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Introduction: What are Neural Manifolds? 



Introduction:  low-dimensional response manifold

r

r=(r1, r2, r3,… rN)

vector of firing rates

Neural Manifold: The activity does not fill the N-dimensional space



neuropixel probe

Introduction:  low-dimensional dynamics

Simultaneous recordings from hundreds of neurons:

ri(t)= sliding

estimate of 

firing rate of 

neuron i

How can we think about neural activity?     

Image: Pezon et al. 2024https://www.neuropixels.org/

low-dimensional dynamics                         



Introduction:  low-dimensional dynamics

Image: Pezon et al. 2024

Brain computation = dynamics in manifold                   



Introduction:  low-dimensional dynamics

Flow described by small number of variables 1, … D,

Low-dimensional dynamics even during sleep/absence of input!
Image: Pezon et al. 2024Chaudhuri et al, 2019



Quiz:  low-dimensional dynamics

[ ] If an experimentalist records simultaneously from 287 neurons, then the 

momentary ‘rate vector’ of observed activity represents the network state 

as a point in 287 dimensions.

[ ] Different time points of the rate vector do not ‘fill’ the 

287-dimensional space. Rather they live on a low-dimensional manifold. 

[ ] A black-and-white camera of 1024 pixels mounted stably on a robot 

moving in an indoor environment of 

2mX2m, generates measurement 

values that live on a 3-dimensional 

manifold in 1024-dimensional space

Even during dreaming, the neural activity lives on a low-dim. manifold

[x]

[x]

[x]

[x]

wheels

camera

view manifold: Arleo&Gerstner (2000)

https://doi.org/10.1007/s004220000171

waking and sleep: Chaudhuri et al, 2019, https://doi.org/10.1038/s41593-019-0460-x



Neural Manifolds and low-dimensional dynamics
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Neural Manifolds and 

Low-dimensional dynamics:

How can we interpret 

neural activity? 



- Low-dimensional dynamics:

e.g., flow towards fixed point/attractor dynamics:

→ Hopfield model

- Receptive fields and wiring/circuits: 

neurons can be classified according to

functional similarity

→ field model

Introduction: How can we understand neuronal activity?

How can we understand principles of neuronal activity?

Two different perspectives
D. Barack and J. Krakauer, 2021

C. Langdon and T. Engel, 2023

→ computation as flow!

→ function from wiring/

circuit structure!



dynamics

all  interactions with i
Random patterns, fully connected:

Hopfield model

Prototype

p1 (random pattern)






jiij ppw =

interactions

Sum over all

prototypes

This rule

is very good

for random

patterns

It does not work well

for correlated patters

Review: Hopfield Model of Associative Memory

( 1) sgn[ ( )]i ij j

j

S t w S t+ = 

J. Hopfield, 1982

1

𝑁



Review: Hopfield Model of Associative Memory






jiij ppw =

( )
1

( ) j j jm t p S t
N

 = overlap

(similarity)

( 1) sgn[ ( )]i ij j

j

S t w S t+ = 

weights:

)](sgn[)1( tmptS ii





=+
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Review Hopfield model: memory retrieval

If we start close to pattern , 1-dimensional dynamics

( )m t

0( )m t

𝑚𝜈 𝑡 + 1 = ෨𝐹(𝑚𝜈 𝑡 ) 𝑚𝜈 𝑡 + 1

( )Pr{ ( 1) 1| } [ ]i i i j ij jS t h g h g w S t + = + = =   = 𝑔(෍

𝜇

𝑝𝑖
𝜇
𝑚𝜇 𝑡 )

( )
1

( ) j j jm t p S t
N

 = overlap

(similarity)



3 1m =

17 1m =

Review: Hopfield model: attractor dynamics

3 3( 1) j j

j

m t p S+ =

Overlap (definition)

Attractor Dynamics: https://www.youtube.com/watch?v=9LjFqc2JRk4



Review: Stochastic Hopfield model: memory retrieval

- Memory retrieval possible with stochastic dynamics

- Fixed point at value with  large overlap (e.g., 0.95)

- Random patterns: nearly orthogonal

- Pattern retrieval yields low-dimensional dynamics, 

even if ‘state’=N variables (i.e. configuration of all neurons)

Question: are overlap  variables 𝑚𝜈 ‘somehow related’

to the low-dimensional variables   in experiments?
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Neural Manifolds and 

Low-dimensional dynamics:
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- Hopfield model: low dimensional dynamics

(e.g., flow towards fixed point/attractor dynamics)

- Field models for perception:

each neuron has a receptive field

(neurons can be classified according to

functional similarity)

Introduction: How can we understand neuronal activity?

