

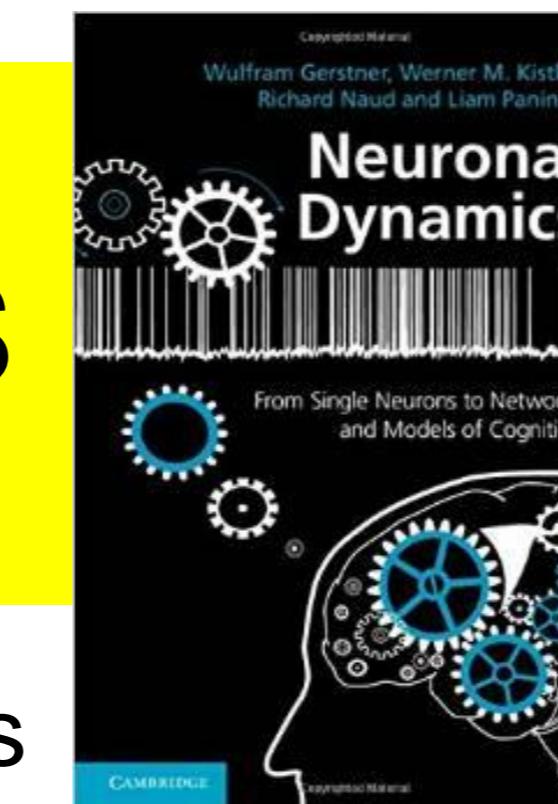
Computational Neuroscience: Neuronal Dynamics of Cognition

A: ASSOCIATIVE MEMORY in a Network of Neurons

Wulfram Gerstner
EPFL, Lausanne, Switzerland

Reading for this week:
NEURONAL DYNAMICS
- Ch. 17.1 - 17.2.4

Cambridge Univ. Press



1 Introduction

- networks of neurons
- systems for computing
- associative memory

2 Classification by similarity

3 Detour: Magnetic Materials

4 Hopfield Model

5 Learning of Associations

6 Storage Capacity

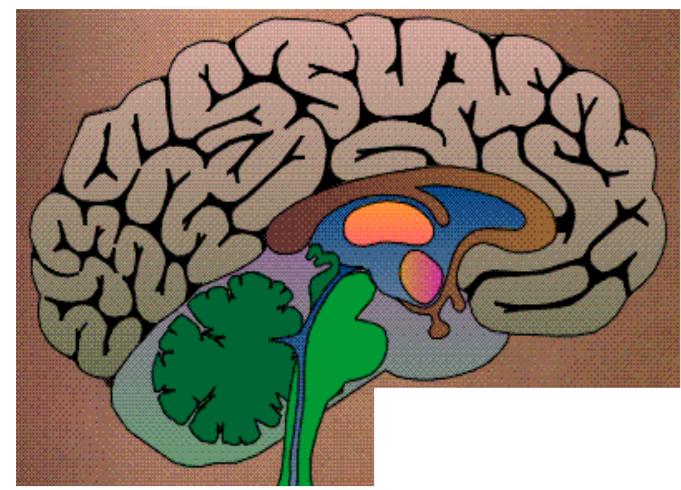
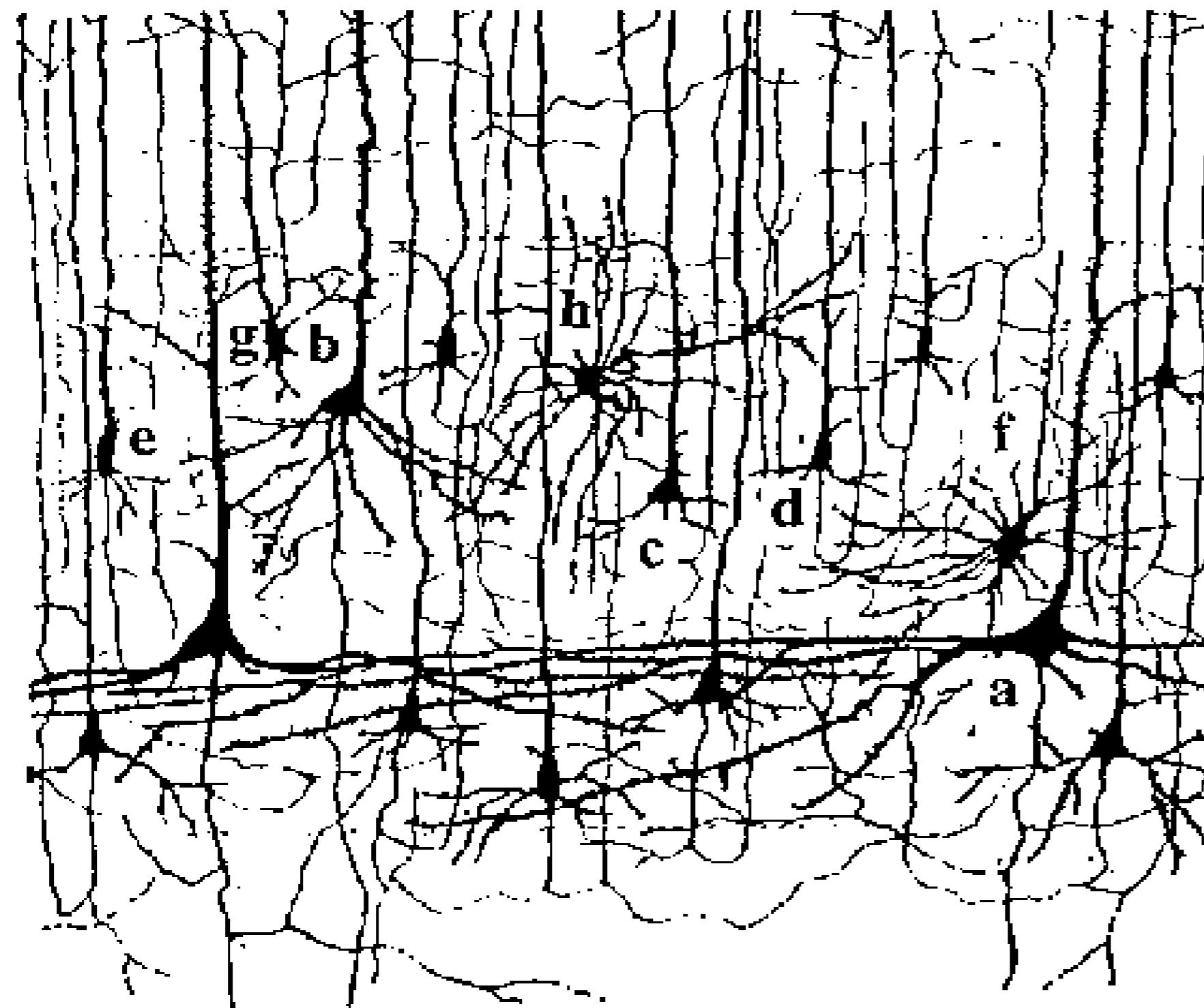
1. memory in the brain

- president
- first day of undergraduate
- apple

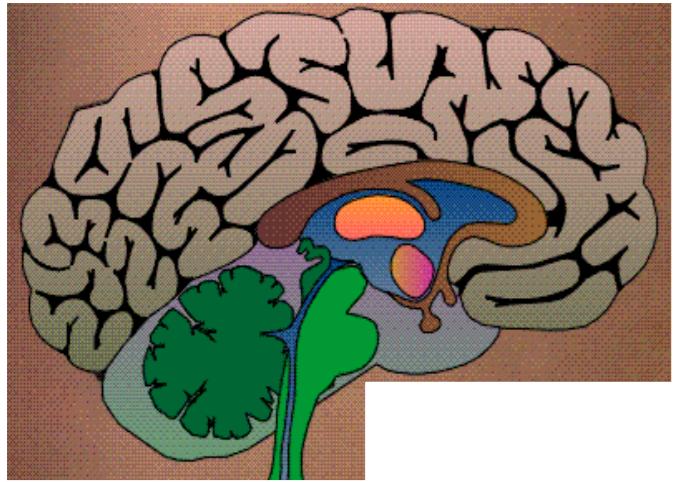
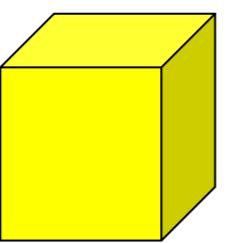
Our memory has multiple aspects

- recent and far-back
- events, places, facts, concepts

1. memory in the brain

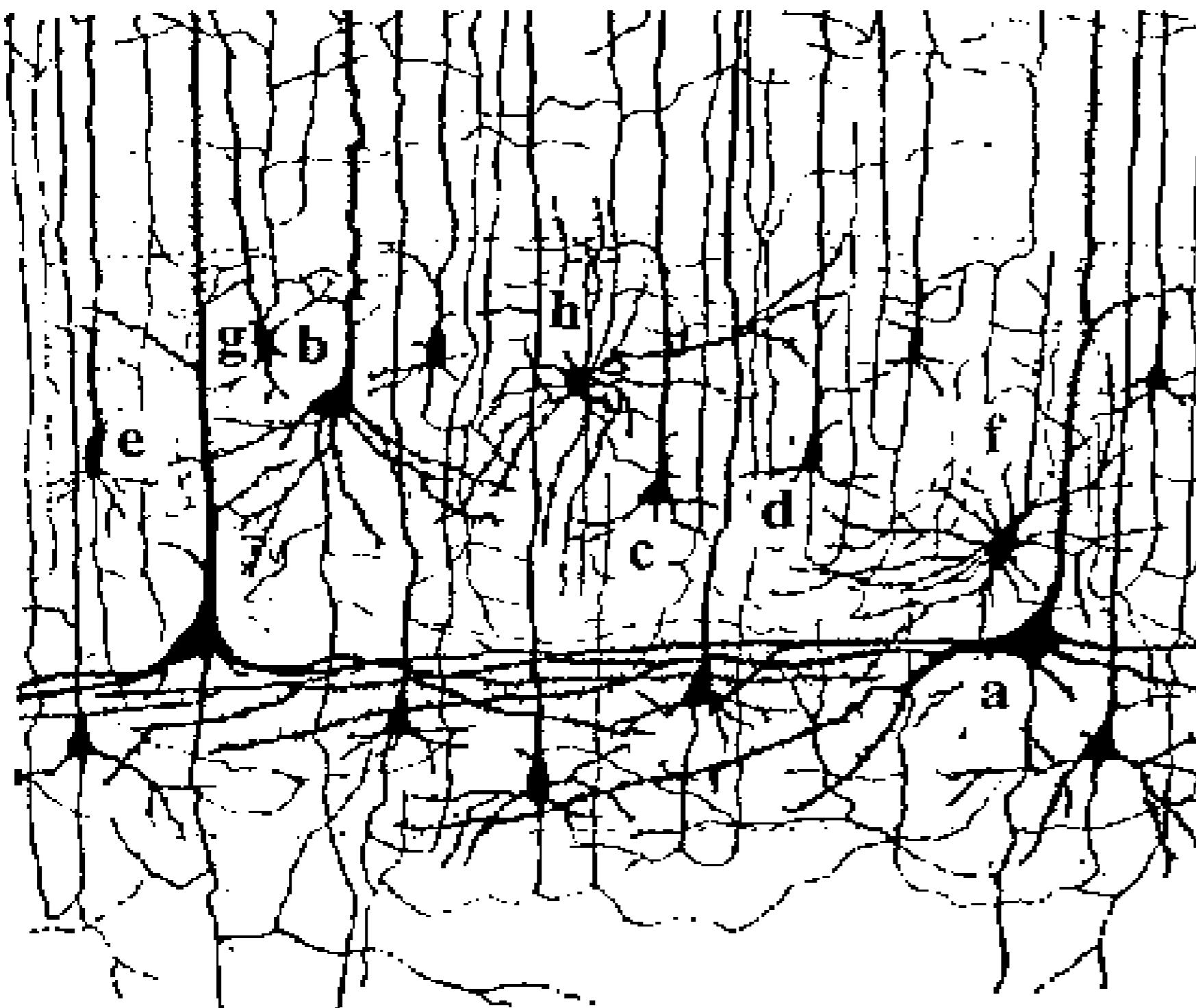


1. Neuronal Networks in the Brain

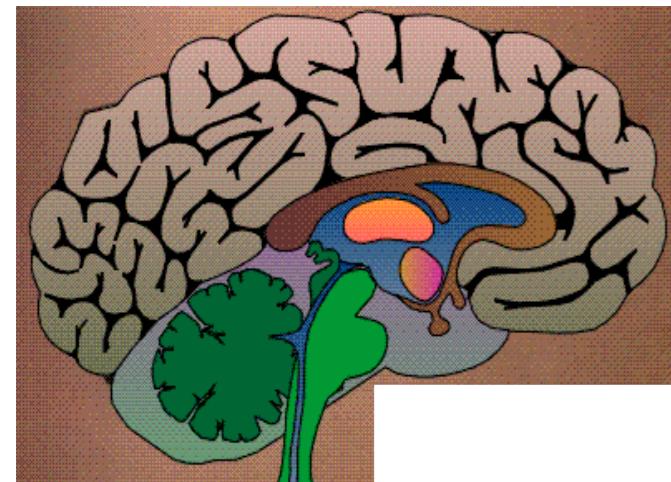


1mm

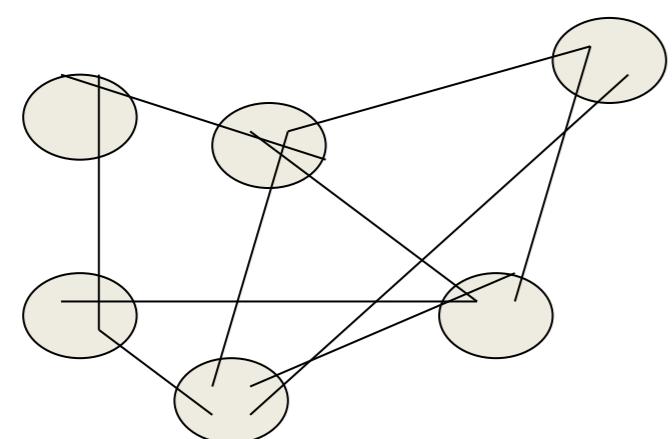
10 000 neurons
3 km of wire



1. Systems for computing and information processing



Brain

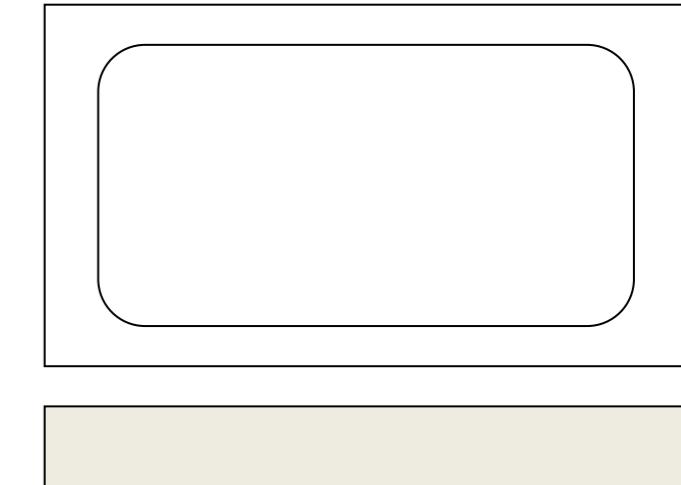
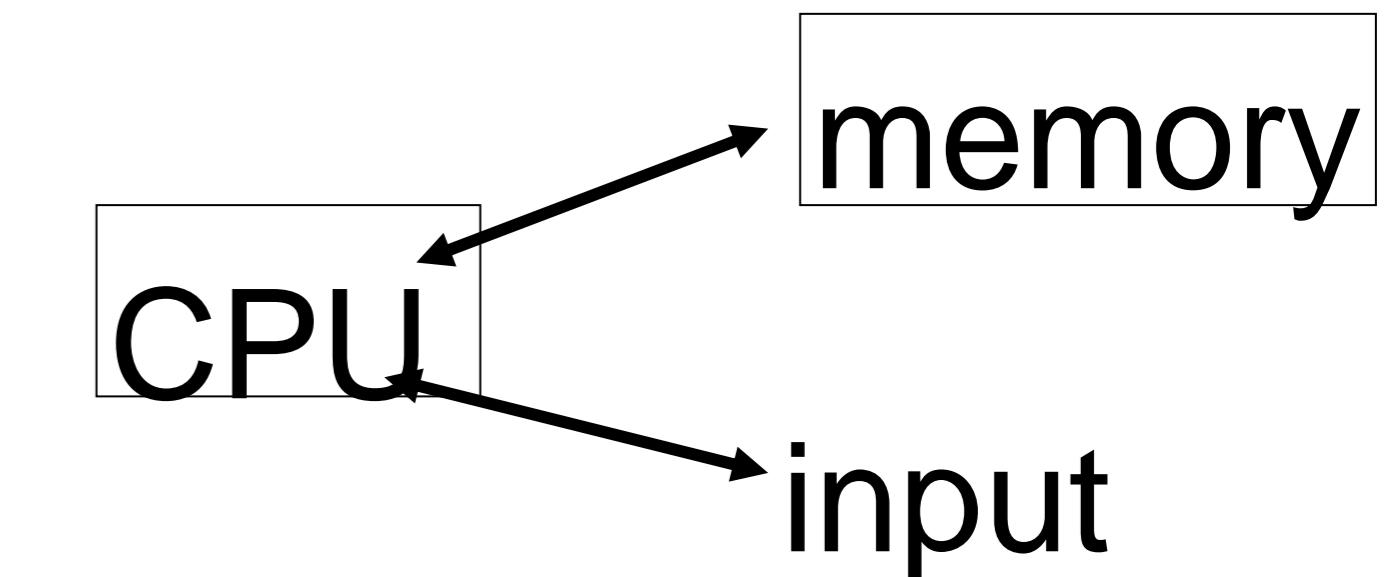


Distributed architecture

$(10^{10}$ proc. Elements/neurons)

No separation of
processing and memory

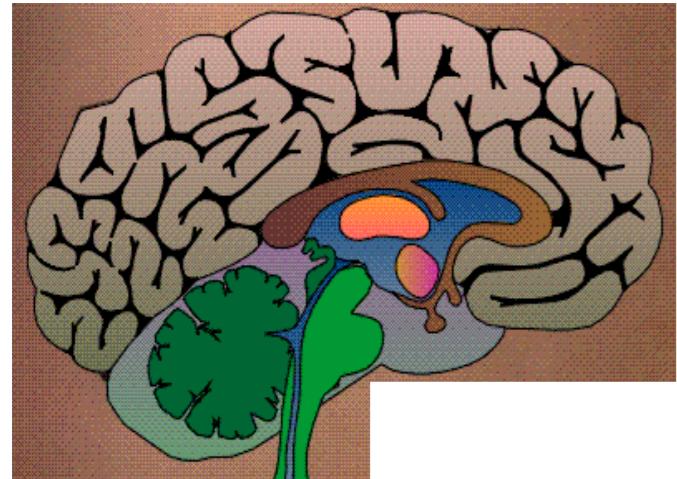
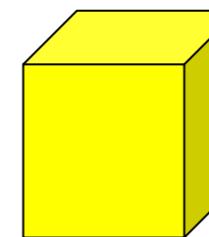
Computer



