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Computational Neuroscience: Neuronal Dynamics
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Low-dimensional dynamics: - experimental observations

What are Neural Manifolds? 2. Two views of Neural Activity

- computing (Hopfield model)
- neural circuits (field model)

3. Low-dimensional dynamics

— - formalism and assumption
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Neural Manifold: The activity does not fill the N-dimensional space

Neural manifold

From tuning curves to the neural manifold a2

stimulus

Tuning curves map a stimulus to a vector of population activity

Tuning curves @(stimulus, )
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Introduction: low-dimensional dynamics

How can we think about neural activity?
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Introduction: low-dimensional dynamics

Brain computation = dynamics in manifold

— time
« observation: in many brain areas, the high-dimensional activity ] . ( t)
lies in a low-dimensional “manifold” < &
o ¢
| + =
ex: HD cells & grid cells, prefrontal cortex, motor control = ’l’j(t)
5 ] N
e
N
Ex: HD system (mouse) Ex: motor cortex (monkey)

| "
‘netiral manifold”
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Image: Pezon et al. 2024



Introduction: low-dimensional dynamics

computations are described by collective dynamics in the manifold

Ex: motor cortex (monkey)

ax_is 2

collective dynamics
BN N 7,

Flow described by small number of variables «;, ... «o,

Low-dimensional dynamics even during sleep/absence of input!

Chaudhuri et al, 2019 Image: Pezon et al. 2024



Quiz: low-dimensional dynamics

| ] If an experimentalist records simultaneously from 287 neurons, then the
S momentary ‘rate vector’ of observed activity represents the network state
as a point in 287 dimensions.

[ ] Different time points of the rate vector do not 'fill’ the

287-dimensional space. Rather they live on a low-dimensional manifold.

| ] A black-and-white camera of 1024 pixels mounted stably on a robot
moving in an indoor environment of A
2mX2m, generates measurement
values that live on a 3-dimensional
manifold in 1024-dimensional space
view manifold: Arleo&Gerstner (2000)
https://doi.org/10.1007/s004220000171

Even during dreaming, the neural activity lives on a low-dim. manifold
waking and sleep: Chaudhuri et al, 2019, https://doi.org/10.1038/s41593-019-0460-x




Neural Maniiolds and low-dimensional dynamics

List of video lectures on Computational Neuroscience, organized by topics:
https://Icnwww.epfl.ch/gerstner/NeuronalDynamics-MOQOCall.html

YouTube Channel:

https://www.youtube.com/@gerstnerlab
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Introduction: How can we understand neuronal activity?

How can we understand principles of neuronal activity?
D. Barack and J. Krakauer, 2021

Two different perspectives C. Langdon and T. Engel, 2023

Low-dimensional dynamlcs
...... golnt/attractor dynamics:

9'19@2@%' - computation as flow!

- Receptive fields and wiring/circults:
assified according to

-> function from wiring/
circuit structure!




Review: Hopfield Model of Associative Memory

_ _ This rule
mteractllons s very good
wW; = > p{p§ for random
2 patterns
Sum Ove/r all It does not work well
prototypes for correlated patters
Prototype .
—. dynamics
1 (random pattern) f—\
P S;(t+1) =sgn[> WS, (t)]
Random patterns, fully connected: afli}teracﬂons .

Hopfield model

J. Hopfield, 1982



Review: Hopfield Model of Associative Memory

S;(t+1) =sgn[> w;S ()]
i |

welights: Wij:%Z piﬂ pf
7

S, (t+1) =sgn[>" p/m*(t)]

( N

overlap wgpy _ L e
~ (similarity) m (1) N Z, P; Sj\(t) /




Review Hopfield model: memory retrieval

PryS; (t+1)=+1|h}=9lh]l=0 :Z WS, (t): = g(z pi” mt(t))
U

~

~

overlap  u _ 1 DS (t
~ (similarity) (L) N 2.5 Pi8i(Y

If we start close to pattern v, 1-dimensional dynamics
mY(t + 1) = F(m" (1)) (e 4 1)

m’ (t)