How can we understand principles of neuronal activity?

Two different perspectives
D. Barack and J. Krakauer, 2021

C. Langdon and T. Engel, 2023



visual 

cortex

Neighboring cells in visual cortex
- have similar center of receptive field

→ spatial map of visual field

- have similar preferred orientation:

   → cortical orientation map

- connectivity stronger between

cells with similar orientation

Hubel and Wiesel 1968; 

Bonhoeffer&Grinvald, 

1991; 

Bressloff&Cowan, 2002; 

Kaschube et al. 2010 

Review: receptive fields and cortical   maps 



Visual cortex 

Image: Gerstner et al.

Neuronal Dynamics (2014)

Bonhoeffer&Grinvald, 1991; 

Bressloff&Cowan, 2002; 

Kaschube et al. 2010

neighboring neurons: similar orientation and similar RF center

along cortical surface: orientation AND RF center change pinwheel

Review: receptive fields and cortical   maps 



Image: Gerstner et al.

Neuronal Dynamics (2014)

Bonhoeffer&Grinvald, 1991; 

Bressloff&Cowan, 2002; 

Kaschube et al. 2010

neighboring neurons: similar orientation and similar RF center

along cortical surface: orientation AND RF center change pinwheel

Review: receptive fields and cortical   maps 

Strong connections

- between neurons of 

similar orientation

- between neurons of 

similar RF Center

‘patchy connectivity’



0

rate (response to a stimulus)

cell 7

Review:  functional similarity of neurons

abstract axis: - a feature of receptive field

nearby cells (along abstract axis)

respond similarly

z
a stimulus that maximally 

excites cell 7

z1

z2

z3

orientation of rec. field: z1

horizontal placement of rec. field: z2

vertical placement of rec. field: z3

functional

characterization

of neuron

cell 5

functional similarity =

neighborhood in abstract space

Blackboard 1



Review:  functional similarity of neurons

variable z:

position on ring

functional similarity =

neighborhood in abstract space



Review: multiple populations → continuum

0

z

discrete 

populations

continuous/

extended 

population

𝐴𝑛(𝑡) 𝐴𝑚(𝑡)

𝐴(𝑧, 𝑡) 𝐴(𝑧′, 𝑡)

z’z

Continuum models/Field Models   https://www.youtube.com/watch?v=f2tadlvuhcg



Membrane potential

Review: Field equation (continuum model) 

max

F

F

Wilson and Cowan, 1973

𝜏
𝑑

𝑑𝑡
ℎ 𝑧, 𝑡 = −ℎ 𝑧, 𝑡 + 𝑅𝐼𝑒𝑥𝑡 𝑧, 𝑡 + ∫ 𝑤 𝑧, 𝑧′ 𝐹(ℎ 𝑧′, 𝑡 )𝑑𝑧′

𝐴 𝑧′, 𝑡 = 𝐹(ℎ 𝑧′, 𝑡

- field equation = population activity model in continuum

- position z = abstract variable (functional similarity)

- coupling weight depends on functional similarity:

- neurons with ‘similar function’ strongly connected

- population activity (rate) 



Summary/review: Field equation
A population rate model in continuous space is also called a field equation.

Here the variable z can be interpreted as an abstract quantity, such as the 

orientiation of the preferred visual stimulus: Functional similarity

In the general model w(z,z’) could be an arbitrary function; but in most field equations 

it is taken as a distance-dependent function w(z-z’). Connectivity is stronger 

between cells with similar ‘functional role’.

A classic choice is the Mexican-Hat function with long-range inhibition and short-range 

excitation. Note that in real neural networks, inhibition involves a separate class of 

neurons.