Von Neumann architecture

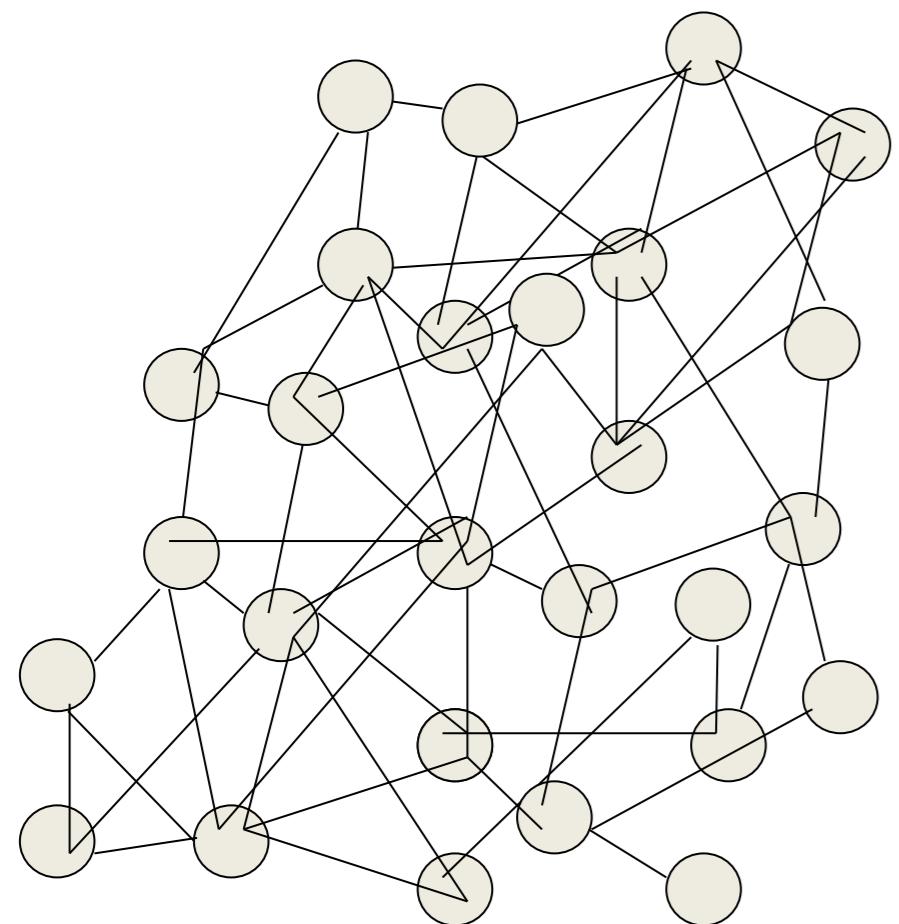
1 CPU
 $(10^{10}$ transistors)

1. Systems for computing and information processing



1mm

10 000 neurons
3 km of wire

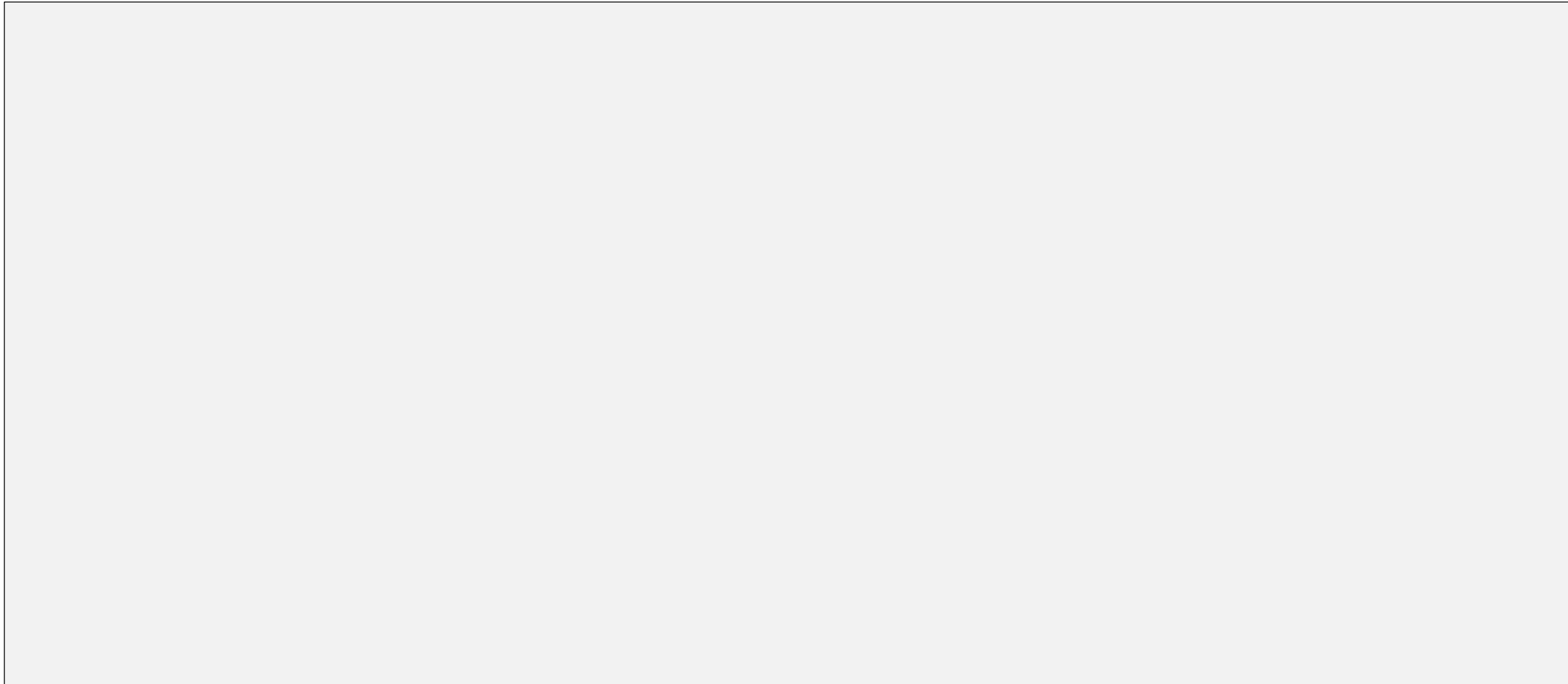


Distributed architecture
 10^{10} neurons
 10^4 connections/neurons

**No separation of
processing and memory**

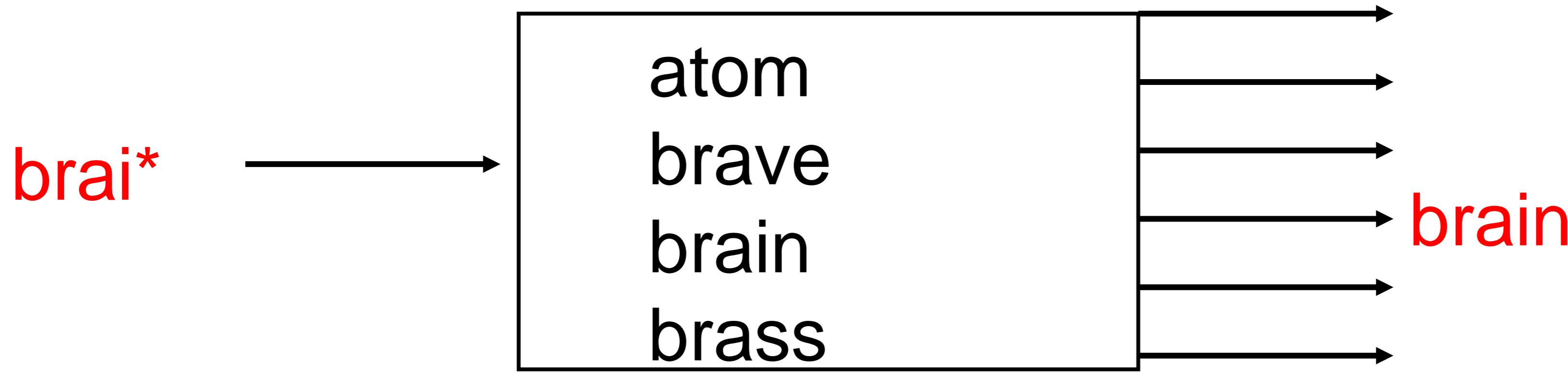
1. Associations, Associative memory

*Read this text **NOW!***



1. Associations, Associative memory

pattern completion/word recognition



Noisy word

List of words

Output the closest one

*Your brain fills in missing information:
'auto-associative memory'*

1. Associations, Associative memory

brai* → brain **‘auto-associative memory’**

bird → swan
vacation → beach **‘associative memory’**

Quiz 1: Connectivity and Associations

Tick one or several answers

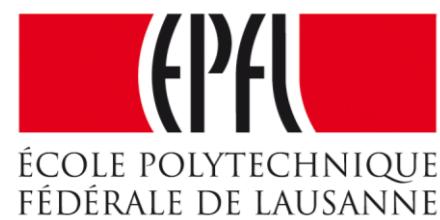
A typical neuron in the brain makes connections

- To 6-30 neighbors
- To 100-500 neurons nearby
- To more than 1000 neurons nearby
- To more than 1000 neurons nearby or far away.

Associative memory is involved

- If you think of palm trees when you think of a beach
- If partial information helps you to recall a complicated concept
- If a cue helps you to recall a memory