Review: Hopfield model: attractor dynamics

Overlap (definition)
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Attractor Dynamics: https://www.youtube.com/watch?v=9LjFgc2JRk4



Review: Stochastic Hopfield model: memory retrieval

- Memory retrieval possible with stochastic dynamics
- Fixed point at value with large overlap (e.qg., 0.95)
- Random patterns: nearly orthogonal

- Pattern retrieval yields low-dimensional dynamics,
even If ‘state’=N variables (i.e. configuration of all neurons)

Question: are overlap variables m¥V ‘somehow related

to the low-dimensional variables « In experiments?
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Introduction: How can we understand neuronal activity?

How can we understand principles of neuronal activity?
D. Barack and J. Krakauer, 2021

Two different perspectives C. Langdon and T. Engel, 2023

- Hopfield modél; low dimensional dynamic
(e.q., flow towardsTixeapotrtiattractor dynamics)

- Fleld models for perception:
each neuron has a receptive field
Tl Hled according to
functional similarity)
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/ cortex
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Neighboring cells in visual cortex

Hubel and Wiesel 1968;

- have si_milar center _of rece_p_)tive fleld Bonhoeffer&Grinvald.
-> spatial map of visual field 1991

- have similar preferred orientation: Bressloff&Cowan, 2002;
- cortical orientation map Kaschube et al. 2010

2 connectivity stronger between
ells with similar orientation



neighboring neurons: similar orientation and similar RF center
along cortical surface: orientation AND RF center change  pinwheel
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Image: Gerstner et al.
Neuronal Dynamics (2014)

Bonhoeffer&Grinvald, 1991
Bressloff&Cowan, 2002:
Kaschube et al. 2010




neighboring neurons: similar orientation and similar RF center
along cortical surface: orientation AND RF center change

pinwheel
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‘ C ey Bonhoeffer&Grinvald, 1991;
patchy connectivity Bressloff&Cowan, 2002:

Kaschube et al. 2010



Review: functional similarity of neurons

- : . _ (ZsI
functional orientation of rec. field: z;
L : : Z2
characterization | horizontal placement of rec. field: z: /&-—

f ' |
of neuron vertical placement of rec. field: z; 7 ,
- Ji

rate (response to a stimulus) functional similarity =
cell 7 neighborhood In abstract space

nearby cells (along abstract axis)
cell 5@ W respond similarly

|

0 Z
a stimulus that maximally
excites cell 7

. abstract axis: - a feature of receptive field



Review: functional similarity of neurons

functional similarity =
neighborhood In abstract space

Example: head direction system /

@ s ::1 5 / - variable z:
ke otmewens g position on ring

o ® ® . . . .
- % o - by similarity
fiingrate 9
A J
neighbouring neurons
| | = similar responses
I | o
9 9 head direction a



Review: multipie populations - continuum

A, (t) A (t) discrete
n m
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Continuum models/Field Models https://www.youtube.com/watch?v=f2tadlvuhcg



Review: Field equation (continuum model)
Wilson and Cowan, 1973

Membrane potential

i%h(z; t) = —h(z,t) + RI®**(z,t) + | w(z,z")F(h(z’,t))dz’

- fleld equation = population activity model in continuum
-~ position z = abstract variable (functional similarity)

coupling weight depends on functional similarity:
- neurons with ‘similar function’ strongly connected

- population activity (rate) grcos

0.6 |
o3 |

A(Z',t) = F(h(z',t)




Summary/review: Field equation

A population rate model in continuous space Is also called a field equation.

05 h(z,0) = ~h(z,0) + RI(2,0) + [ w(z, 2)F(h(z', 0)dZ

Here the variable z can be interpretgelas an abstract quantity, such as the
orientiation of the preferred visual stimaulus: Functional similarity

A
\

Inthe general model v ) could be an arbitres action; but in most field equations
aken as a distance-dependent functlon w(z z) Connectivity Is stronger
netween cells with similar ‘functional role’.