𝜏
𝑑

𝑑𝑡
ℎ 𝑧, 𝑡 = −ℎ 𝑧, 𝑡 + 𝑅𝐼𝑒𝑥𝑡 𝑧, 𝑡 + ∫ 𝑤 𝑧, 𝑧′ 𝐹(ℎ 𝑧′, 𝑡 )𝑑𝑧′



- low dimensional dynamics

(e.g., flow towards fixed point/attractor dynamics)

- neurons and functional similarity

(functional similarity reflected in wiring,

wiring causes dynamics)

Summary: How can we interpret neural activity?

→Relation between the two views? Relation to known models?

How can we understand principles of neuronal activity?

Two different perspectives
D. Barack and J. Krakauer, 2021

C. Langdon and T. Engel, 2023

→ Hopfield model

→ continuum model



Summary:

There are two different perspectives on how to interpret neuronal activity:

- The classic view since Hubel and Wiesel was to start with receptive fields. We can 

then define functional similarity between neurons as neurons with similar receptive 

fields. On the theory side, this view has led to field models where neurons are 

organized along one or several abstract axis. Functionally similar neurons have 

typically stronger (more positive) connections to each other than to functionally 

different neurons. Hence wiring reflects functional similarity. 

- The modern view is that neurons perform computational and that these computations 

can be described by a flow or dynamics in low-dimensional manifolds: Even 

though modern experiment probe the activity of hundreds of neurons simultaneously, 

we do not need 100 variables to describe the activity but only a few. On the theory this 

is similar to mean-field models or the Hopfield model. In the Hopfield model, we have 

encountered effective variables (‘overlap’) that describe the collective dynamics.

The question of the following videos is how the two views are connected 

to each other and to standard models of computational neuroscience



Neural Manifolds and low-dimensional dynamics
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3. Low-rank recurrent networks
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        -  dynamics
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         - context-dependent decision making

Computational Neuroscience: Neuronal Dynamics

Wulfram Gerstner

EPFL, Lausanne, Switzerland

Cambridge Univ. Press

Neural Manifolds and 

Low-dimensional dynamics:

Low-Rank Recurrent Neural 

Networks



Recurrent Neural Network (RNN)

𝑑

𝑑𝑡
ℎ𝑖 𝑡 = −

1

𝜏
ℎ𝑖 𝑡 +෍

𝑗

𝑊𝑖𝑗 𝜙(ℎ𝑗(𝑡))

Recurrent network of N neurons.

Membrane potential of neuron i:

max

F

F
𝜙 ℎ

Firing rate:



Three assumptions

Each abstract axis:  a feature of receptive field

orientation of rec. field: z1

horizontal placement of rec. field: z2

functional

characterization

of neuron

functional similarity = neighborhood in abstract space

vertical placement of rec. field: z3 z1

z2

z3

Assumption 1: neurons are functionally characterized by features 



Three assumptions

Each abstract axis:  a feature of receptive field

orientation of rec. field: z1

horizontal placement of rec. field: z2

functional

characterization

of neuron
vertical placement of rec. field: z3

Assumption 2: Similar neurons have similar connectivity:

functionally similar neurons are strongly connected

Example of ‘patchy connectivity’:  neurons with 

similar orientation are strongly connected 

(even if far distance on cortical surface)

z1

z2

z3



Three assumptions

Assumption 3: Connectivity is of ‘low rank’ (outer product)

Example of low-rank: connectivity in Hopfield model

𝑊𝑖𝑗 =෍

𝜇

𝐷

𝐹𝑖
𝜇
𝐺𝑗
𝜇

𝑊𝑖𝑗 =෍

𝜇

𝐷

𝑝𝑖
𝜇
𝑝𝑗
𝜇 𝑝𝑖

𝜇
=+/-1with               the target value 

of neuron i in pattern 𝜇

for example: D=1 

→ all columns of matrix 𝑊𝑖𝑗

are linearly dependent

→ rank 1  (not 2!)



functional similarity = neighborhood in abstract space

𝑊𝑖𝑗 = 𝑤 𝒛𝒊, 𝒛𝒋

Position of neuron i in abstract space: 𝒛𝒊=(𝑧1,𝑧2,𝑧3,…)(𝒊)