Computational Neuroscience: Neuronal Dynamics of Cognition

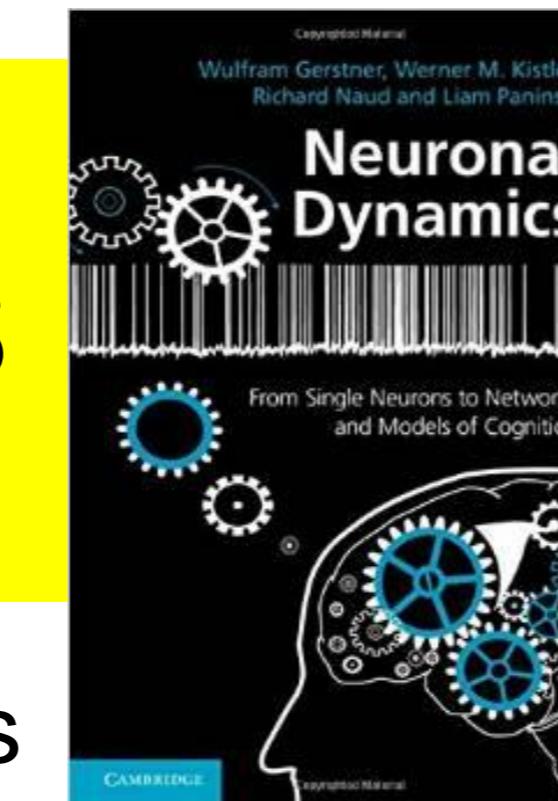


A: ASSOCIATIVE MEMORY in a Network of Neurons

Wulfram Gerstner
EPFL, Lausanne, Switzerland

Reading for this week:
NEURONAL DYNAMICS
- Ch. 17.1 - 17.2.4

Cambridge Univ. Press



1 Introduction

- networks of neurons
- systems for computing
- associative memory

2 Classification by similarity

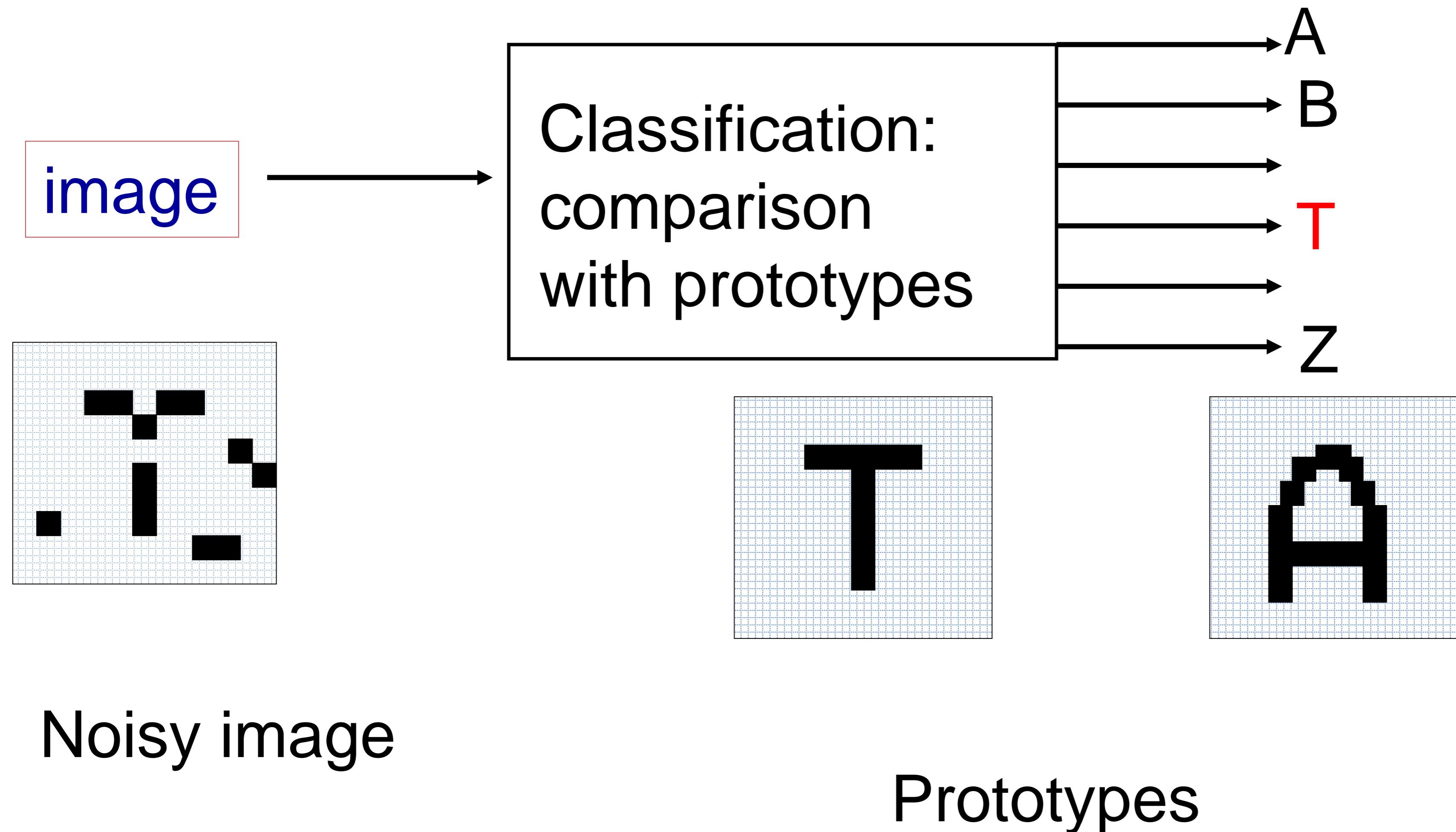
3 Detour: Magnetic Materials

4 Hopfield Model

5 Learning of Associations

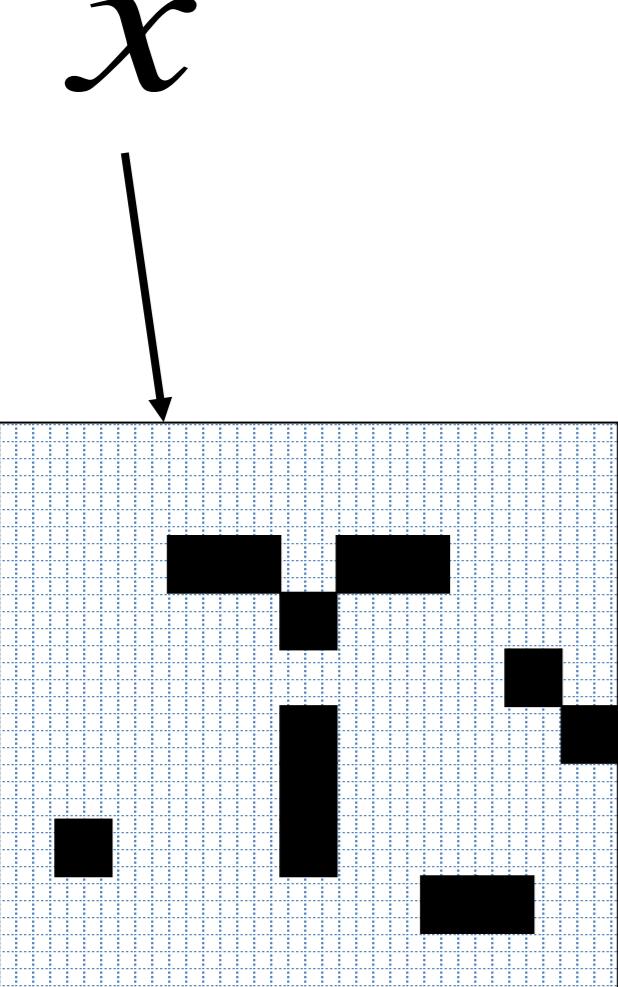
6 Storage Capacity

2. Classification by similarity: pattern recognition

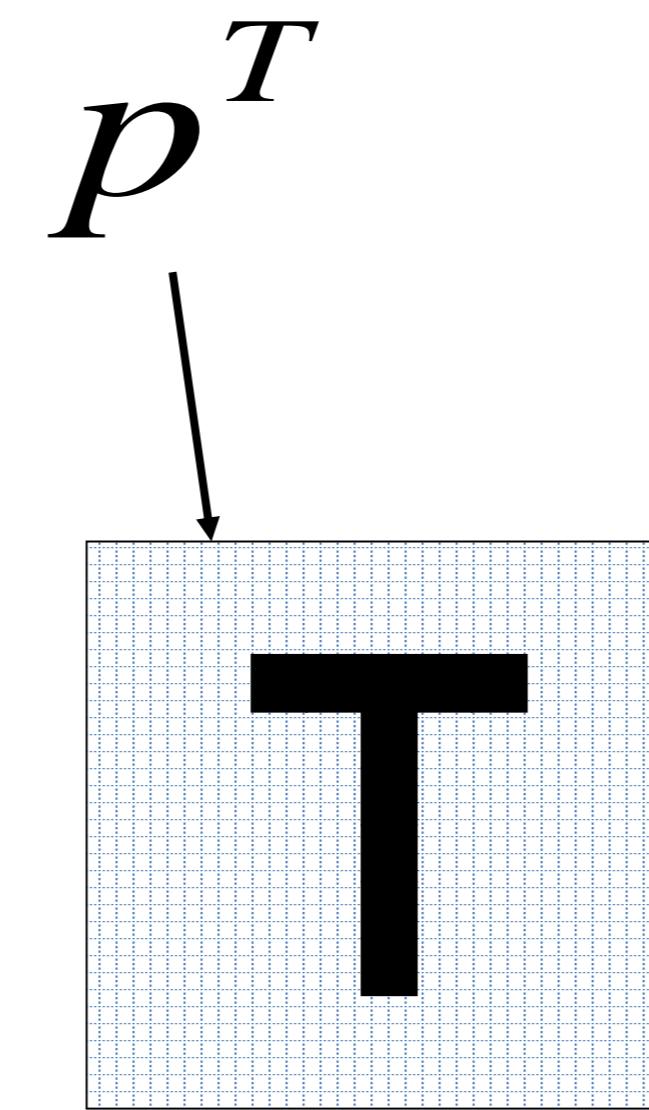


2. Classification by similarity: pattern recognition

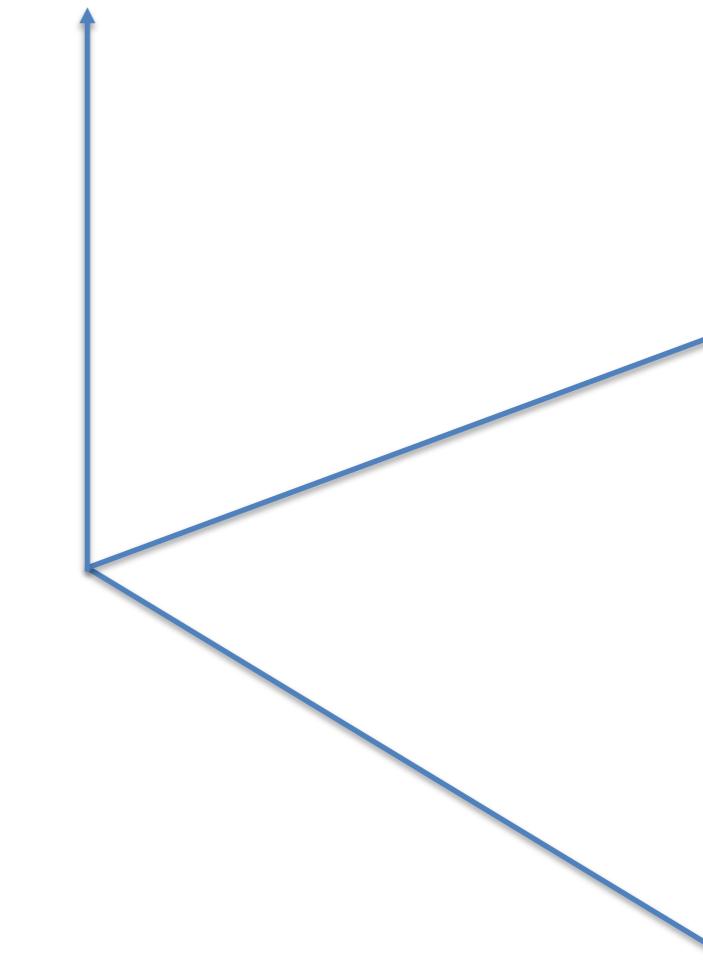
Classification by closest prototype



Noisy image

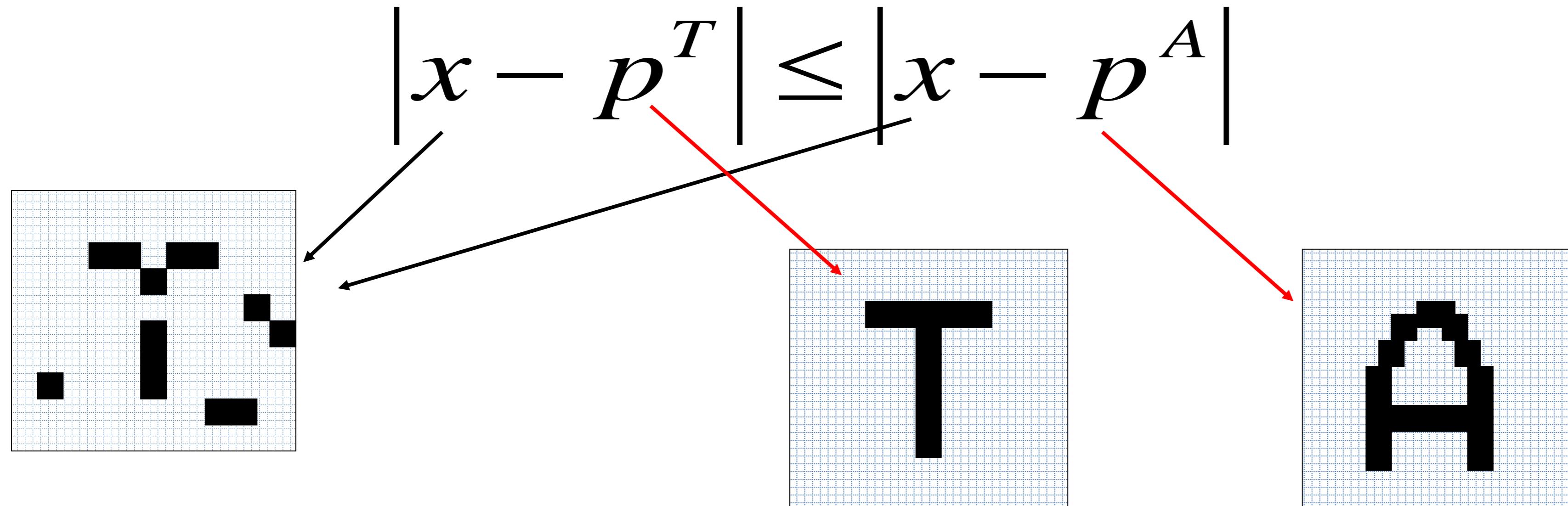


Prototype



2. Classification by similarity: pattern recognition

Classification by closest prototype

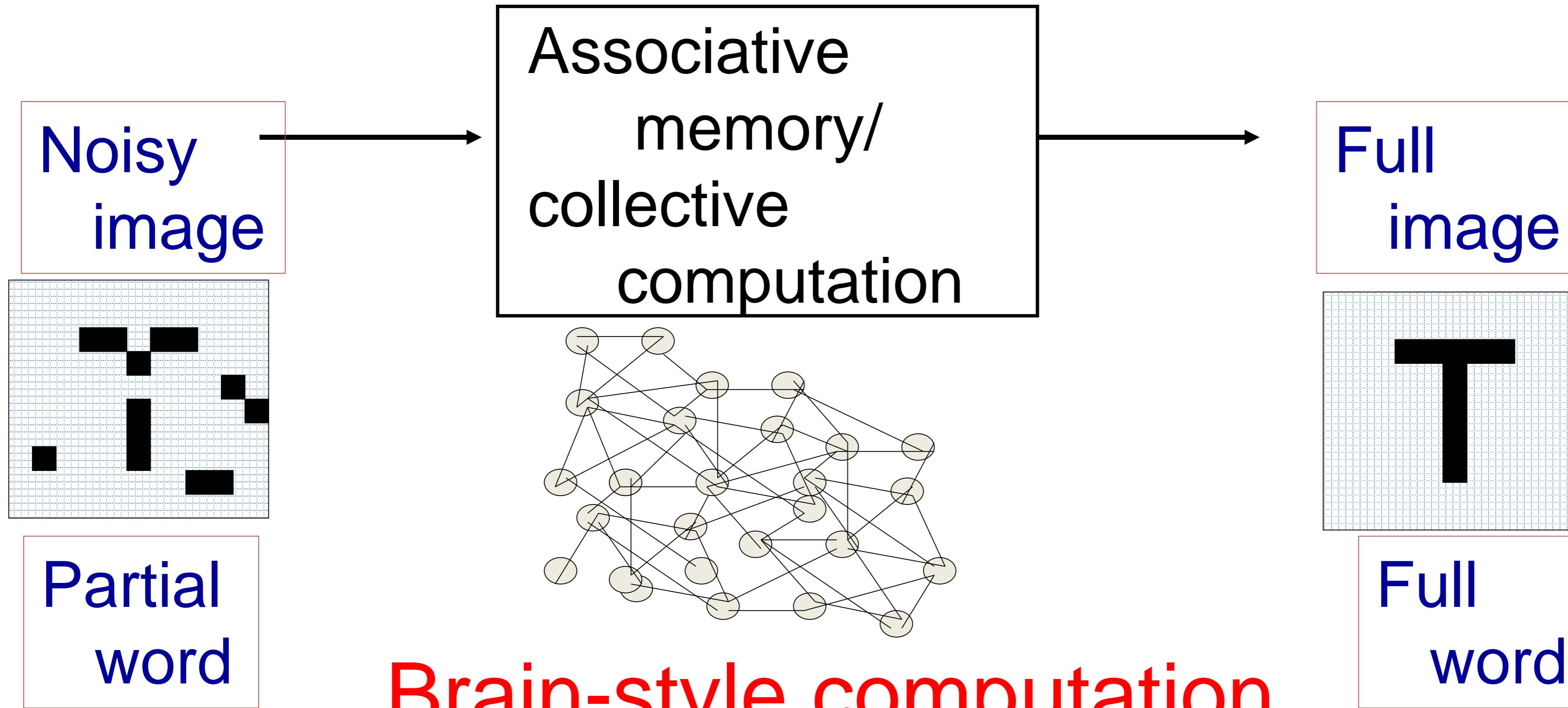


Noisy image

Prototypes

2. pattern recognition and Pattern completion

Aim: Understand Associative Memory



Brain-style computation

Quiz 2: Closest prototype

Classification by closest prototype (tick one or several answers)

- Needs a similarity measure
- Needs a distance measure
- Needs a method to find the maximum or minimum

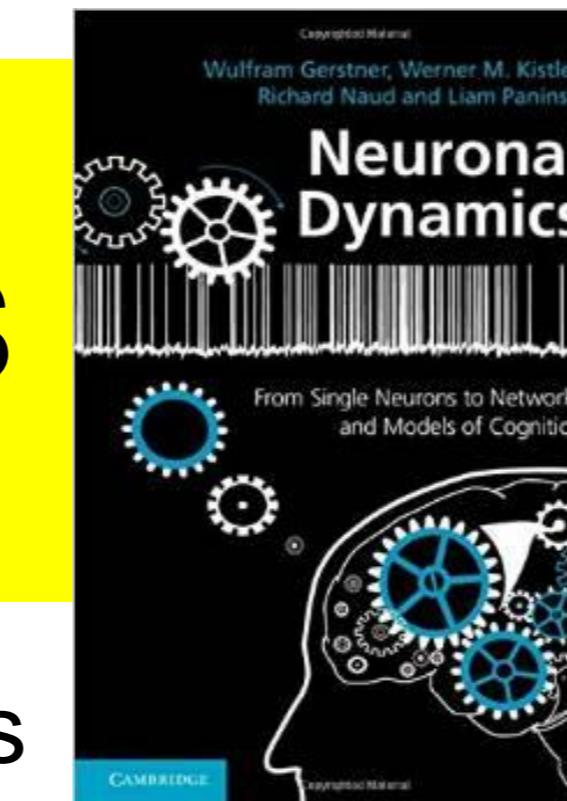
Computational Neuroscience: Neuronal Dynamics of Cognition

A: ASSOCIATIVE MEMORY in a Network of Neurons

Wulfram Gerstner
EPFL, Lausanne, Switzerland

Reading for this week:
NEURONAL DYNAMICS
- Ch. 17.1 - 17.2.4

Cambridge Univ. Press



1 Introduction

- networks of neurons
- systems for computing
- associative memory

2 Classification by similarity

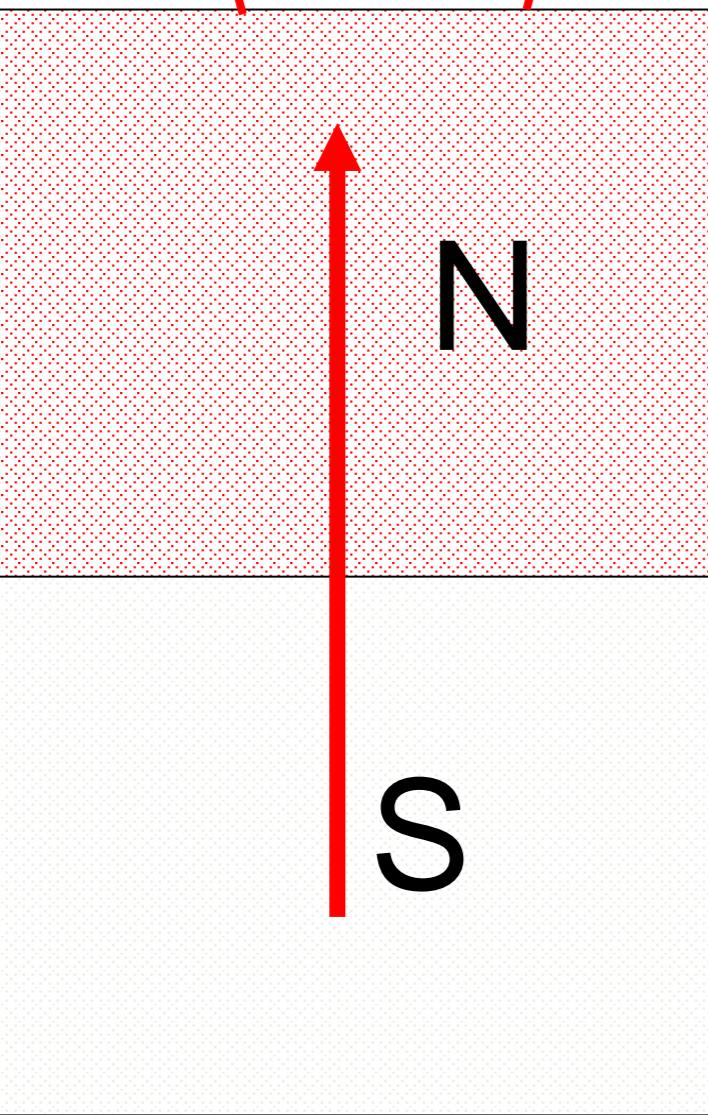
3 Detour: Magnetic Materials

4 Hopfield Model

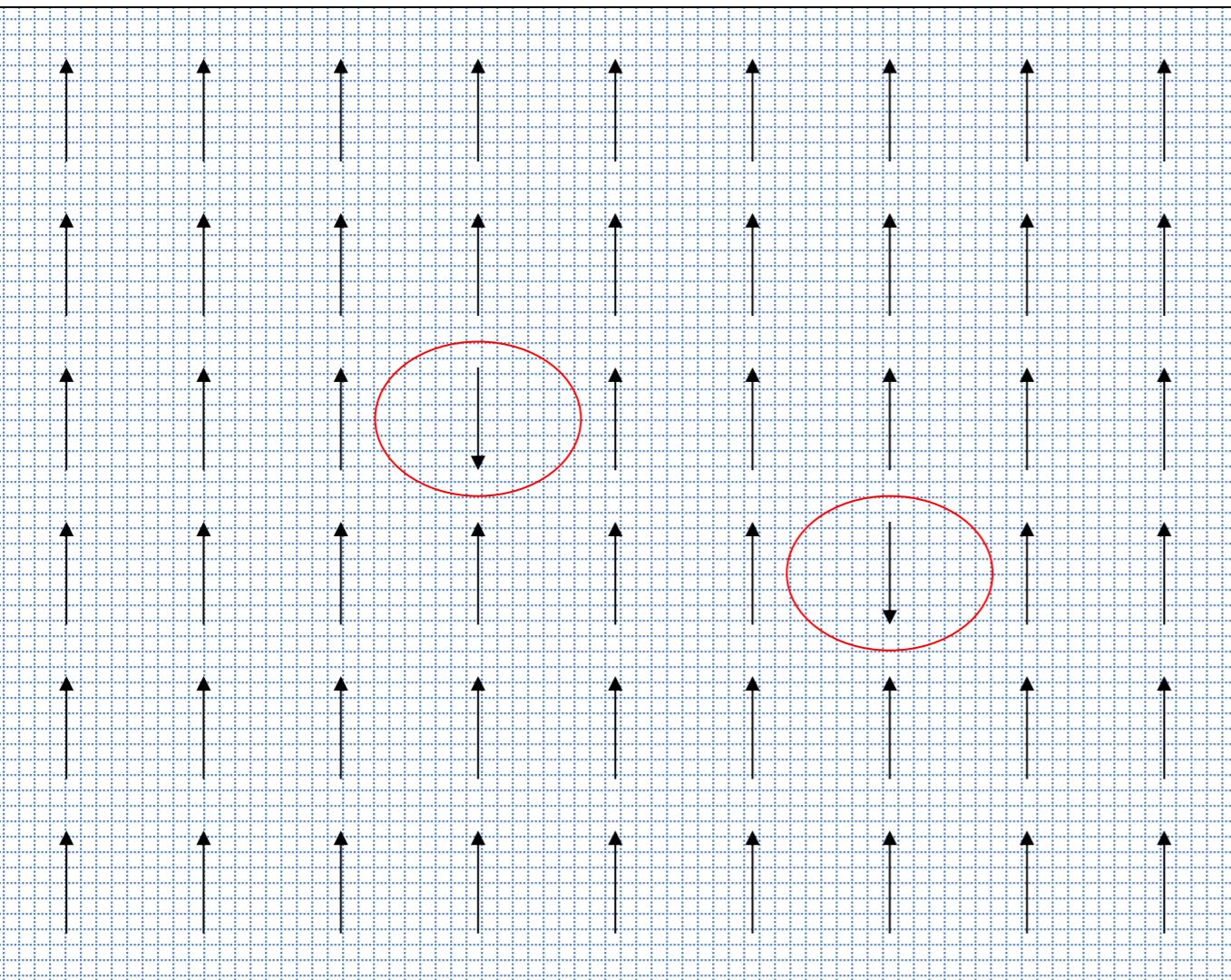
5 Learning of Associations

6 Storage Capacity

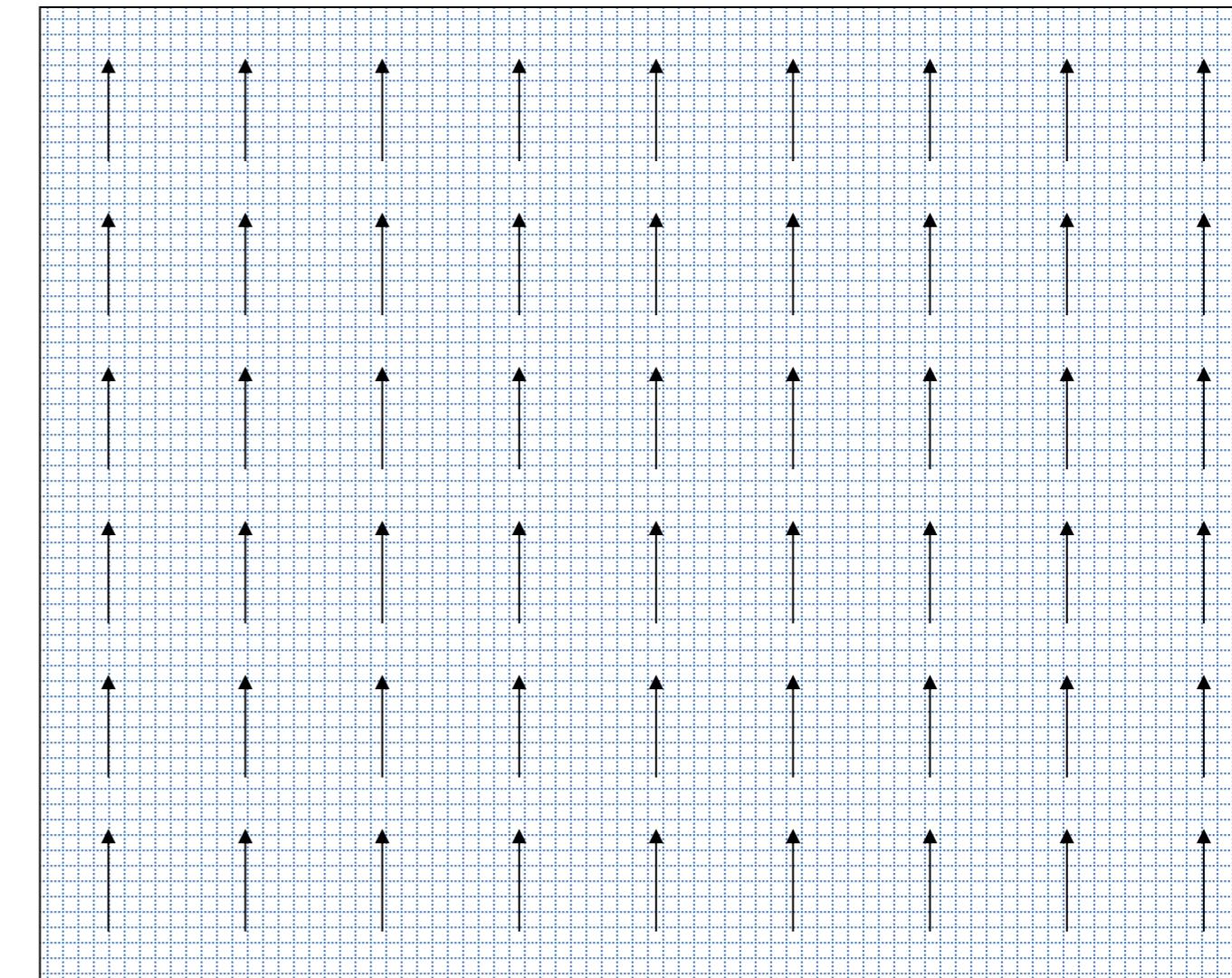
3. Detour: magnetism



3. Detour: magnetism

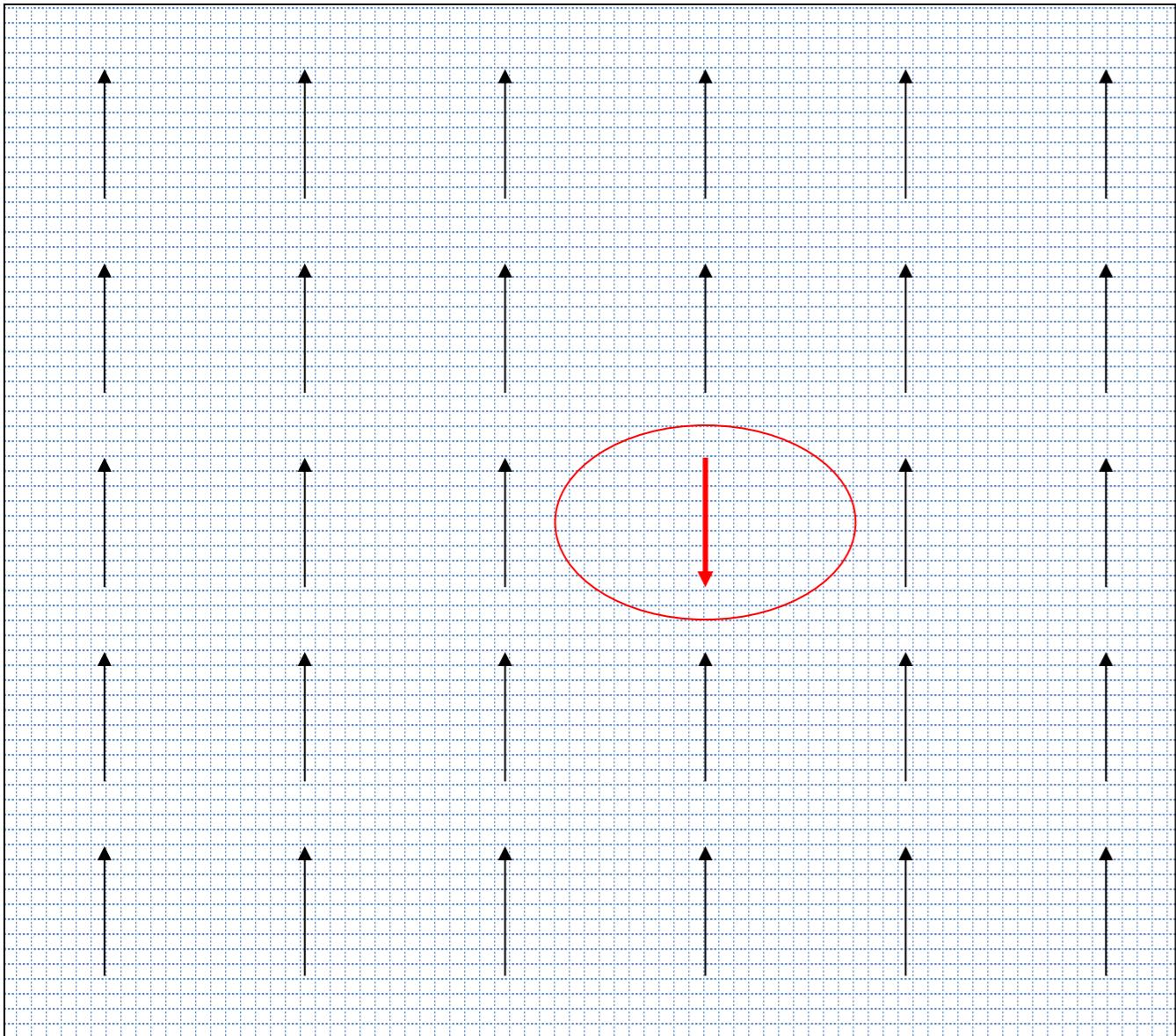


Noisy magnet



pure magnet

3. Detour: magnetism



Elementary magnet

$$\begin{array}{c} \uparrow \quad S_i = +1 \\ \downarrow \quad S_i = -1 \end{array}$$