A classic choice Is the Mexican-Hat function with long-range inhibition and short-range
excitation. Note that in real neural networks, inhibition involves a separate class of
neurons.



Summary: How can we interpret neural activity?

How can we understand principles of neuronal activity?
D. Barack and J. Krakauer, 2021

Two different perspectives C. Langdon and T. Engel, 2023

- low dimensional dynamics -> Hopfield model
s U flowtewardsfixed point/attractor dynamics)

- continuum model

neurons and functional similarity
Tetionat-simitarty-reflected in wiring,
wiring causes dynamics)

-2 Relation between the two views? Relation to known models?



Summary:
There are two different perspectives on how to interpret neuronal activity:

- The classic view since Hubel and Wiesel was to start with receptive fields. We can
then define functional similarity between neurons as neurons with similar receptive
fields. On the theory side, this view has led to field models where neurons are
organized along one or several abstract axis. Functionally similar neurons have
typically stronger (more positive) connections to each other than to functionally
different neurons. Hence wiring reflects functional similarity.

- The modern view Is that neurons perform computational and that these computations
can be described by a flow or dynamics in low-dimensional manifolds: Even
though modern experiment probe the activity of hundreds of neurons simultaneously,
we do not need 100 variables to describe the activity but only a few. On the theory this
IS similar to mean-field models or the Hopfield model. In the Hopfield model, we have
encountered effective variables (‘overlap’) that describe the collective dynamics.

The question of the following videos Is how the two views are connected
to each other and to standard models of computational neuroscience



Neural Maniiolds and low-dimensional dynamics

List of video lectures on Computational Neuroscience, organized by topics:
https://lcnwww.epfl.ch/gerstner/NeuronalDynamics-MOOCall.html

YouTube Channel:
https://www.youtube.com/@gerstnerlab
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Low-dimensional dynamics:

- experimental observations

Low-Rank Recurrent Neural 2. Two views of Neural Activity

Networks - computing (Hopfield model)
- neural circuits (field model)

3. Low-rank recurrent networks

Neuronal
¢ Dynamics

- formalism of low-rank networks
- dynamics

Wulfram Gerstner
EPFL, Lausanne, Switzerland

4. Examples of low-dim dynamics
Cambridge Univ. Press - context-dependent decision making



Recurrent network of N neurons.
Membrane potential of neuron i:

d 1
J

Firing rate:

o)

0.6 |
0.4 |
0.2 |

0t——




Three assumptions

Assumption 1: neurons are functionally characterized by features

Z3,
functional orientation of rec. field: z -

L : : O
characterization | horizontal placement of rec. field: z: /

o neuror vertical placement of rec. field: z; o253

®

Each abstract axis: a feature of receptive field

functional similarity = neighborhood in abstract space



Three assumptions

Assumption 2: Similar neurons have similar connectivity:

functionally similar neurons are strongly connected
Z3,

functional - orientation of rec. field: z P,
characterization | horizontal placement of rec. field: z: /{‘j
®).

o neuror vertical placement of rec. field: z: =~ e%¢

()
Z1 )

Each abstract axis: a feature of receptive field

Example of ‘patchy connectivity’: neurons with

similar orientation are strongly connected
(even If far distance on cortical surface)




Three assumptions

Assumption 3: Connedctivity is of ‘low rank’ (outer product)

D for example: D=1
_ U - all columns of matrix W; ;
ij = zF i G - ’
are linearly dependent
3 > rank 1 (not 2!)