Functional similarities and ‘wiring’

𝑊𝑖𝑗 =෍

𝜇

𝐷

𝐹𝑖
𝜇
𝐺𝑗
𝜇
=෍

𝜇

𝐷

𝑓𝜇 𝒛𝒊 𝑔𝜇(𝒛𝒋)

Weight of connection from j to i depends on the positions 𝒛𝒊, 𝒛𝒋:

Specific choice of weight from j to i: 𝑓𝜇 𝒛𝒊 = 𝐹𝑖
𝜇

Assumption 1:

Assumption 2:

𝑔𝜇 𝒛𝒋 = 𝐺𝑗
𝜇

Assumption 3:



Field equation in functional similarity space

𝑑

𝑑𝑡
ℎ 𝒛𝒊, 𝑡 = −

1

𝜏
ℎ 𝒛𝒊, 𝑡 +෍

𝑗

෍

𝜇

𝐷

𝑓𝜇 𝒛𝒊 𝑔𝜇 𝒛𝒋 𝜙(ℎ(𝒛𝒋, 𝑡))

generalized field equation (large number of neurons)

use weights: 𝑊𝑖𝑗 =෍

𝜇

𝐷

𝑓𝜇 𝒛𝒊 𝑔𝜇(𝒛𝒋)

𝑑

𝑑𝑡
ℎ𝑖 𝑡 = −

1

𝜏
ℎ𝑖 𝑡 +෍

𝑗

𝑊𝑖𝑗 𝜙(ℎ𝑗(𝑡))

with neuron i at position 𝒛𝒊

𝑑

𝑑𝑡
ℎ 𝒛, 𝑡 = −

1

𝜏
ℎ(𝒛, 𝑡) + ∫ 𝑑𝒛′𝜌(𝒛′) ෍

𝜇

𝐷

𝑓𝜇 𝒛 𝑔𝜇 𝒛′ 𝜙(ℎ(𝒛′, 𝑡))



Field equation and low-dimensional dynamics

𝑑

𝑑𝑡
ℎ 𝒛, 𝑡 = −

1

𝜏
ℎ(𝒛, 𝑡) + ∫ 𝑑𝒛′𝜌(𝒛′) ෍

𝜇

𝐷

𝑓𝜇 𝒛 𝑔𝜇 𝒛′ 𝜙(ℎ(𝒛′, 𝑡))

𝑑

𝑑𝑡
ℎ 𝒛, 𝑡 = −

1

𝜏
ℎ(𝒛, 𝑡) +෍

𝜇

𝐷

𝑓𝜇 𝒛 𝛼𝜇 𝑡

D ‘basis functions’

Idea: write 
ℎ 𝒛, 𝑡 =෍

𝜇

𝐷

𝑓𝜇 𝒛 𝜅𝜇 𝑡

projection onto basis f.

coefficient

𝛼𝜇(𝑡)



Field equation and low-dimensional dynamics

𝑑

𝑑𝑡
ℎ 𝒛, 𝑡 = −

1

𝜏
ℎ(𝒛, 𝑡) +෍

𝜇

𝐷

𝑓𝜇 𝒛 𝛼𝜇 𝑡

D ‘basis functions’

Idea: write 
ℎ 𝒛, 𝑡 =෍

𝜇

𝐷

𝑓𝜇 𝒛 𝜅𝜇 𝑡

projection onto basis f.

coefficient

+𝐼 𝒛, 𝑡

𝐼 𝒛, 𝑡 =σ𝜇
𝐷 𝑓𝜇 𝒛 𝐼𝜇 𝑡

𝑓1 𝑧 = 𝑠𝑖𝑛(𝑧)

z

𝑐𝑜𝑠(𝑧)

external input in same basis

Example:

(X)

𝐼 𝒛, 𝑡 =σ𝜇
𝑫+𝟑 𝑓𝜇 𝒛 𝐼𝜇 𝑡



Field equation and low-dimensional dynamics

Idea: write 
ℎ 𝒛, 𝑡 =෍

𝜇

𝐷

𝑓𝜇 𝒛 𝜅𝜇 𝑡

𝑑

𝑑𝑡
𝜅𝜇 𝑡 = −

1

𝜏
𝜅𝜇 𝑡 + ∫ 𝑑𝒛𝜌(𝒛)𝑔𝜇 𝒛 𝜙(෍

𝜈

𝐷

𝑓𝜈 𝒛 𝜅𝜈 𝑡 )