dynamics

$$S_i(t+1) = \text{sgn} \left[\sum_j S_j(t) \right]$$

Sum over all
interactions with i

3. Detour: magnetism

Anti-ferromagnet

Elementary magnet

$$\begin{array}{ll} \uparrow & S_i = +1 \\ \downarrow & S_i = -1 \end{array} \quad \begin{array}{ll} \uparrow \uparrow & W_{ij} = +1 \\ \uparrow \downarrow & W_{ij} = -1 \end{array}$$

dynamics

$$S_i(t+1) = \text{sgn} \left[\sum_j w_{ij} S_j(t) \right]$$

j
Sum over all
interactions with i

3. Detour: magnetism

Anti-ferromagnet



Elementary magnet

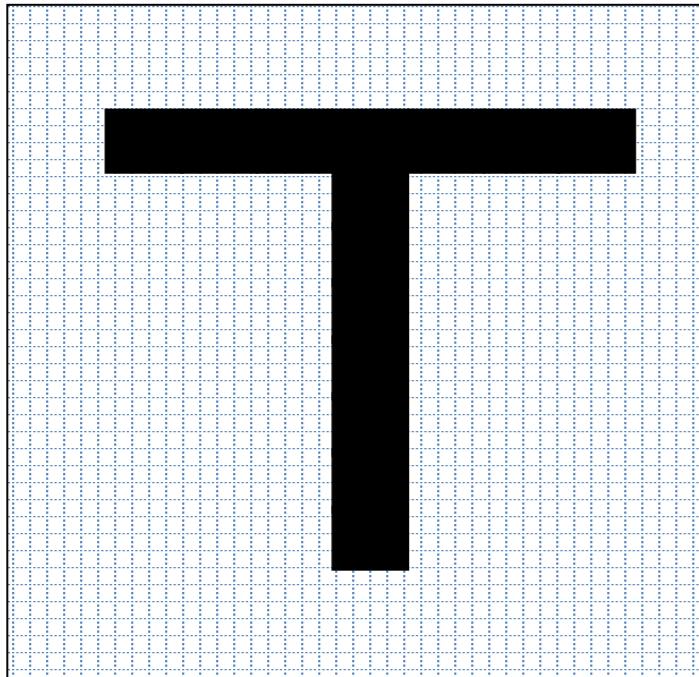
$$\begin{array}{ll} \uparrow & S_i = +1 \\ \downarrow & S_i = -1 \end{array} \quad \begin{array}{ll} \uparrow \uparrow & W_{ij} = +1 \\ \uparrow \downarrow & W_{ij} = -1 \end{array}$$

dynamics

$$S_i(t+1) = \text{sgn} \left[\sum_j w_{ij} S_j(t) \right]$$

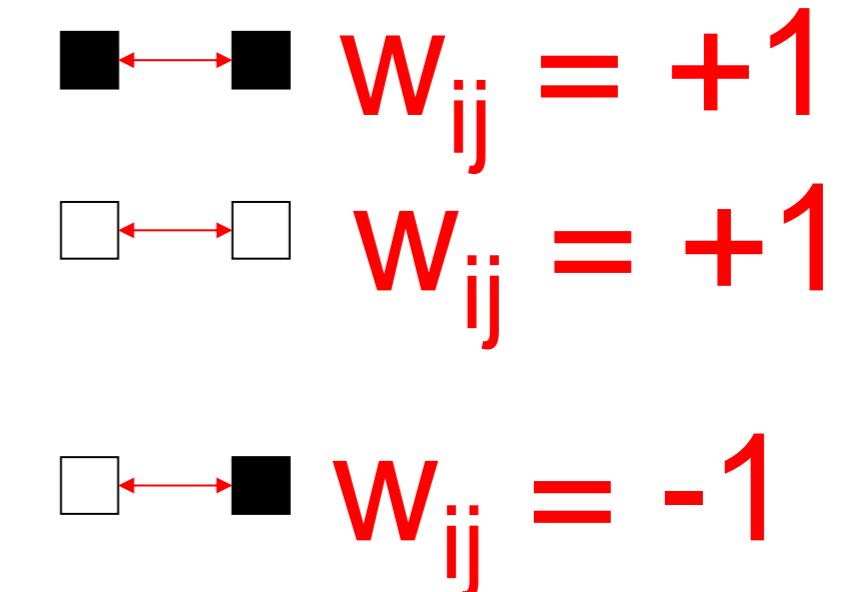
j
Sum over all
interactions with i

3. Magnetism and memory patterns



Elementary pixel

- $S_i = +1$
- $S_i = -1$



dynamics

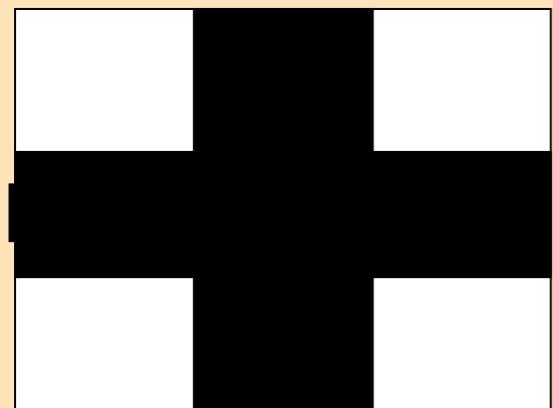
$$S_i(t+1) = \text{sgn} \left[\sum_j w_{ij} S_j(t) \right]$$

j

Sum over all
interactions with i

Hopfield model:
Several patterns → next section

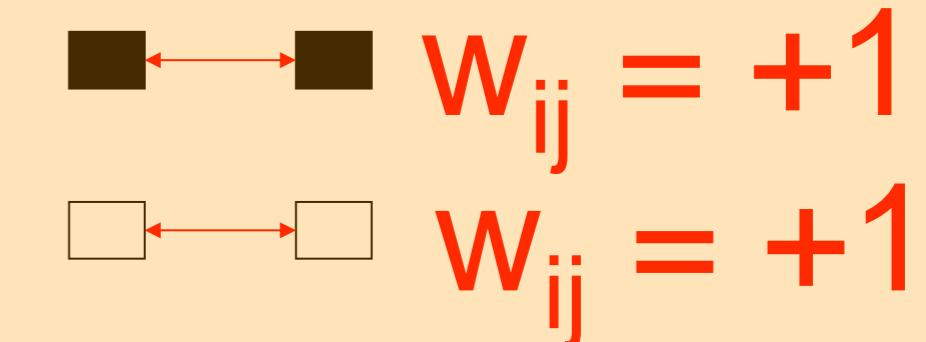
Exercise 1: Associative memory (1 pattern)



- 9 neurons, connected all-to-all
- define appropriate weights:
 - what is the weight
 $w_{79} = ?$
 - what happens if neuron 7 is +1?
 - what happens if 3 neurons wrong?

Elementary pixel

- $S_i = +1$
- $S_i = -1$



dynamics

$$S_i(t+1) = \text{sgn} \left[\sum_j w_{ij} S_j(t) \right]$$

$\nearrow j$

Sum over all
interactions with i

Computational Neuroscience: Neuronal Dynamics of Cognition

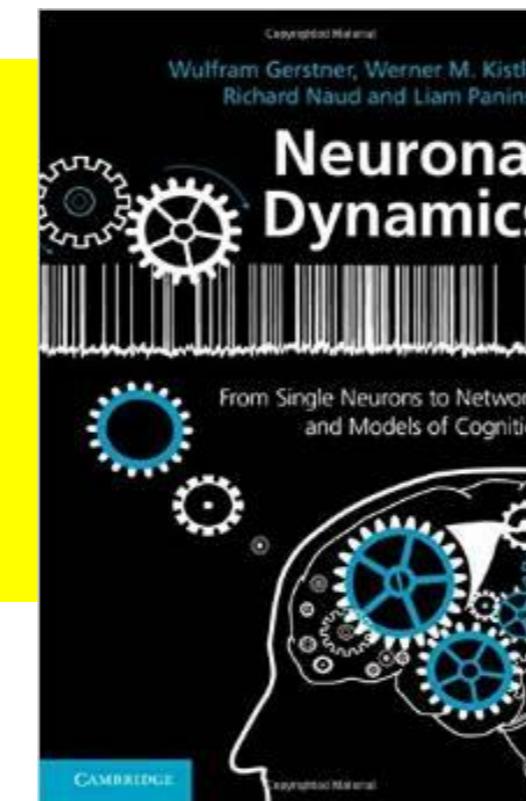


A: ASSOCIATIVE MEMORY in a Network of Neurons

Wulfram Gerstner
EPFL, Lausanne, Switzerland

Reading for this week:
NEURONAL DYNAMICS
- Ch. 17.1 - 17.2.4

Cambridge Univ. Press



1 Introduction

- networks of neurons
- systems for computing
- associative memory

2 Classification by similarity

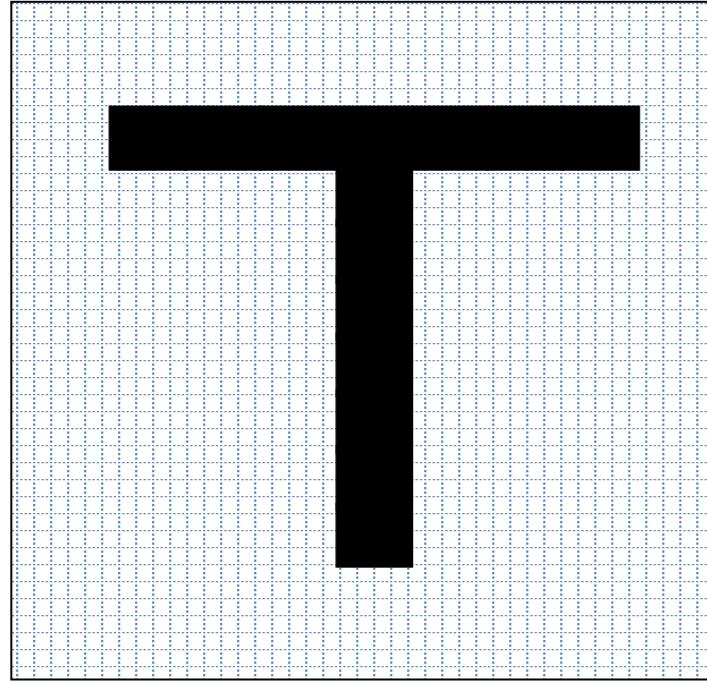
3 Detour: Magnetic Materials

4 Hopfield Model

5 Learning of Associations

6 Storage Capacity

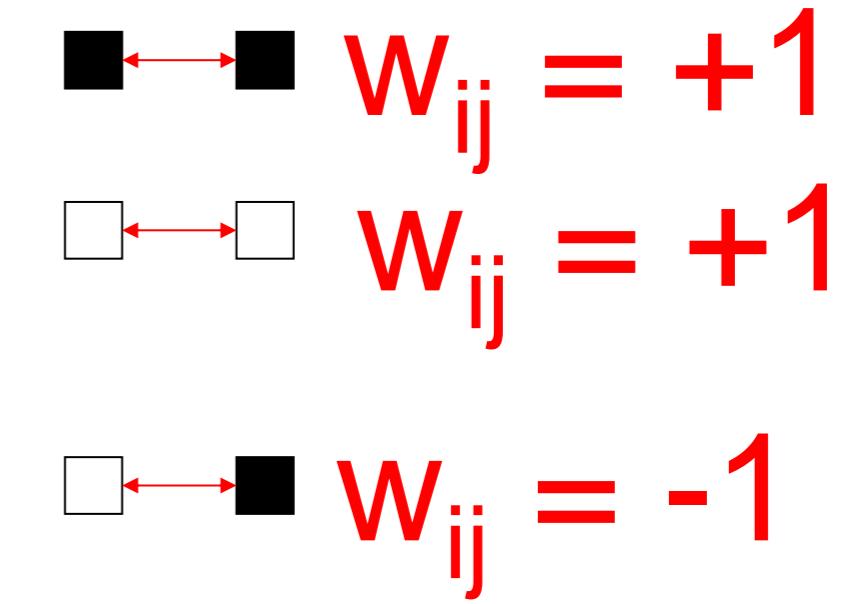
4. Single pattern



Elementary pixel
(target pattern)

■ $p_i = +1$

□ $p_i = -1$



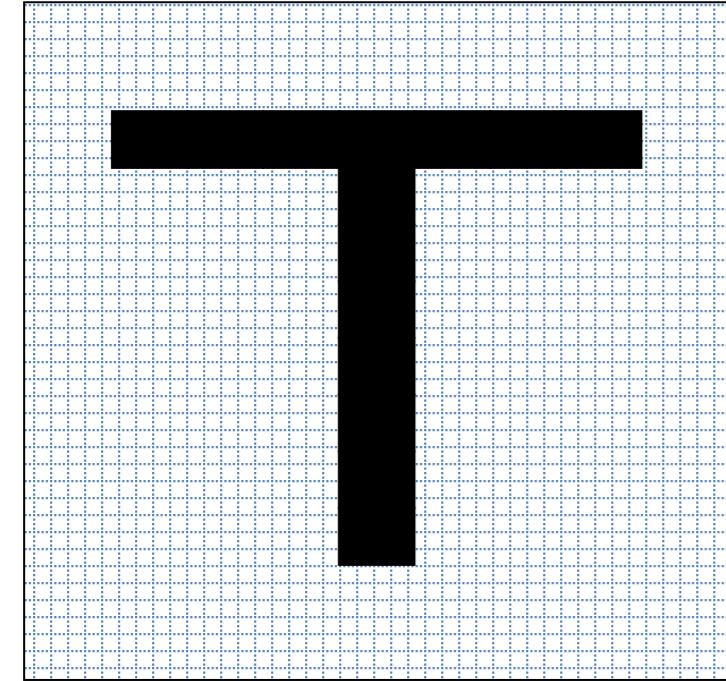
$$w_{ij} =$$

dynamics

$$S_i(t+1) = \text{sgn} \left[\sum_j w_{ij} S_j(t) \right]$$

Sum over all
interactions with i

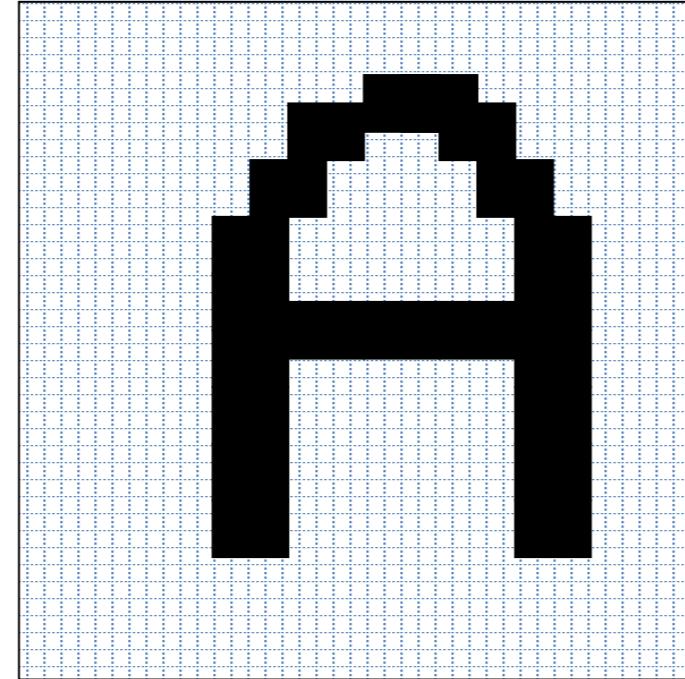
4. Hopfield Model of Associative Memory



Prototype

$$\vec{p}^1$$

several patterns



Prototype

$$\vec{p}^2$$

interactions

$$w_{ij} = \sum_{\mu} p_i^{\mu} p_j^{\mu}$$

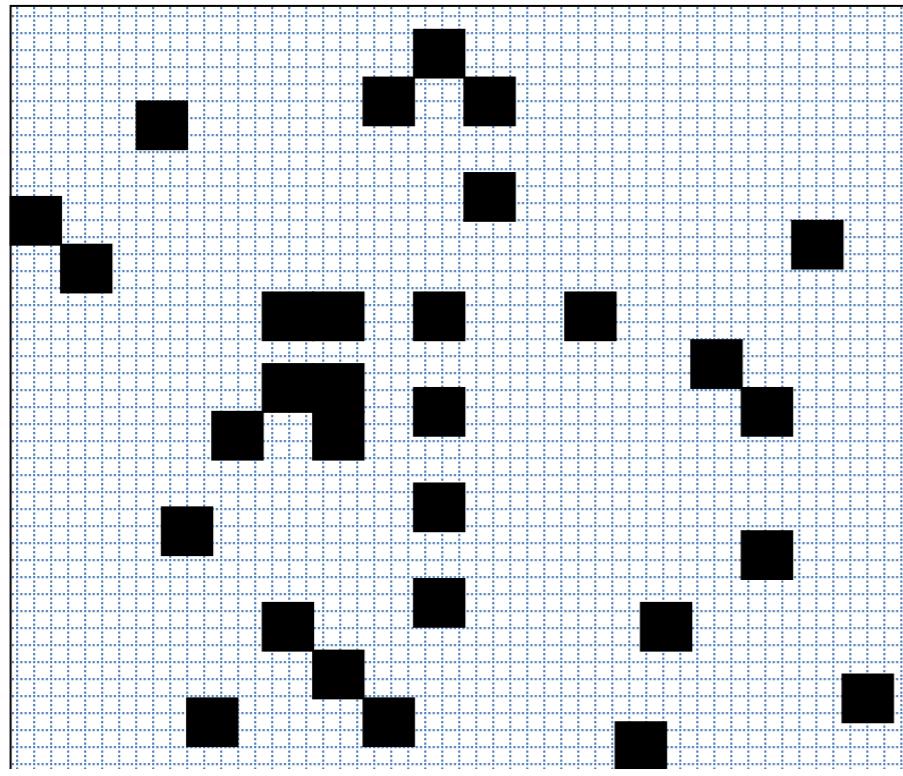
Sum over all
prototypes

dynamics

$$S_i(t+1) = \text{sgn} \left[\sum_j w_{ij} S_j(t) \right]$$

Sum over all
interactions with i

4. Hopfield Model of Associative Memory



Pattern
 \vec{p}^1

interactions

$$w_{ij} = \sum_{\mu} p_i^{\mu} p_j^{\mu} \quad (1)$$

Sum over all
prototypes

This rule
is very good
for **random**
patterns

It does not work well
for correlated patterns

Hopfield model (1982)