Example of low-rank: connectivity in Hopfield model

D
W;; = Ep;‘ P with p; =+/-1the target value
U of neuron i In pattern u



functional similarity = neighborhood in abstract space

Assumption 1:
Position of neuron i In abstract space: z;=(z; z, z3 ) (i)

Assumption 2:
Welight of connection from | to | depends on the positions z;, z;:

i
Wij = W(Zv )

Assumption 3:
Specific choice of weight from j to I:

D D
— z Fiu Gjﬂ — zfu(zi)gu(zj)
u u




Field equation in functional similarity space

d 1
—hi(t) = == hy(® +2Wl, b (hy ()

dt
Zf (i) 9u(2))

use weights: Wi;

d
© h(z,t) = —~h(z, 1 ) Zf,le)gu( 1) & (h(z;, 1))

R S N

d

—oh(z,t) = ——h(z,t) + [ dZ'p(z') EfH(Z)gu(Z’) b(h(Z, 1))
U

generalized field equation (large number of neurons)




Field equation and low-dimensional dynamics

D

d 1

—h(z,0) = ——h(z,) + [ dZp(z) ) [u(Dg,(z) $(h(Z, 1))
u

dt | | | ,

\;»
oy (t)

D
d 1
ah(z’ t) — —;h(z, t) + Eflu(z)a,u(t')\
U .
\ coefficient

D ‘basis functions’

ldea: write

D
h(z,t) = 2 fu (@)K, (t)
u

N projection onto basis f.



Field equation and low-dimensional dynamics

coefficient

d 1 )
(X) ah(z, t) = —;h(z, t) + Z:fu(z)a“(t) +1(z,t)
e

D ‘basis functions’

ldea: write

Example:

D
h(z,t) = 2 fu (@)K, (t)
u

N projection onto basis f.




Field equation and low-dimensional dynamics

|dea: write

D
h(z,t) = Z £, (D1, ()

-—>vields D coupled equatlons
d
(D) =~ K, (O + ] dzp(z)gu(z)qb(Z fo(@e, (1) )

\_Y_I

¢(h(z, 1))

-> activity of all N neurons (N>>1) Is described by D equations
IN recurrent network (without external input)



summary: low-dimensional dynamics

-What Is relation between functional similarity and manifold?
functional similarity reflected in wiring, wiring causes dynamics

- collective
dynamics
K1

¥/ functional similarities rN
determine recurrent connections

D
with weights W}, = Z f.(z)g.(z), dynamics evolves in D dim.
U

-> flow described by small number of variables «;, ... «o,




summary: low-dimensional dynamics

To generate low-dimensional dynamics in heterogeneous

networks of N neurons, three ingredients are important:

(1) neurons characterized by abstract positions z
representing functional similarity

(1) weight matrix depends on z and z’

(111) weight matrix Is of low rank: outer-product with D terms

- field model for large network (N to infinity)

—> collective dynamics evolves in D dimensions
- external Input can also be included In formalism




References:
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List of video lectures on Computational Neuroscience, organized by topics:
https://Icnwww.epfl.ch/gerstner/NeuronalDynamics-MOOCall.html

YouTube Channel:
https://www.youtube.com/@gerstneriab

Textbook (online):
https://neuronaldynamics.epfl.ch/



https://lcnwww.epfl.ch/gerstner/NeuronalDynamics-MOOCall.html
https://www.youtube.com/@gerstnerlab
https://neuronaldynamics.epfl.ch/

Part B:
The following slides correspond to the video here:

https://youtu.be/eO4F-j0Z6RA
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From Spiking Neurons to Rate Units:

Emergent Rate-based Dynamics in Spiking Neural Networks

Valentin Schmutz, Johanni Brea,
Wutfram Gerstner 1. The problem of Firing Rates
EPFL, Lausanne, Switzerland . .
- textbook introduction
2. Firing rates without duplicates