→yields D coupled equations

𝜙(ℎ 𝒛, 𝑡 )

→ activity of all N neurons (N>>1) is described by D equations

in recurrent network (without external input)



Summary:  low-dimensional dynamics

-What is relation between functional similarity and manifold?

functional similarity reflected in wiring, wiring causes dynamics

with weights                                , dynamics evolves in D dim. 𝑊𝑖𝑗 =෍

𝜇

𝐷

𝑓𝜇 𝒛𝒊 𝑔𝜇(𝒛𝒋)

→ flow described by small number of variables 1, … D,

determine recurrent connections



To generate low-dimensional dynamics in heterogeneous

networks of N neurons, three ingredients are important:

(i) neurons characterized by abstract positions z 

representing functional similarity

(ii) weight matrix depends on z and z’

(iii) weight matrix is of low rank: outer-product with D terms

Summary:  low-dimensional dynamics

→ field model for large network (N to infinity)

→ collective dynamics evolves in D dimensions

→ external input can also be included in formalism
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Part B:

The following slides correspond to the video here:

https://youtu.be/eO4F-j0Z6RA 



1. The problem of Firing Rates

- textbook introduction

2. Firing rates without duplicates

Valentin Schmutz, Johanni Brea, 

Wulfram Gerstner

EPFL, Lausanne, Switzerland

From Spiking Neurons to Rate Units:

Emergent Rate-based Dynamics in Spiking Neural Networks

V. Schmutz, J. Brea, W. Gerstner (2025) Emergent rate-based 

dynamics in duplicate-free populations of spiking neurons

 Physical Review Letters, 134:018401

DOI 10.1103/PhysRevLett.134.018401 

https://link.aps.org/doi/10.1103/PhysRevLett.134.018401


spikes in response to stimulus

stim
T=1s

trial 1

What is the Firing Rate?   1. spike count (temporal average)

brain 

rate as a (normalized) spike count:

𝜈(𝑡) =
𝑛𝑠𝑝

𝑇

single neuron/single trial:

temporal average



population of neurons

with similar properties

stim

neuron 1

neuron 2

Neuron  K

What is the firing rate?  2. population activity (spatial average)

brain single trial/multiple neurons: 

average over population of 

similar neurons (e.g., layer 5b)



t

t

𝐴𝑛(𝑡) =
𝑛(𝑡; 𝑡 + Δ𝑡)

𝑁Δ𝑡

population

activity (rate)

Rate model:  interacting populations (duplicate neurons)

I(t)

𝐴𝑛(𝑡)

population of

similar neurons rate unit  n

rate network:  

populations talk to each other



population activity - rate defined by population average

t

t

𝐴𝑛(𝑡) =
𝑛(𝑡; 𝑡 + Δ𝑡)

𝑁Δ𝑡

population

activity (rate)

Rate codes: population activity

‘natural readout’

populations
𝐴1 𝑡 , 𝐴2 (𝑡),… 

k

Textbooks: e.g. - Neuronal Dynamics, Gerstner et al., (Cambridge Univ. Press, 2014)

- Theoretical Neuroscience, Dayan and Abbott (MIT Press, 2001)

but are the presynaptic pools really  homogenous

populations of duplicate neurons/similar neurons?

→ weighted average over very heterogeneous group!



Definitions of Rate codes: summary

Two averaging methods
- single trial, average over time

- single trial, average over population

too slow 

for animal!!!