- **several random patterns**
- **fully connected network**
- **binary neurons**
- **weights (1); dynamics (2)**

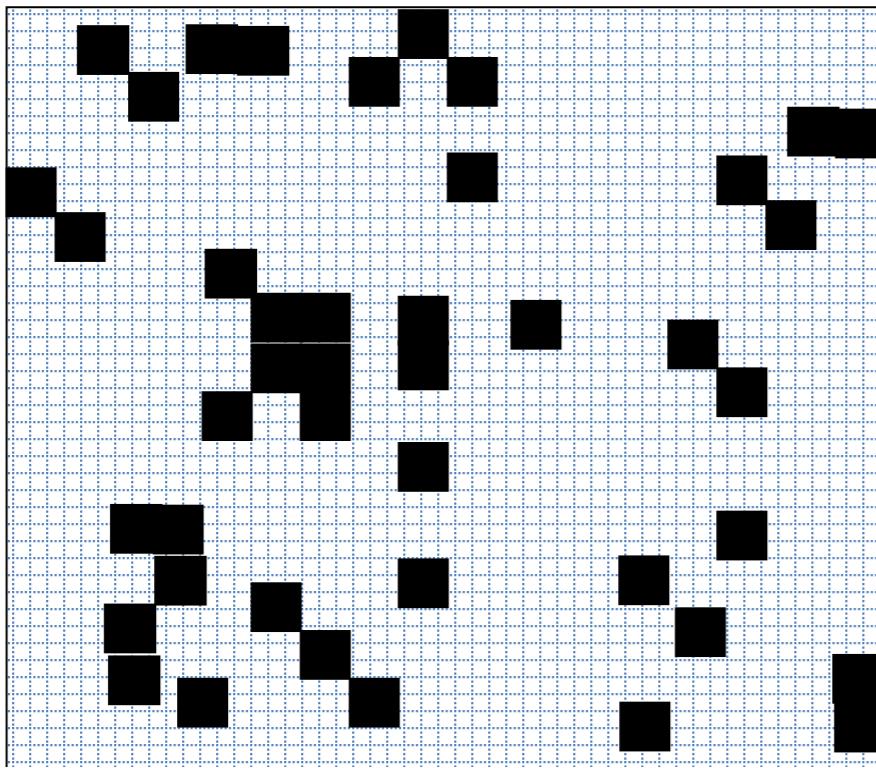
dynamics

$$S_i(t+1) = \text{sgn} \left[\sum_j w_{ij} S_j(t) \right] \quad (2)$$

all interactions with i

J. Hopfield, 1982

4. Overlap: a measure of similarity



current state: (+1,-1,-1,+1,-1,+1,+1,-1)

target pattern, (+1,+1,-1,+1,-1,-1,-1,-1)
prototype

overlap $m^\mu(t) = \frac{1}{N} \sum_j p_j^\mu S_j(t)$

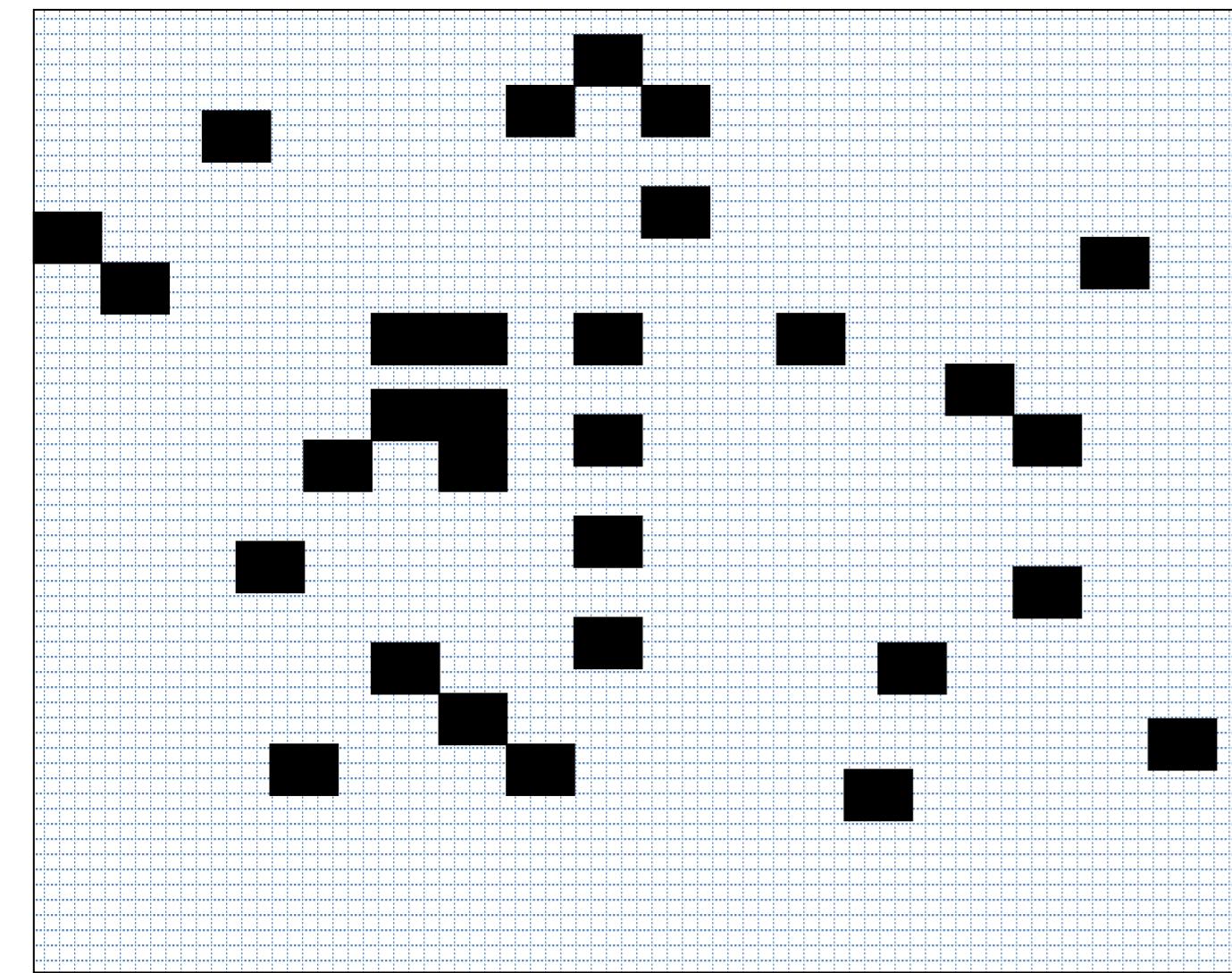
4. Hopfield Model of Associative Memory

$$S_i(t+1) = \text{sgn} \left[\sum_j w_{ij} S_j(t) \right]$$

$$w_{ij} = \sum_{\mu} p_i^{\mu} p_j^{\mu}$$

$$m^{\mu}(t+1) = \frac{1}{N} \sum_j p_j^{\mu} S_j(t+1)$$

4. Hopfield Model of Associative Memory



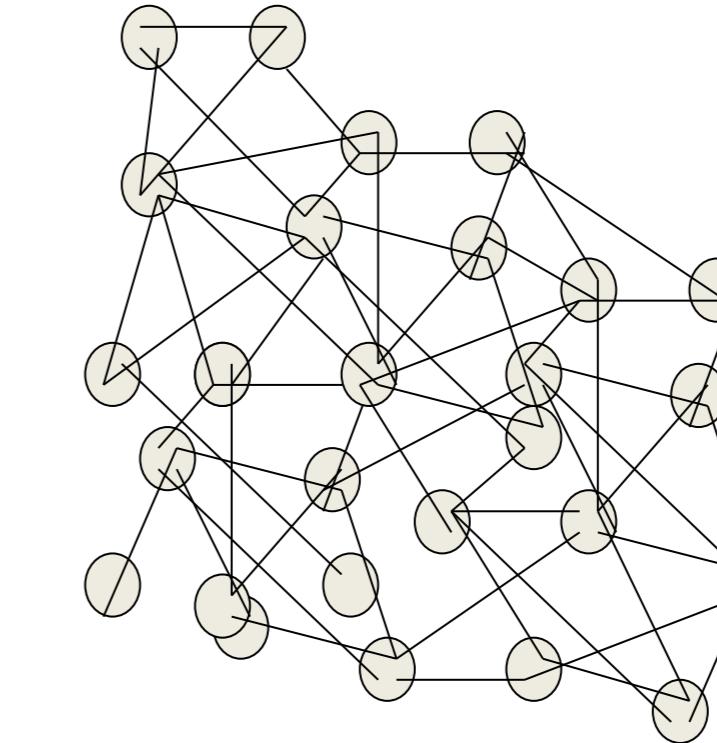
Prototype

\vec{p}^1

*Finds the closest prototype
i.e. maximal overlap
(similarity) m^μ*

Hopfield model

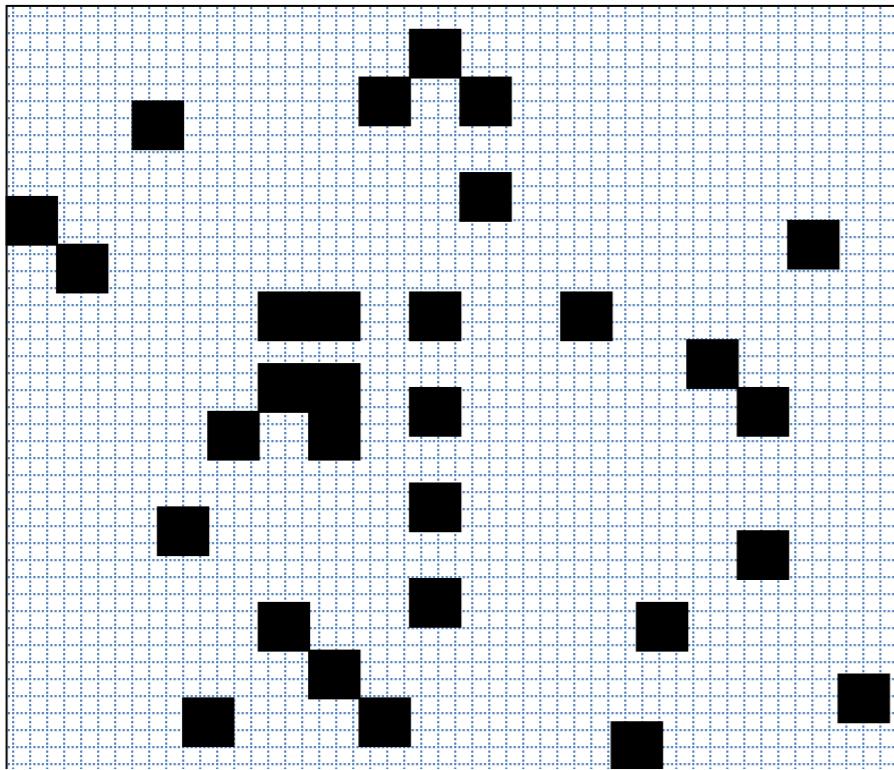
Interacting neurons



Computation

- without CPU,
- without explicit memory unit

4. Correlated patterns, orthogonal patterns



target pattern, $(+1, -1, +1, +1, -1, +1, +1, -1)$
prototype 3

target pattern, $(+1, +1, -1, +1, -1, -1, -1, -1)$
prototype 7

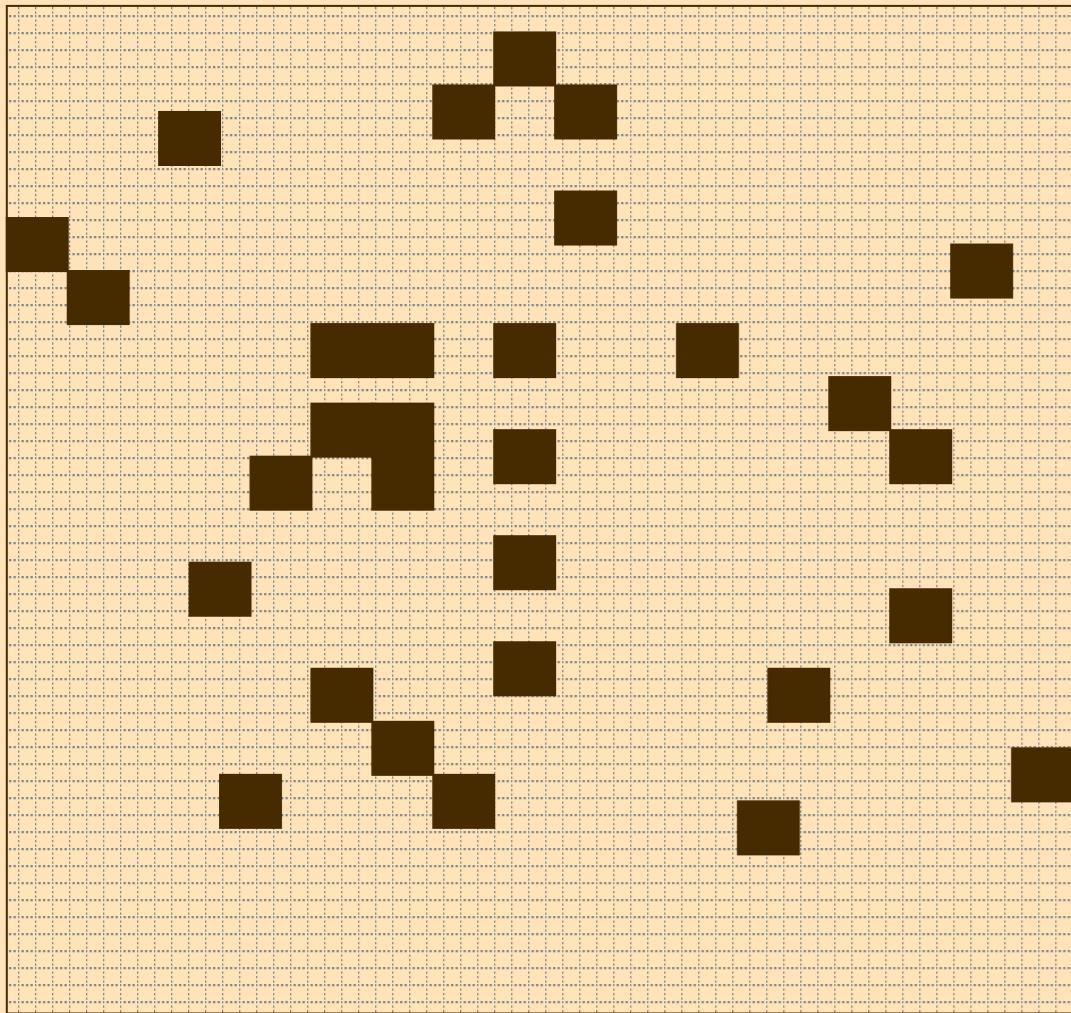
Similarity of two patterns:

Orthogonal patterns:

overlap $m^\mu(t) = \frac{1}{N} \sum_j p_j^\mu S_j(t)$

Random patterns

Exercise 2 (now)



$$w_{ij} = \frac{1}{N} \sum_{\mu} p_i^{\mu} p_j^{\mu}$$

$$S_i(t+1) = \text{sgn} \left[\sum_j w_{ij} S_j(t) \right]$$

Sum over all
interactions with i

Assume 4 orthogonal patterns.

At time $t=0$, overlap with
pattern 3, no overlap with other patterns.

Calculate the overlap at $t=1$!

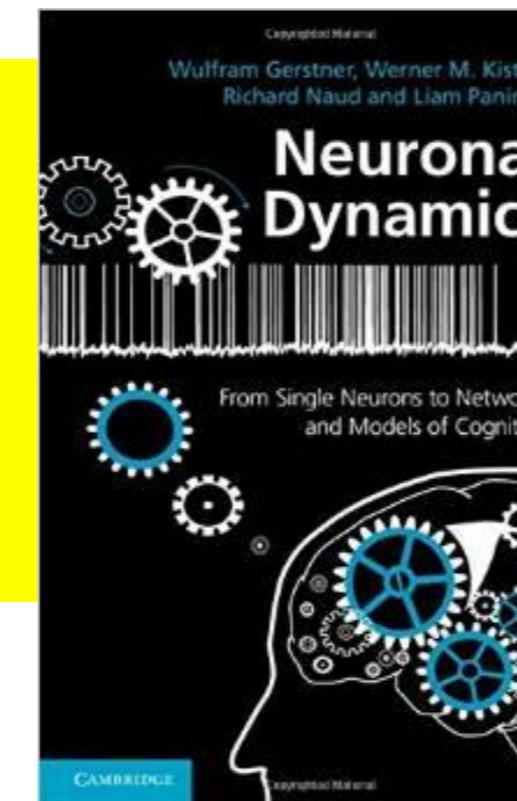
Computational Neuroscience: Neuronal Dynamics of Cognition

A: ASSOCIATIVE MEMORY in a Network of Neurons

Wulfram Gerstner
EPFL, Lausanne, Switzerland

Reading for this week:
NEURONAL DYNAMICS
- Ch. 17.1 - 17.2.4

Cambridge Univ. Press



1 Introduction

- networks of neurons
- systems for computing
- associative memory

2 Classification by similarity

3 Detour: Magnetic Materials

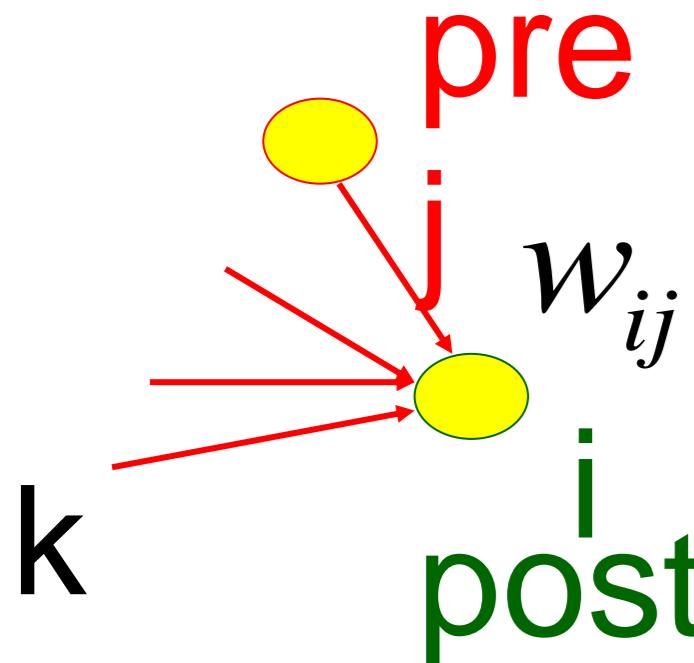
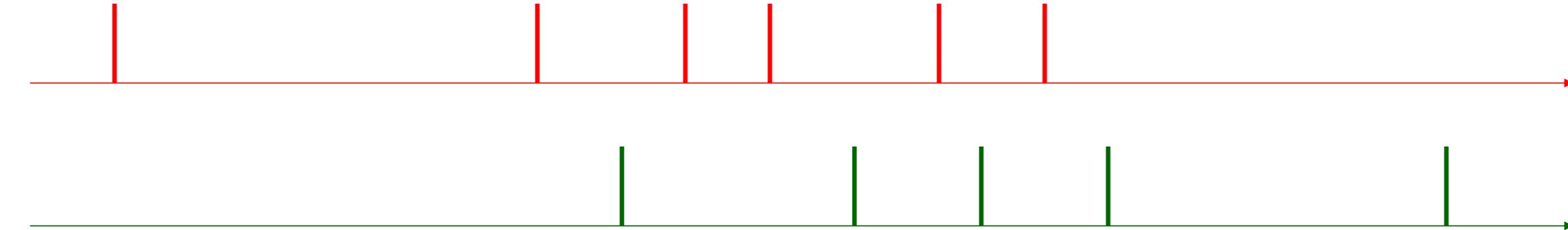
4 Hopfield Model

5 Learning of Associations

6 Storage Capacity

5. Learning of Associations

Where do the connections come from?