V. Schmutz, J. Brea, W. Gerstner (2025) Emergent rate-based
dynamics in duplicate-free populations of spiking neurons
Physical Review Letters, 134:018401
DOI110.1103/PhysRevLett.134.018401



https://link.aps.org/doi/10.1103/PhysRevLett.134.018401

Whatis the Firing Rate? 1. spike count (temporal averagel
trial 1

v

spikes In response to stimulus

S

rate as a (hormalized) spike count:

n>P
T

V(t) =

single neuron/single trial:

—
——

temporal average

»
L

T=1s

2
)
)

\ O
Stim




What is the firing rate? 2. popuiation activity (spatial average)

population of neurons St
with similar properties R neuron 1

neuron 2

single trial/multiple neurons:
average over population of
similar neurons (e.g., layer 5b)




, |rate network:
‘) |populations talk to each other

population

. t:t + At
activity (rate) | A, (t) = n(t; ¢+ At)

NAt

population of
similar neurons rate unit n




Rate codes: population activity

population activity - rate defined by population average

At

| | |

| | |
| |
|

| | |
populations A . | l |
A (t), A, (t),... postsynaptic

".; ncuron k |

‘ , population - n(t;t + At)
natural readout activity (rate) An(t) = ——F 3

but are the presynaptic pools really homogenous
Textbooks: e.q. popu_lations of duplicate neurons/similar neurons?
- weighted average over very heterogeneous group!




Definitions of Rate codes: summary

Two averaging methods
- single trial, average over time

| \>© too slow
single neuron for animal!!!
- single trial, average over population
‘natural’, but do we have enough
duplicate/similar neurons?

Textbooks: e.g. - Neuronal Dynamics, Gerstner et al., (Cambridge Univ. Press, 2014)
- Theoretical Neuroscience, Dayan and Abbott (MIT Press, 2001)

many neurons




Is a rate description meaningful in spiking neurons, If
- temporal averaging Is Impossible because sighals are fast

- there are no duplicate neurons (no similar neurons)

?

| ] Intuitively plausible

[ | Intuitively not plausible

[ ] may be, but If yes, then under
very strict conditions




nm
U
r

From Spiking Neurons to Rate Units

Emergent Rate-based Dynamics in Spiking Neural Networks:

Valentin Schmutz, Johanni Brea,
Wulfram Gerstner

EPFL, Lausanne, Switzerland

1. The problem of Firing Rates
- textbook introduction

| 2. Firing rates without duplicates

V. Schmutz, J. Brea, W. Gerstner (2025) Emergent rate-based
dynamics in duplicate-free populations of spiking neurons
Physical Review Letters, 134:018401
DOI110.1103/PhysRevLett.134.018401



https://link.aps.org/doi/10.1103/PhysRevLett.134.018401

Review: functional similarity of neurons

functional similarity =
neighborhood in abstract space

Example: head direction system /

Qf/‘ e Jd .
S T T variable z:
N = ok — T " -
efen et sortnewonst position on ring

a
.
a

B
.
-
-
T m

-----

firing rate

® .
-‘ 9} (" y
ring model
neighbouring neurons
= slmilar responses
9}5

A
B head direction

J

Functionally similar neurons do not always sit next to each other in cortex.




Correlations between two neurons (N = 10° neurons total )

(a) ring model -ring model with Poisson neurons
— Simulation -stimulation at random location

— Theory

Density
o

Horizontal axis:
—1 0 1 :
C I amount of correlation between 2 neurons

high correlation,
caused by pairs of neighboring neurons

Ring model: many pairs of neurons are strongly correlated.