‘natural’, but do we have enough

duplicate/similar neurons?

single neuron

many neurons

Textbooks: e.g. - Neuronal Dynamics, Gerstner et al., (Cambridge Univ. Press, 2014)

- Theoretical Neuroscience, Dayan and Abbott (MIT Press, 2001)



Big question:

Is a rate description meaningful in spiking neurons, if

- temporal averaging is impossible because signals are fast

- there are no duplicate neurons (no similar neurons)

[ ] intuitively plausible

[ ] intuitively not plausible

[ ] may be, but if yes, then under

very strict conditions



1. The problem of Firing Rates

- textbook introduction

2. Firing rates without duplicates

Valentin Schmutz, Johanni Brea, 

Wulfram Gerstner

EPFL, Lausanne, Switzerland

From Spiking Neurons to Rate Units

Emergent Rate-based Dynamics in Spiking Neural Networks:

V. Schmutz, J. Brea, W. Gerstner (2025) Emergent rate-based 

dynamics in duplicate-free populations of spiking neurons

 Physical Review Letters, 134:018401

DOI 10.1103/PhysRevLett.134.018401 

https://link.aps.org/doi/10.1103/PhysRevLett.134.018401


Review:  functional similarity of neurons

variable z:

position on ring

functional similarity =

neighborhood in abstract space

‘ring model’

Functionally similar neurons do not always sit next to each other in cortex. 



ring model

Correlations between two neurons (            neurons total )𝑁 = 106

Ring model: many pairs of neurons are strongly correlated. 

→ “duplicate neurons”: identical or strongly correlated 

→ duplicate neurons respond ‘nearly the same’

Horizontal axis: 

amount of correlation between 2 neurons

high correlation, 

caused by pairs of neighboring neurons

-ring model with Poisson neurons

-stimulation at random location



Correlations between two neurons: low-rank weight matrix

𝑤𝑖𝑗 =
1

𝑁
෍

𝜇

𝑃

𝜉𝑖
𝜇
𝜉𝑗
𝜇

𝑃 = 0.0001 𝑁

Neurons become uncorrelated for  𝑃 → ∞; 𝑁 → ∞;
𝑃

𝑁
→ 0

𝜉𝑗
𝜇
 are Gaussian distributed

→ no duplicate neurons

𝑒. 𝑔. 𝑃 = 𝑁1/3

P=100 in

1 Mio 

neurons

V. Schmutz, J. Brea, W. Gerstner (2025) Emergent rate-based dynamics in 

duplicate-free populations of spiking neurons

 Physical Review Letters, 134:018401

𝑁 = 106𝑁 = 106

low rank modelring model



For  low-rank weights

neurons become uncorrelated for  𝑃 → ∞; 𝑁 → ∞;
𝑃

𝑁
→ 0

𝜉𝑗
𝜇
 are Gaussian distributed

→ no duplicate neurons
𝑒. 𝑔. 𝑃 = 𝑁1/3

𝑤𝑖𝑗 =
1

𝑁
෍

𝜇

𝑃

𝜉𝑖
𝜇
𝜉𝑗
𝜇

1st important finding:

Proof:

Concentration of Measure

With low-rank weights and 𝑃 = 𝑁1/3 ,

we can exclude duplicate neurons: is rate coding possible?

V. Schmutz, J. Brea, W. Gerstner (2025) Emergent rate-based dynamics in 

duplicate-free populations of spiking neurons

 Physical Review Letters, 134:018401



Recurrent Neural Network (RNN)

𝑑

𝑑𝑡
𝑥𝑖 𝑡 = −

1

𝜏
𝑥𝑖 𝑡 +෍

𝑗

𝑤𝑖𝑗 𝜙 𝑥𝑗 𝑡 + 𝐼𝑖
𝑒𝑥𝑡(𝑡)

Recurrent network of N neurons.

Membrane potential of neuron i:

𝜙 𝑥

firing rate  (rate variable):

Spiking Neural Network (SNN)

𝑑

𝑑𝑡
ℎ𝑖 𝑡 = −

1

𝜏
ℎ𝑖 𝑡 + σ𝑗𝑤𝑖𝑗 𝑆𝑗(𝑡) +𝐼𝑖

𝑒𝑥𝑡(𝑡)

Recurrent network of N neurons.