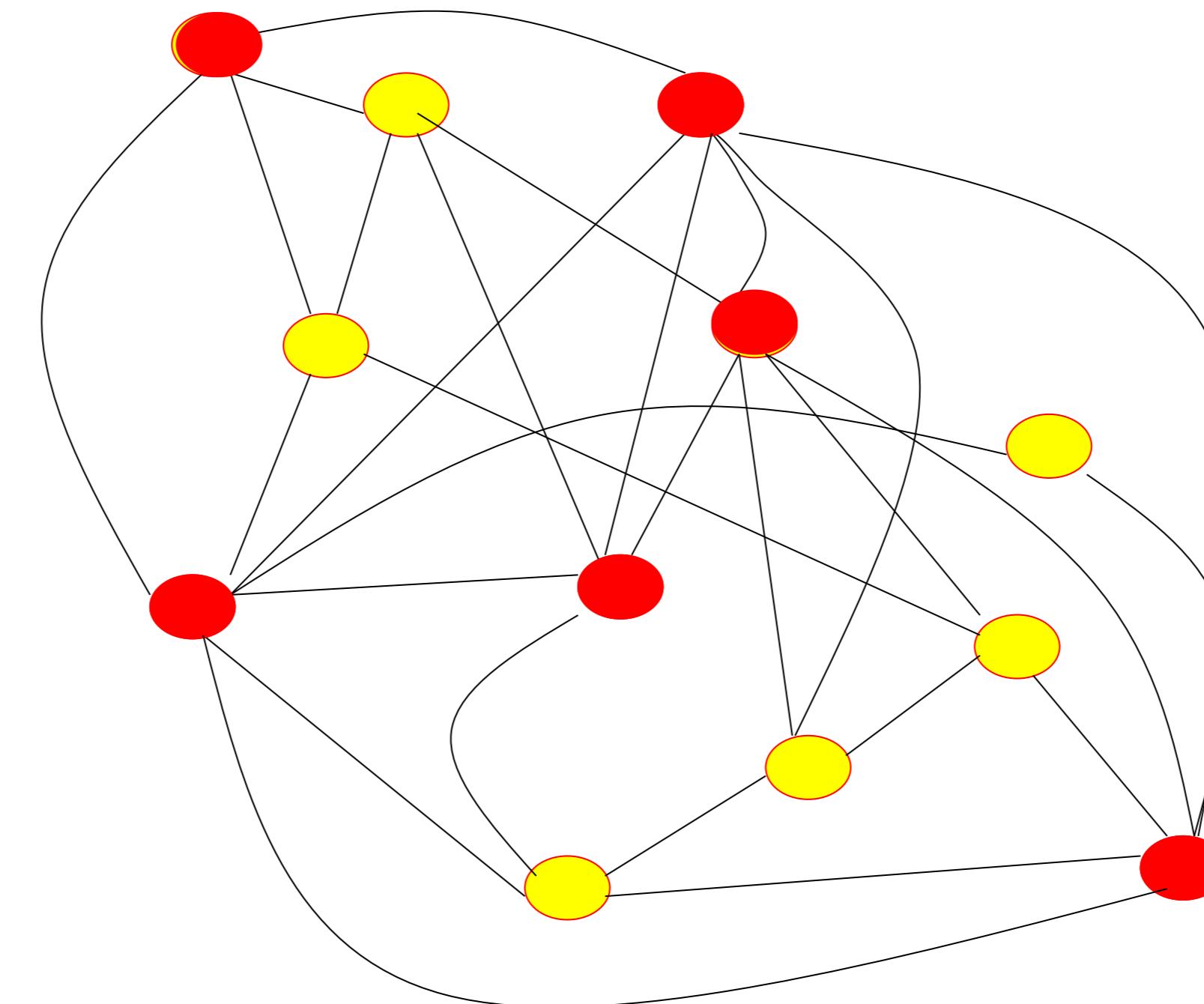
Hebbian Learning

When an axon of cell **j** repeatedly or persistently takes part in firing cell **i**, then **j**'s efficiency as one of the cells firing **i** is increased

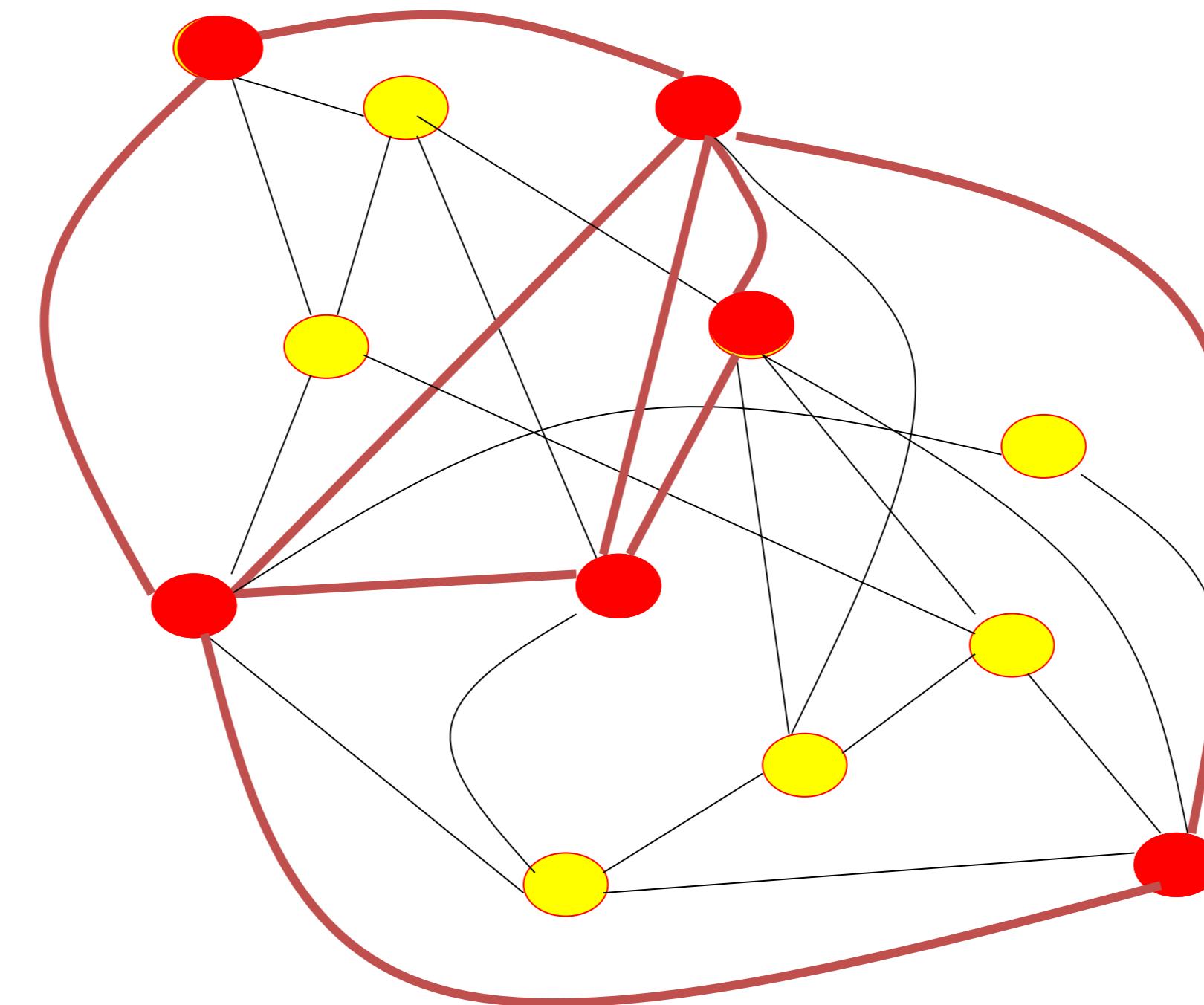
Hebb, 1949

- local rule
- simultaneously active (correlations)