- “duplicate neurons”: identical or strongly correlated
-> duplicate neurons respond ‘nearly the same’




Correlations between two neurons: low-rank weight matrix

(a) rilng model
4
N = 10° — Simulation
3 = Theory

Density
o

®)  low rank model P =0.0001N
: 1 F .
N = 10° — Simulation P :1003 \
= Theory : o
) 3 1 Mio — 10
neurons 0T
2 r _1[}5.5

—10

1 F | | J
D|_ I |
—1 () Il

P
1
— i : .
Wij = szi S fj‘.‘ are Gaussian distributed
u

5.25
=

P

Neurons become uncorrelated for P » c: N >00: — >0

e.g. P =N/3

N

V. Schmutz, J. Brea, W. Gerstner (2025) Emergent rate-based dynamics in

9 n O d U p I | Ca.te ﬂ eU rO n S duplicate-free populations of spiking neurons

Physical Review Letters, 134:018401



15t Important finding:

For low-rank weights
Proof:

P
_1 TP Concentration of Measure
Wij = S; S
N ]
u

I

¢4 are Gaussian distributed .
neurons become uncorrelated for P — co; N — oo; =0

- no duplicate neurons
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With low-rank weights and P = N1/3

we can exclude duplicate neurons: Is rate coding possible?



Recurrent network of N neurons. Recurrent network of N neurons.

Membrane potential of neuron i: | Membrane potential of neuron i:

d
—oxi(t) = ——xl(t) + ZWU x,(t)) + I7¥5(¢) %hi(t) = _%hi(t) + 2wy () +IFX ()
“Spiking model”: spike causes jump

spike generated by iInhomogeneous

“rate model”

firing rate (rate variable). Poisson pr. with stochastic intensity
¢(X) 8 ¢(h) 0s |
.6; 063
0.4 | 5 U U 0.4 |
02| Vi) N2€ € 0.2 |
o ol
-2 0 2 4 6 -2 0 2 f 6

X Gau35|an



Gompare SNN and RNN for same input, same connections
P
1

external Input \ /

& N/2 neurons do not receive external input
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effect of spikes disappears for large networks,

No need to average over time or neuron duplicates!



SUmmary Rate coding with
Instantaneous time-dependent rates
IS possible In network of spiking neurons even though

not a single pair of neurons Is correlated (no duplicates)

- completely heterogeneous population
-> Nno spatial averaging

- no temporal averaging SNN =2 RNN

Rather: low-rank weight matrix

- low-dimensional network-input to each neuron
-> neural activity lives in a P-dimensional manifold
> e.g. P = N3

- P=100-dimensional activity in 1 Mio neurons

V. Schmutz, J. Brea, W. Gerstner (2025) Emergent rate-based dynamics in
duplicate-free populations of spiking neurons Phys.Rev. Lett. 134:018401



Is rate coding meaningful In spiking neurons, even If
sighals are fast (no temporal averaging possible)
there are no duplicate neurons

YES!!! .', If ‘low-rank’ connectwily

NXN matrix

25“ £ Srank P

\ Gaussian (or binary +/-1)
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Is low-rank connectivity a strange assumption?

1) “Neurons have receptive fields and wiring patterns:
IS a low-rank model realistic AT ALL?”

Barack, D.L., Krakauer, J.W.: Two views on the cognitive brain. Nat. Rev. Neurosc. (2021)
Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nat. Rev.
Neuroscl. (2023)

Answer: All standard models of cortex are dominated
by a low-rank connectivity matrix

Pezon, L., Schmutz, V, Gerstner, W. (2024), Linking Neural Manifolds to Principles of Circuit Structure in Recurrent
Networks bioRxiv doi: https://doi.org/10.1101/2024.02.28.582565

2) "How are low-rank networks related to low-dim. dynamics?”

Answer: rank P weight matrix (outer product matrix) always
generate P-dimensional dynamics (-2 neural manifolds)

Mastrogiuseppe, F., Ostojic, S.: Linking connectivity, dynamics, and computations in low-rank recurrent neural
networks. Neuron 99(3), 609-62329 (2018)


https://doi.org/10.1101/2024.02.28.582565

Conclusions

- SNN -2 RNN without averaging!
- rather ‘loose’ conditions
- rank P can be ‘relatively large’

V. Schmutz, J. Brea, W. Gerstner (2025) Emergent rate-based
dynamics in duplicate-free populations of spiking neurons
Phys.Rev. Lett. 134:018401
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