions with i

( 1) sgn[ ( )]i j

j

S t S t+ = 



Elementary magnet

Si = +1

Si = -1

Anti-ferromagnet

wij = +1

wij = -1

3. Detour: magnetism

dynamics

Sum over all

interactions with i

( 1) sgn[ ( )]i ij j

j

S t w S t+ = 



Elementary magnet

Si = +1

Si = -1

Anti-ferromagnet

wij = +1

wij = -1

3. Detour: magnetism

dynamics

Sum over all

interactions with i

( 1) sgn[ ( )]i ij j

j

S t w S t+ = 



3. Magnetism and memory patterns

Elementary pixel

Si = +1

Si = -1

wij = +1

wij = -1

wij = +1

Hopfield model:

Several patterns→ next section

dynamics

Sum over all

interactions with i

( 1) sgn[ ( )]i ij j

j

S t w S t+ = 



Exercise 1: Associative  memory (1 pattern)

Elementary pixel

Si = +1

Si = -1

wij = +1
wij = +1

9 neurons, connected all-to-all

- define appropriate weights:

what is the weight 

- what happens if neuron 7 is +1?

- what happens if 3 neurons wrong?

dynamics

Sum over all

interactions with i

( 1) sgn[ ( )]i ij j

j

S t w S t+ = 
w79 = ?
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4. Single pattern 
Elementary pixel

(target pattern)
pi = +1

pi = -1

wij = +1

wij = -1

wij = +1

dynamics

Sum over all

interactions with i

( 1) sgn[ ( )]i ij j

j

S t w S t+ = 

=ijw



4. Hopfield Model of Associative Memory

dynamics

Sum over all

interactions with iseveral patterns

Prototype

p1

Prototype

p2






jiij ppw =

interactions

Sum over all

prototypes

( 1) sgn[ ( )]i ij j

j

S t w S t+ = 



dynamics

all  interactions with i

Hopfield model (1982)

- several random patterns 

- fully connected network

- binary neurons

- weights  (1);  dynamics (2)






jiij ppw =

interactions

Sum over all

prototypes

This rule

is very good

for random

patterns

It does not work well

for correlated patters

4. Hopfield Model of Associative Memory

( 1) sgn[ ( )]i ij j

j

S t w S t+ = 

J. Hopfield, 1982

Pattern

p1

(2)

(1)



4. Overlap: a measure of similarity

( )
1

( ) j j jm t p S t
N

 = overlap

current state:   (+1,-1,-1,+1,-1,+1,+1,-1)

target pattern, (+1,+1,-1,+1,-1,-1,-1,-1)

prototype



4. Hopfield Model of Associative Memory






jiij ppw =

( )
1

( 1) 1j j jm t p S t
N

 + = +

( 1) sgn[ ( )]i ij j

j

S t w S t+ = 



Hopfield model

Prototype

p1 Finds the  closest prototype

i.e. maximal overlap 

(similarity)
m

Interacting neurons

Computation
- without CPU,

- without explicit

memory unit

4. Hopfield Model of Associative Memory



4.  Correlated patterns, orthogonal patterns

( )
1

( ) j j jm t p S t
N

 = overlap

target pattern,   (+1,-1,+1,+1,-1,+1,+1,-1)

prototype 3

target pattern,    (+1,+1,-1,+1,-1,-1,-1,-1)

prototype 7

Similarity of two patterns:

Orthogonal patterns: 

Random patterns



Exercise 2 (now)

Assume 4 orthogonal patterns. 

At time t=0, overlap with

                     pattern 3, no overlap with other patterns.

  

Calculate the overlap at t=1!

1
ij i jN

w p p 



= 

Sum over all

interactions with i

( 1) sgn[ ( )]i ij j

j

S t w S t+ = 
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Hebbian Learning

pre               

j

post
i

ijw

When an axon of cell j repeatedly or persistently 

takes part in firing cell i, then j’s efficiency as one

of the cells firing i is increased  
Hebb, 1949

k

- local rule

- simultaneously active (correlations)

Where do the connections come from?

5. Learning of Associations



5.  Hebbian Learning of Associations



item memorized

5. Hebbian Learning of Associations



item recalled

Recall:

Partial info

5. Hebbian Learning: Associative Recall



5. Learned concepts

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014),

Adapted from Quiroga et al. (2005), 

Nature 435:1102-1107

Activity of neurons in human brain

assembly of neurons



5. Associative Recall

Tell me the object shape

for the following list of 5 items:
Tell me the color 
for the following list of 5 items:

be as fast as possible: 

time



Tell me the color 
for the following list of 5 items:

Red

Blue

Yellow

Green

Red

Stroop effect:

Slow response: hard to work 

Against natural associations

be as fast as possible: 

time

5. Associative Recall



Hierarchical organization of 

Associative memory

animals

birds fish

Name as fast as possible

an example of a bird
swan (or goose or raven or …)

Write down first letter: s for swan or r for raven …

5. Associative Recall



name as fast as possible

an example of a 

hammer

red

Apple

violin

tool

color

music 

instrument

fruit

5. Associative Recall



Associative memory

animals

birds fish

5. Associative Recall

- Associations can be very strong!

- It is hard to go against natural associations!

- Different aspects of a ‘concept’ are bound together!

- Assocations have been learned!



Quiz 3: Assocations

The Stroop effect implies that you are faster, 

if the color does not match the meaning of the color-word

[ ]  Yes

[ ]  No

Hebbian learning strengthens links between neurons that

[ ]  are simultaneously active

[ ]  belong to the same ‘concept’ (assembly) 
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6. learning of several prototypes

Prototype

p1

Prototype

p2

interactions

Sum over all

prototypes

(1)

Question: How many prototypes can be stored?

dynamics

all interactions with i






jiNij ppw = 1

( 1) sgn[ ( )]i ij j

j

S t w S t+ = 



6. Storage capacity: How many prototypes can be stored?

-Assume we start directly in one pattern (say pattern 7      ) 

-Pattern must stay  

1
ij i jw p p

N

 



= 

Interactions (1)
( 1) sgn[ ( )]i ij j

j

S t w S t+ = 



Prototype

p1

Prototype

p2

1
ij i jw p p

N

 



= Interactions (1)

6. Storage capacity: How many prototypes can be stored?

Dynamics (2)

Random patterns

Minimal condition: pattern is fixed point of dynamics
-Assume we start directly in one pattern (say pattern      ) 

-Pattern must stay  

Attention: Retrieval requires more (pattern completion)

( 1) sgn[ ( )]i ij j

j

S t w S t+ = 





Q: How many prototypes can be stored?

A: If too many prototypes, errors (wrong pixels) show up.

 The number of prototypes M that can be stored

 is proportional to number of  neurons N;

memory load = M/N

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014),

]1sgn[

]1sgn[)1(
,1 1

1







ii

M N

j

jjiiNii

ap

ppppptS

−=

+=+  
= =


ia

Gaussian

Error-free if

ii ptS =+ )1(



6. Storage capacity: How many prototypes can be stored?

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014),

]1sgn[

]1sgn[)1(
,1 1

1







ii

M N

j

jjiiNii

ap

ppppptS

−=

+=+  
= =


ia

Gaussian

Error-free if

ii ptS =+ )1(

Random walk with                    steps

Standard deviation



Partial 

information

This week: Understand Associative Memory

Associative

memory/

collective

computation

Brain-style computation
- Memory stored in connections

- Many memories can be stored in same network

- Retrieval of memories without centralized controller

- Interactions of neurons makes network converge to  most similar pattern

Full  

concept
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The end
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