5. Hebbian Learning of Associations



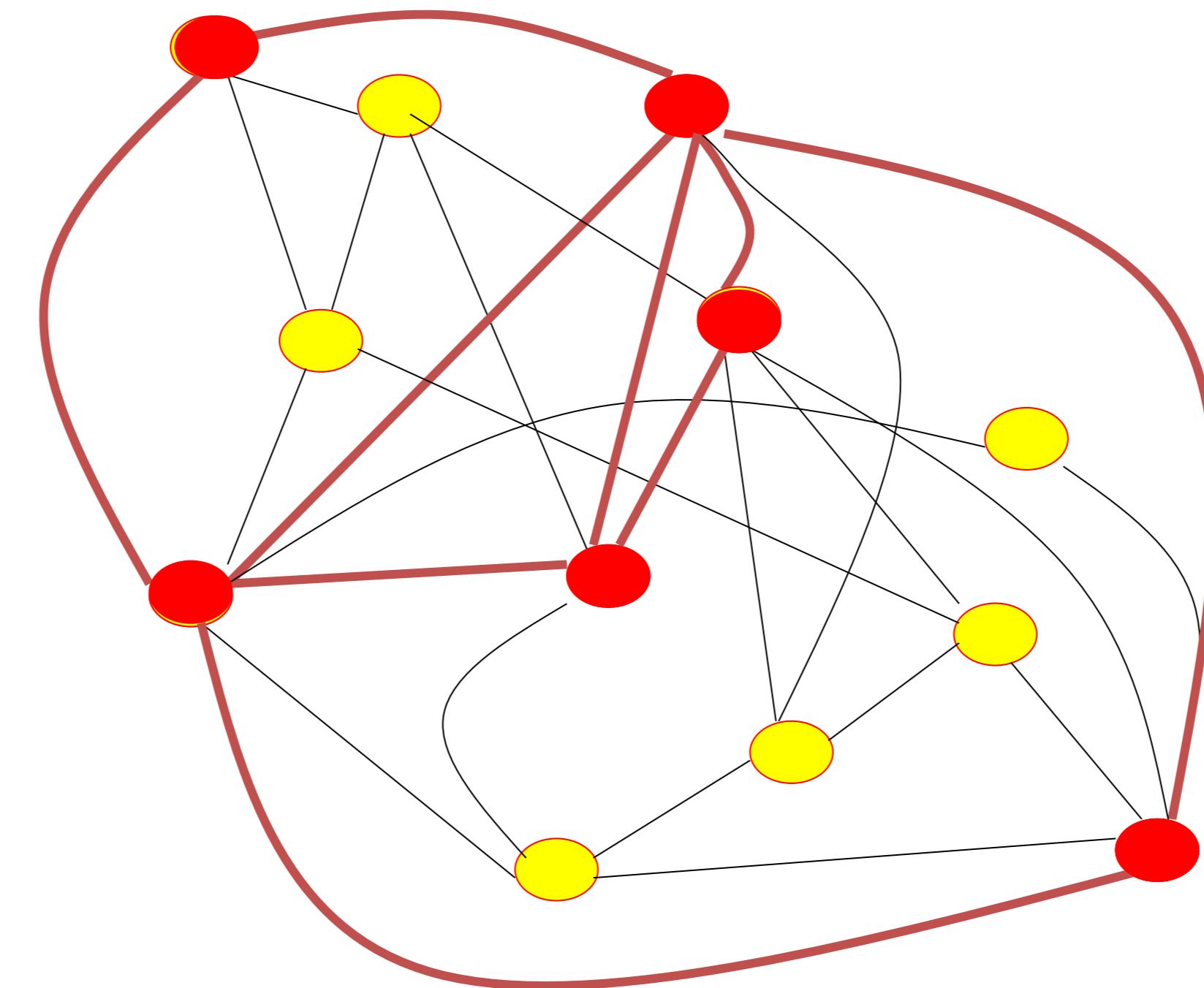
5. Hebbian Learning of Associations



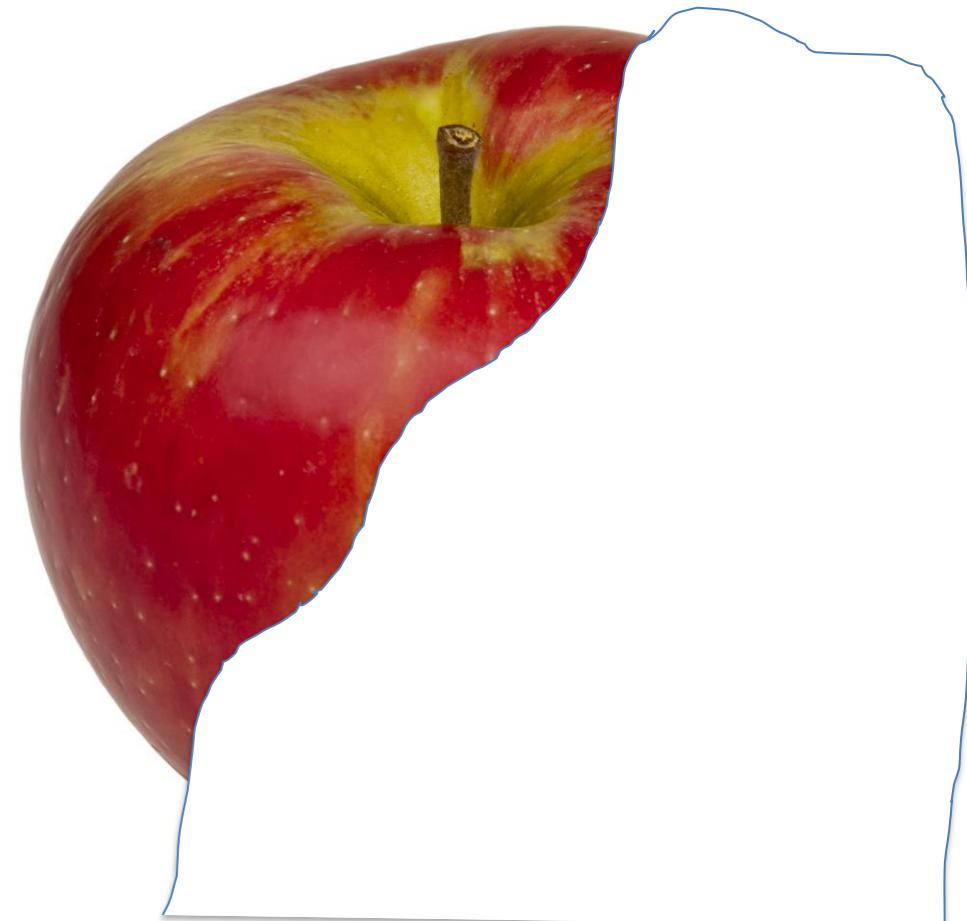
item memorized

5. Hebbian Learning: Associative Recall

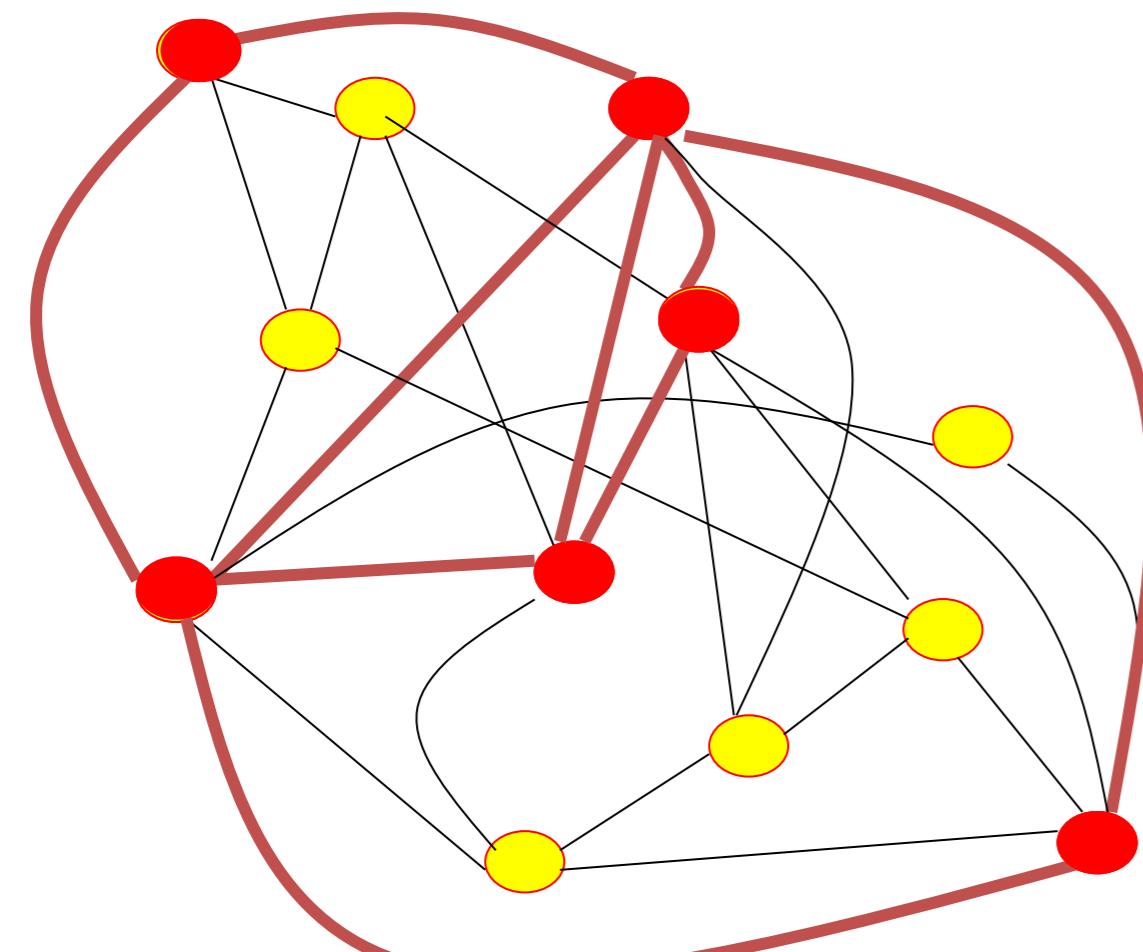
**Recall:
Partial info**



item recalled

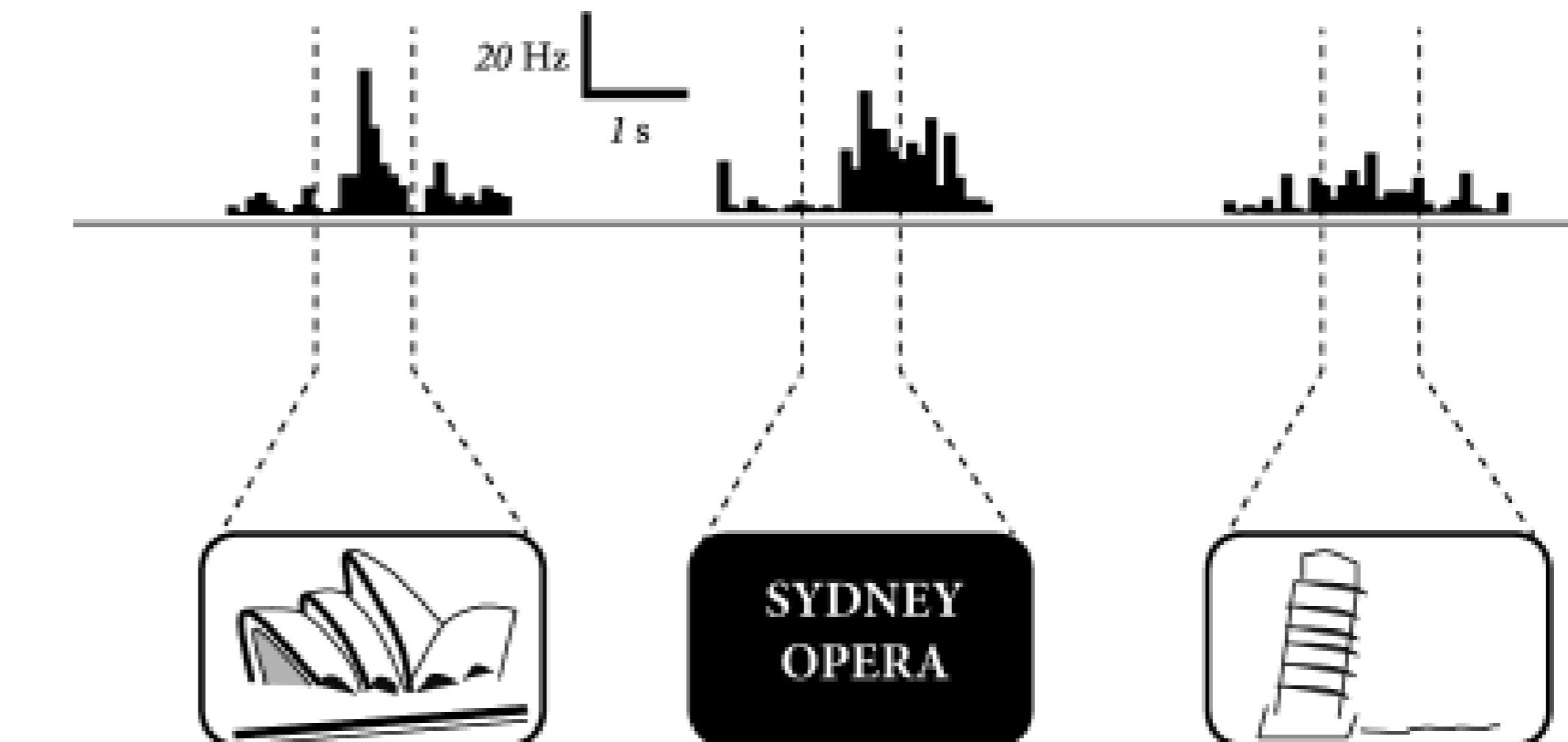


5. Learned concepts



assembly of neurons

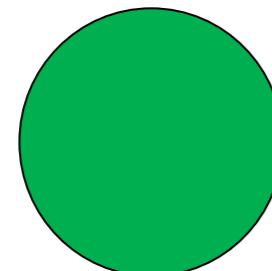
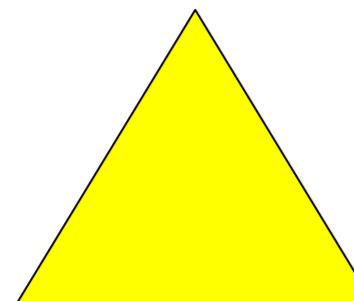
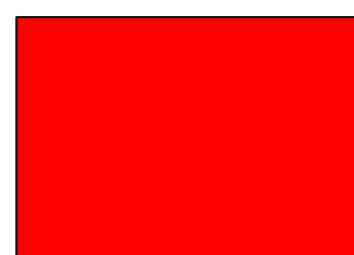
Activity of neurons in human brain



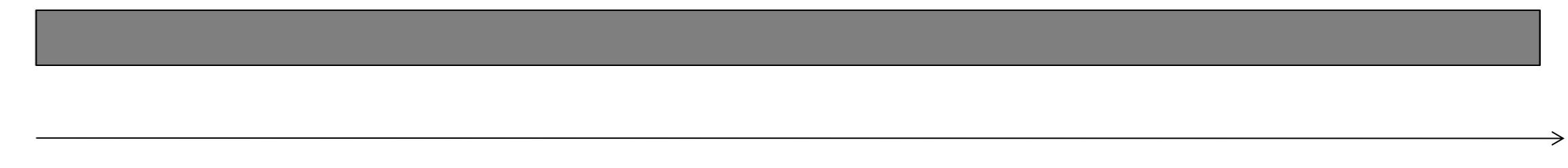
*Image: Neuronal Dynamics,
Gerstner et al.,
Cambridge Univ. Press (2014),
Adapted from Quiroga et al. (2005),
Nature 435:1102-1107*

5. Associative Recall

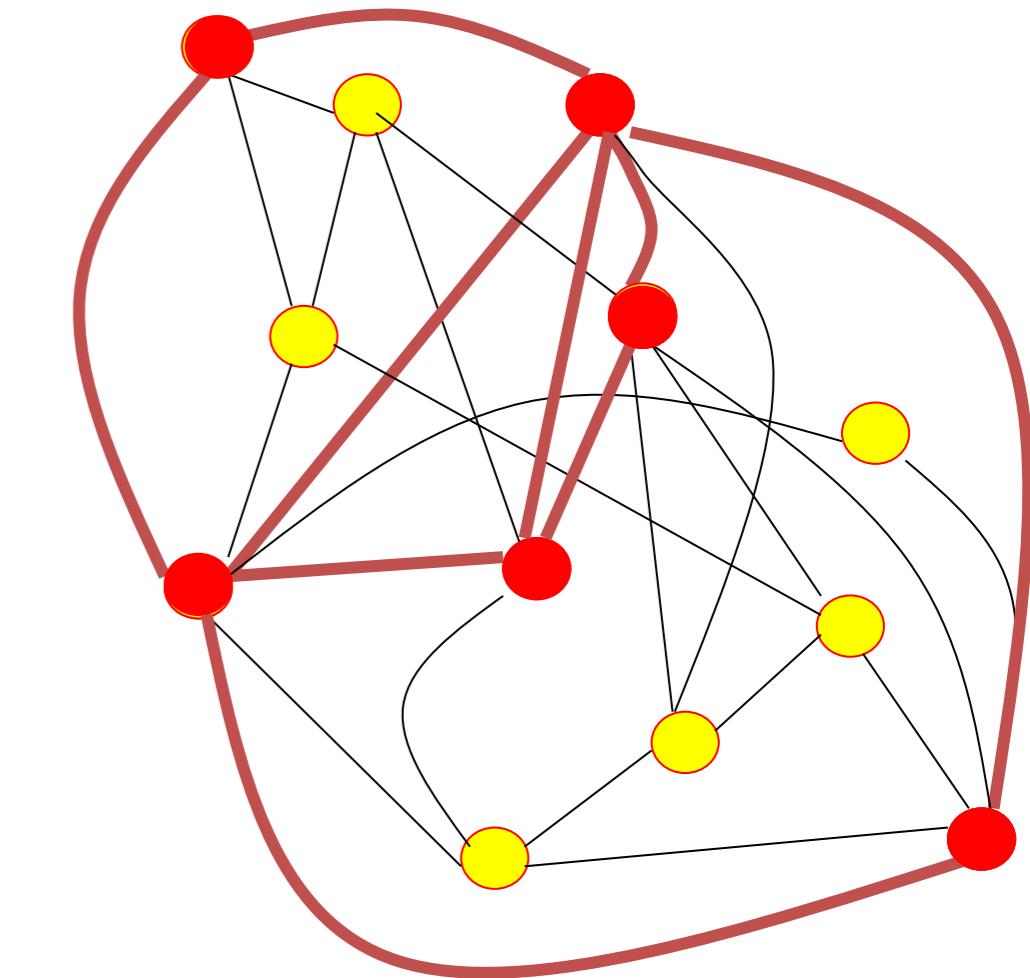
Tell me the ~~color~~ shape
for the following list of 5 items:
for the following list of 5 items:



be as fast as possible:



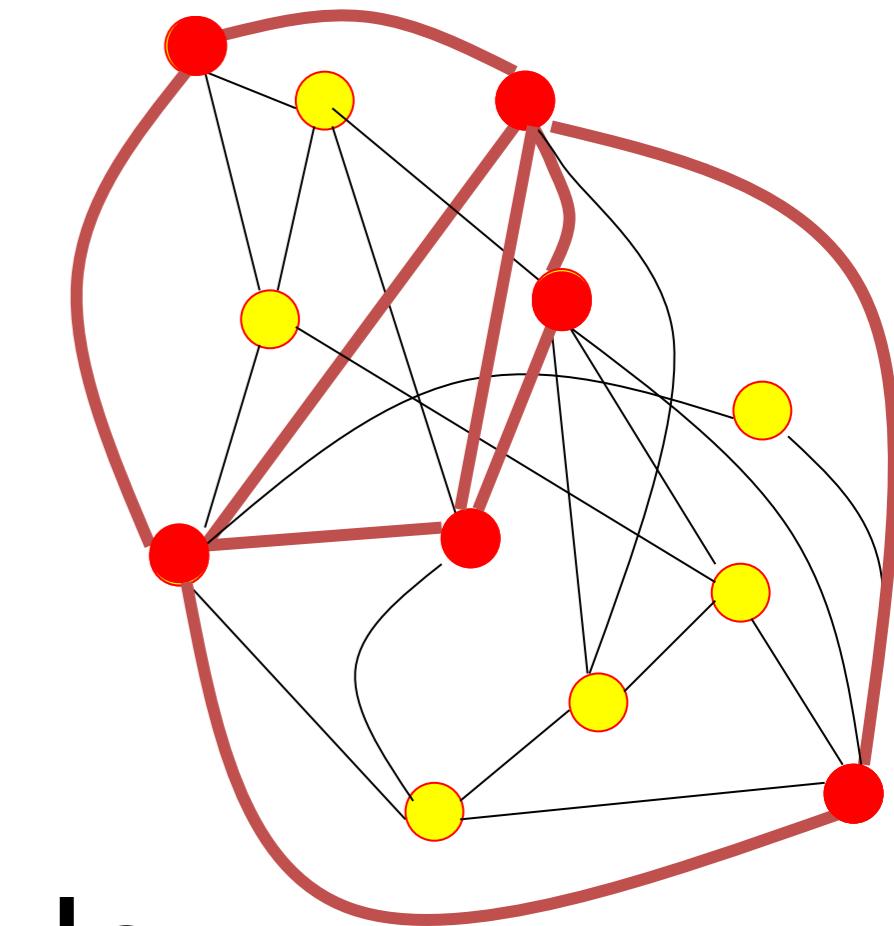
time



5. Associative Recall

Tell me the **color**
for the following list of 5 items:

be as fast as possible:



Stroop effect: time
*Slow response: hard to work
Against natural associations*

5. Associative Recall

Hierarchical organization of
Associative memory

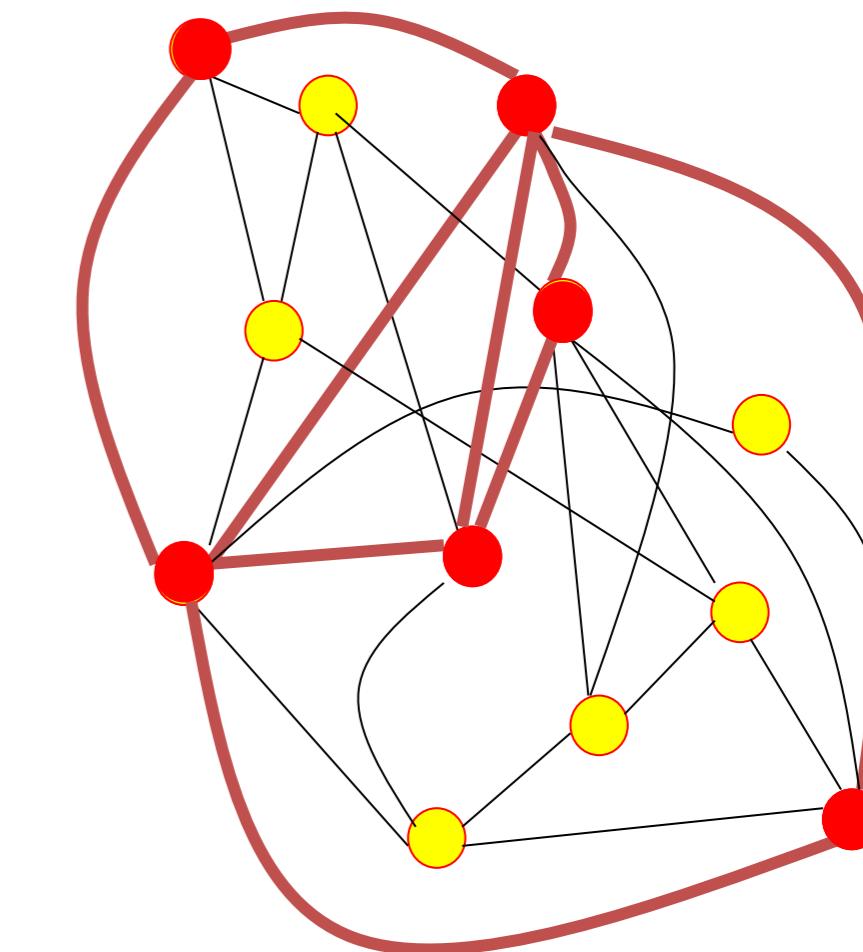
animals

birds

fish

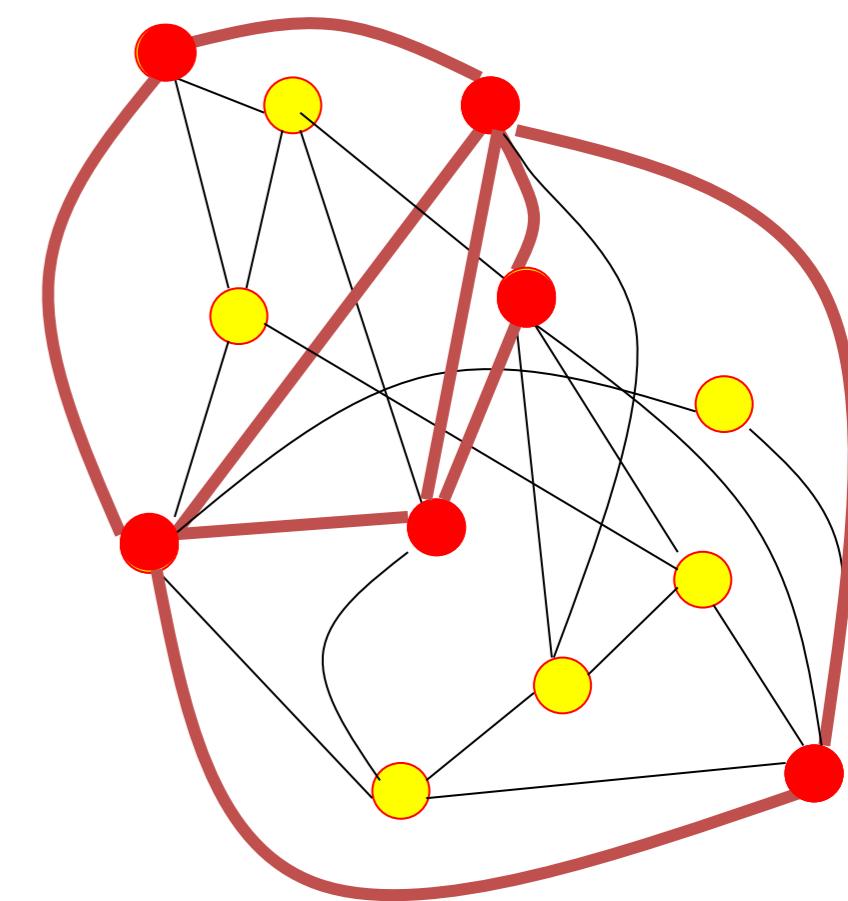
*Name as fast as possible
an example of a bird
swan (or goose or raven or ...)*

Write down first letter: s for swan or r for raven ...



5. Associative Recall

*name as fast as possible
an example of a*



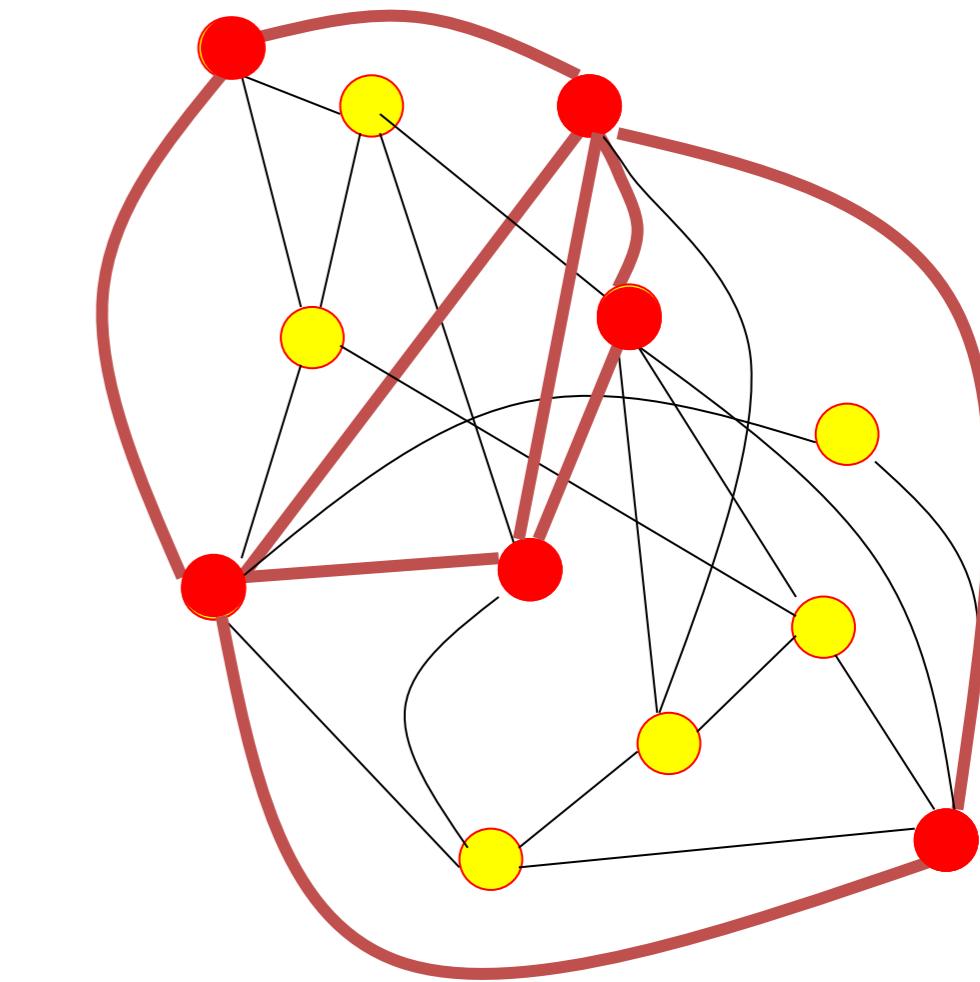
5. Associative Recall

Associative memory

animals

birds

fish



- Associations can be very strong!
- It is hard to go against natural associations!
- Different aspects of a 'concept' are bound together!
- Associations have been learned!