Membrane potential of neuron i:

𝐹

𝐹max𝜙 ℎ

spike generated by inhomogeneous 

Poisson pr. with stochastic intensity

𝑤𝑖𝑗 =
1

𝑁
෍

𝜇

𝑃

𝜉𝑖
𝜇
𝜉𝑗
𝜇

Gaussian𝑥

“rate model” “spiking model”: spike causes jump



Compare SNN and RNN for same input, same connections

N/2 neurons do not receive external input
external input

𝑤𝑖𝑗 =
1

𝑁
෍

𝜇

𝑃

𝜉𝑖
𝜇
𝜉𝑗
𝜇

membrane potential trajectories

𝐼𝑖
𝑒𝑥𝑡(𝑡) =

1

𝑝
෍

𝜇

𝑃

𝜉𝑖
𝜇
𝜂
𝜇
(𝑡) if i<N/2 V. Schmutz, J. Brea, W. Gerstner (2025) Emergent rate-based dynamics in 

duplicate-free populations of spiking neurons

 Physical Review Letters, 134:018401

ℎ𝑖 𝑡

𝑥𝑖 𝑡



Simulation for large N,

effect of spikes disappears for large networks,

no need to average over time or neuron duplicates!

momentary

distance

Distance between potential in  SNN  (spikes) and RNN (rates)

P=a𝑁

bound for small a

P=100 in

1 Mio neurons

SNN→ RNN RNN

V. Schmutz, J. Brea, W. Gerstner (2025) Emergent rate-based dynamics in 

duplicate-free populations of spiking neurons Phys.Rev. Lett. 134:018401

P= 100

P= 200

P= 400

P=𝑁1/3

momentary

distance



Summary Rate coding with 

instantaneous time-dependent rates

is possible in network of spiking neurons even though 

not a single pair of neurons is correlated (no duplicates)

→ completely heterogeneous population

→ no spatial averaging

→ no temporal averaging

Rather:  low-rank weight matrix

→ low-dimensional network-input to each neuron

→ neural activity lives in a P-dimensional manifold

→ 𝑒. 𝑔. 𝑃 = 𝑁1/3

→ P=100-dimensional activity in 1 Mio neurons
V. Schmutz, J. Brea, W. Gerstner (2025) Emergent rate-based dynamics in 

duplicate-free populations of spiking neurons Phys.Rev. Lett. 134:018401

SNN→ RNN RNN



Answer to our big question:

Is rate coding meaningful in spiking neurons, even if

- signals are fast  (no temporal averaging possible)

- there are no duplicate neurons

YES!!!!, if  ‘low-rank’ connectivity 

𝑤𝑖𝑗 =
1

𝑁
෍

𝜇

𝑃

𝜉𝑖
𝜇
𝜉𝑗
𝜇

Gaussian (or binary +/-1)

NxN matrix

→ rank P

V. Schmutz, J. Brea, W. Gerstner (2025) Emergent rate-based dynamics in 

duplicate-free populations of spiking neurons Phys.Rev. Lett. 134:018401



Is low-rank connectivity a strange assumption? 

1) “Neurons have receptive fields and wiring patterns:

is a low-rank model realistic AT ALL?”

Answer: All standard models of cortex are dominated 

by a low-rank connectivity matrix

Answer: rank P weight matrix (outer product matrix) always 

generate  P-dimensional dynamics (→neural manifolds)

Mastrogiuseppe, F., Ostojic, S.: Linking connectivity, dynamics, and computations in low-rank recurrent neural 
networks. Neuron 99(3), 609–62329 (2018)

Barack, D.L., Krakauer, J.W.: Two views on the cognitive brain.  Nat. Rev. Neurosc. (2021)

Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nat. Rev. 

Neurosci. (2023)

2) “How are low-rank networks related to low-dim. dynamics?”

Pezon, L., Schmutz, V, Gerstner, W. (2024), Linking Neural Manifolds  to Principles of Circuit Structure in Recurrent 

Networks  bioRxiv doi: https://doi.org/10.1101/2024.02.28.582565

https://doi.org/10.1101/2024.02.28.582565


Conclusions

- SNN → RNN  without averaging!

- rather ‘loose’ conditions

- rank P can be ‘relatively large’

V. Schmutz, J. Brea, W. Gerstner (2025) Emergent rate-based 

dynamics in duplicate-free populations of spiking neurons 

Phys.Rev. Lett. 134:018401
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