Quiz 3: Associations

The Stroop effect implies that you are faster, if the color does not match the meaning of the color-word

- Yes
- No

Hebbian learning strengthens links between neurons that

- are simultaneously active
- belong to the same 'concept' (assembly)

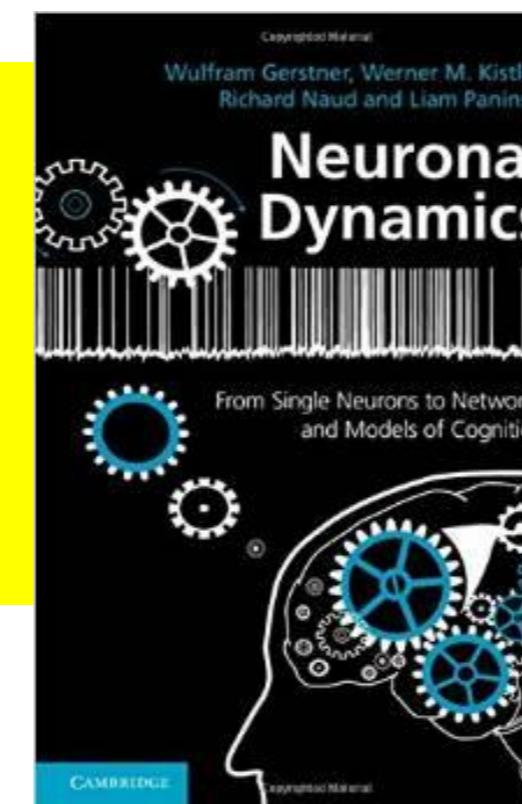
Computational Neuroscience: Neuronal Dynamics of Cognition

A: ASSOCIATIVE MEMORY in a Network of Neurons

Wulfram Gerstner
EPFL, Lausanne, Switzerland

Reading for this week:
NEURONAL DYNAMICS
- Ch. 17.1 - 17.2.4

Cambridge Univ. Press



1 Introduction

- networks of neurons
- systems for computing
- associative memory

2 Classification by similarity

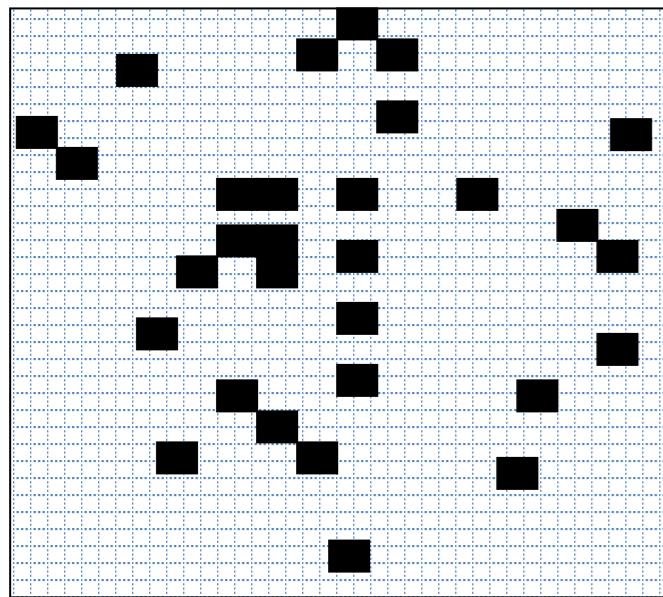
3 Detour: Magnetic Materials

4 Hopfield Model

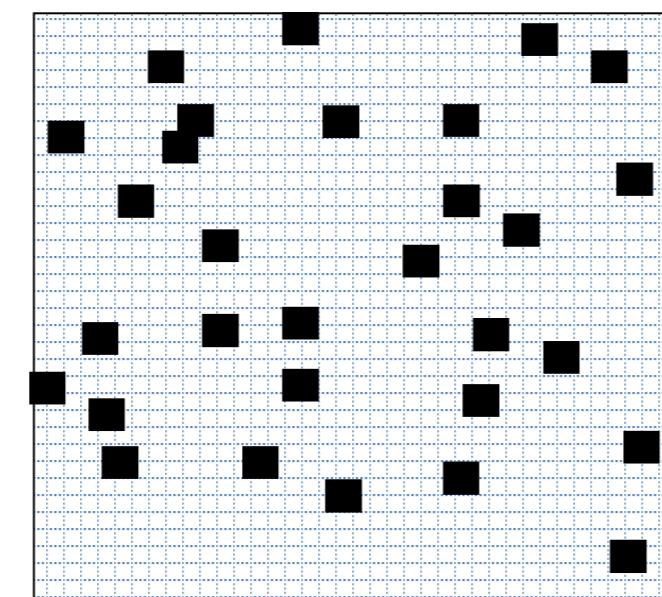
5 Learning of Associations

6 Storage Capacity

6. learning of several prototypes



Prototype
 \vec{p}^1



Prototype
 \vec{p}^2

interactions

$$(1) \quad w_{ij} = \frac{1}{N} \sum_{\mu} p_i^{\mu} p_j^{\mu}$$

↗
Sum over all
prototypes

Question: How many prototypes can be stored?

dynamics

$$S_i(t+1) = \text{sgn} \left[\sum_j w_{ij} S_j(t) \right]$$

↗
all interactions with i

6. Storage capacity: How many prototypes can be stored?

-Assume we start directly in one pattern (say pattern 7)

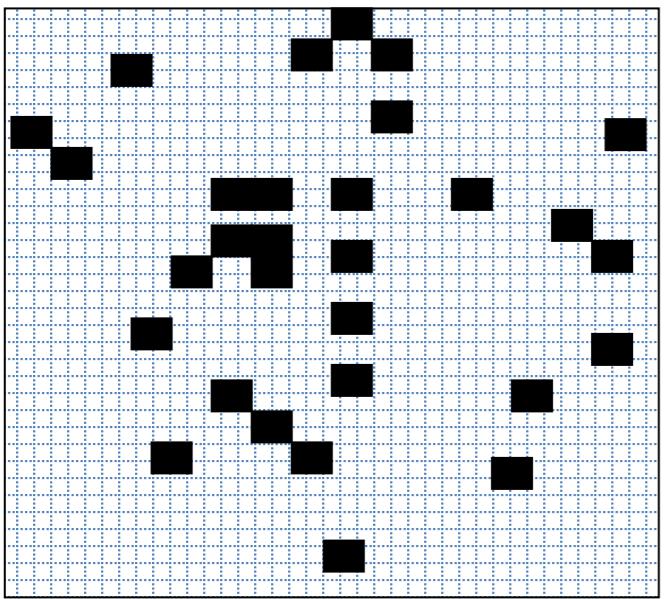
-Pattern must stay

$$S_i(t+1) = \text{sgn} \left[\sum_j w_{ij} S_j(t) \right]$$

Interactions (1)

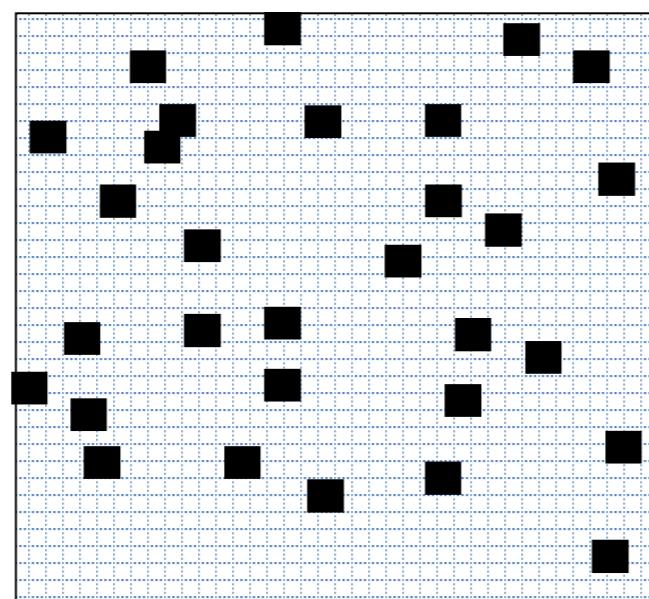
$$w_{ij} = \frac{1}{N} \sum_{\mu} p_i^{\mu} p_j^{\mu}$$

6. Storage capacity: How many prototypes can be stored?



Prototype

$$\vec{p}^1$$



Prototype

$$\vec{p}^2$$

Dynamics (2)

Random patterns

Interactions (1) $w_{ij} = \frac{1}{N} \sum_{\mu} p_i^{\mu} p_j^{\mu}$

$$S_i(t+1) = \text{sgn} \left[\sum_j w_{ij} S_j(t) \right]$$

Minimal condition: pattern is fixed point of dynamics

- Assume we start directly in one pattern (say pattern \mathcal{V})
- Pattern must stay

Attention: Retrieval requires more (pattern completion)

Q: How many prototypes can be stored?

A: If too many prototypes, errors (wrong pixels) show up.
The number of prototypes M that can be stored
is proportional to number of neurons N ;
memory load = M/N

$$S_i(t+1) = p_i^\nu \operatorname{sgn}[1 + \frac{1}{N} \sum_{\mu=1, \mu \neq \nu}^M \sum_{j=1}^N p_i^\mu p_i^\nu p_j^\mu p_j^\nu]$$
$$= p_i^\nu \operatorname{sgn}[1 - a_i^\nu]$$

Error-free if

$$S_i(t+1) = p_i^\nu$$

Gaussian

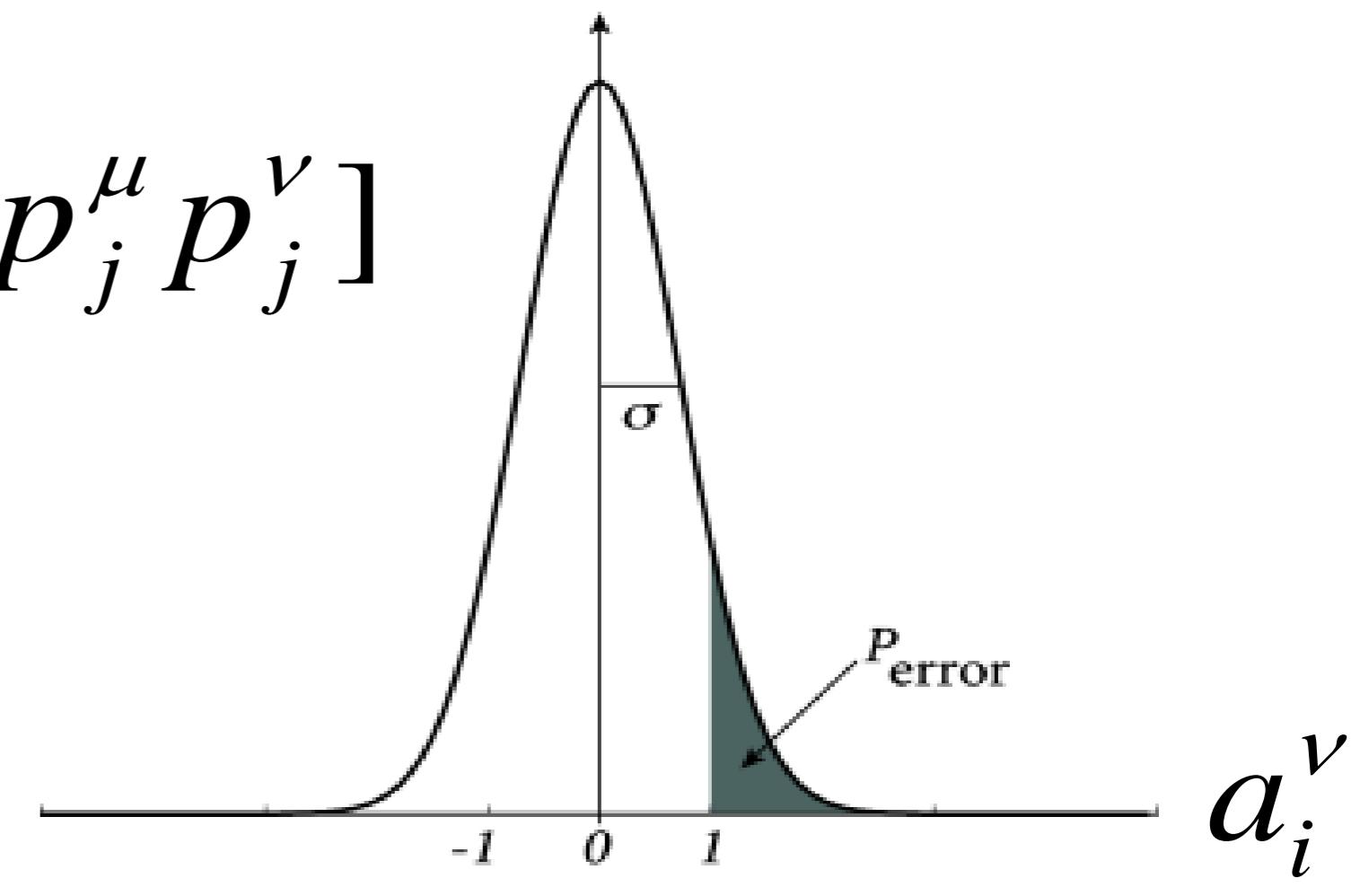


Image: *Neuronal Dynamics*,
Gerstner et al.,
Cambridge Univ. Press (2014),

6. Storage capacity: How many prototypes can be stored?

Random walk with steps

Standard deviation

$$S_i(t+1) = p_i^\nu \operatorname{sgn}[1 + \frac{1}{N} \sum_{\mu=1, \mu \neq \nu}^M \sum_{j=1}^N p_i^\mu p_i^\nu p_j^\mu p_j^\nu]$$

$$= p_i^\nu \operatorname{sgn}[1 - a_i^\nu]$$

Error-free if

$$S_i(t+1) = p_i^\nu$$

↓
Gaussian

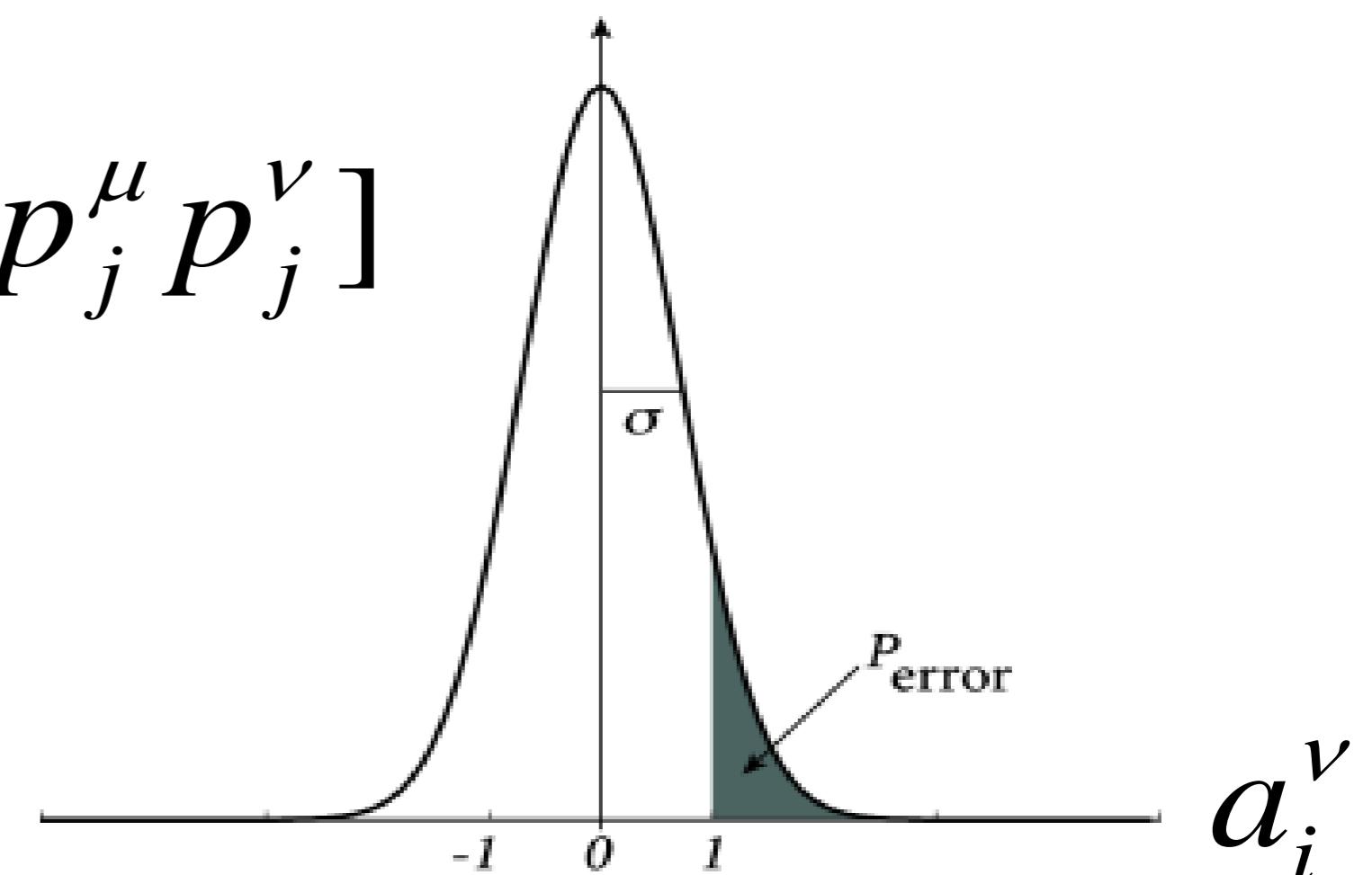
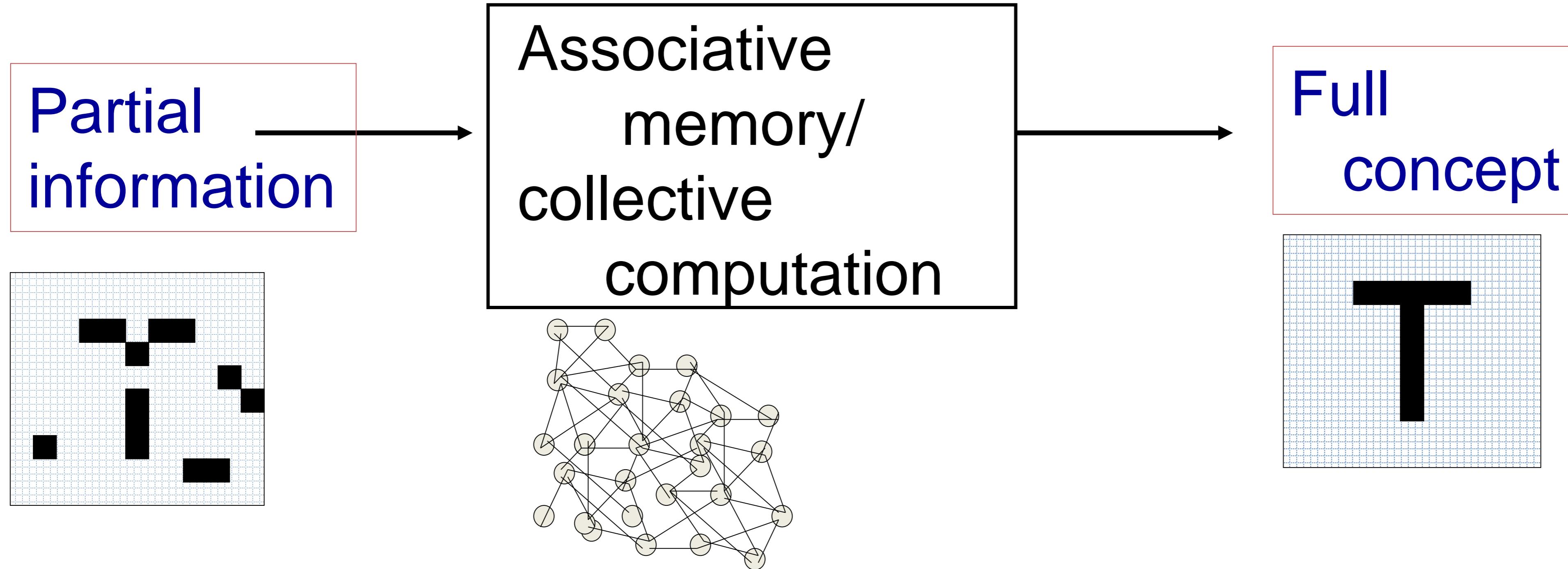


Image: *Neuronal Dynamics*,
Gerstner et al.,
Cambridge Univ. Press (2014),

This week: Understand Associative Memory



Brain-style computation

- Memory stored in connections
- Many memories can be stored in same network
- Retrieval of memories without centralized controller
- Interactions of neurons makes network converge to most similar pattern

References: Associative Memory Models

D. J. Willshaw, O. P. Bunemann and H. C. Longuet-Higgins (1969)
Non-holographic associative memory. *Nature* 222, pp. 960–962

J. A. Anderson (1972)
A simple neural network generating an interactive memory.
Math. Biosc. 14, pp. 197–220

T. Kohonen (1972)
Correlation matrix memories. *IEEE trans. comp.* C-21,
pp. 353–359.

W. A. Little (1974)
The existence of persistent states in the brain.
Math. Biosc. 19, pp. 101–120.

J.J. Hopfield (1982) Neural networks and physical
systems with emergent collective computational abilities.
Proc. Natl. Acad. Sci. USA 79, pp. 2554–2558

The end

Documentation:

<http://neuronaldynamics.epfl.ch/>

Online html version available

Reading for this week:
NEURONAL DYNAMICS
- Ch. 17.1 - 17.2.4

Cambridge Univ. Press

