GComputational Neuroscience:
Neuronal Dynamics

12.2 Density of membrane potential

Lecture 12 — Membrane potential

- - Continuity equation
densities and Fokker-Planck

Wulfram Gerstner 12.3 Flux
EPFL, Lausanne, Switzerland ] Jump flux

- drift flux

. . 12.4. Fokker —Planck Equation
Reading for this Lecture: .
Neuronal - free solution
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- time dependent activity
- network states



12.1: Review: integrate-and-fire-type models

Spike rec

Spike emission

-Spikes are events
-threshold
-spike/reset/refractoriness



12.1: Review: leaky integrate-and-fire model
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z—.au :—(u—ueq)+ RI (t) If u =9 firing: U —> U aget
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12.1: Review: leaky integrate-and-fire model

f-iu=—(u—ueq)+Rl(t) LIF
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12.1: Review: homogeneous population

Homogeneous o |

network:

-each neuron receives input
n(t;t+ At)

from k neurons in network population A(t) =
i - . NAt
each neuron receives the same activity

(mean) external input



12.1: Review: diffusive noise/stochastic spike arrival

Stochastic spike arrival: i
excitation, total rate Re [T
Inhibition, total rate Ri

Synaptic current pulses

ML ~(U=Ugg) +R{ Y 0,0(t-t))- ) qiot-t.) |
k, f ', T

at
g EPSC  IpsC .
T au =—(U—Ug) +RI meAt) +  &(t)
u N
Ug Mo N Langevin equation,

Y o Ornstein Uhlenbeck process




12.1: Aim: Fokker-Planck-Equation for Population of neurons,

N
Distribution of membrane potential T
Step 1: Continuity Equation/Transport Equation
d d
— p(u,t) = J (u,t
” p(u,t) 0 (u,t)
Step 2: Fokker-Planck Equation
2 bty =— L [rWypu ]+ o2 p(u,t
ot ou - | ou®



Summary:
Describe dynamics for
- a homogeneous population of neurons,

- with stochastic spike arrival
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- stochastic spike arrival
_ 12.2 Density of membrane potential
Lecture 12 - Membrane potential - Continuity equation (Transport Equation)
densities and Fokker-Planck

12.3 Flux
- jump flux
- drift flux

12.4. Fokker —Planck Equation
- free solution

12.5. Threshold and reset

- time dependent activity
- network states




12.2: membrane potential density

SR v
iEaraan

EPSC IPSC
— qu 5(1: t, ) Iext(t)

/

excitatory input spikes




12.2: membrane potential density
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12.2: continuity equation connects density and flux

d p(u,t) = : J(u,t) fﬁ p(u,t)du =1
dt du — 00

The continuity equation Is also called transport equation.
It Is a partial differential equation.

It expresses that:
- the number of particles (neurons) does not change over time
-> trajectories are ‘continuous’ (not necessarily smooth: may contain ‘jumps’)
- the only way that the number of particles at location near uo changes
(that the number of trajectories with voltage close to uo changes) is If
a trajectory moves into the volume or out of the volume

qu p(u,t)du

uO—Au
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- stochastic spike arrival

12.2 Density of membrane potential

Lecture 12 — Membrane potential - Continuity equation

densities and Fokker-Planck

12.3 Flux
- jump flux
- drift flux

Wulfram Gerstner
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12.4. Fokker —Planck Equation

- free solution

12.5. Threshold and reset

- time dependent activity
- network states



12.3: membrane potential density: flux by jumps
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Neuronal Dynamics



12.3: membrane potential density: flux by drift
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du
Jarire(Ug, t) = p(ug, t) - T (up)
= ‘density’ - 'speed’



flux — two possibilities riu —_

dt

Membrane potential density

U

(U=U)+R{I™V+> g5t -t")}

What Is the flux

— acCross UO?
Reference level uo

a) flux caused by jumps due to
stochastic spike arrival

D) flux caused by
systematic drift

Jumps caused at
spike arrival rate



Summary:

The flux has two components:
- Continuous component: The decay of the membrane potential in the absence of input or
the increase of membrane potential in the presence of an external strong driving current.

- Discontinuous component: Small jumps In the presence of stochastic spike arrival from
other neurons in the network

The flux J(u,t) Is defined for an arbitrary time and arbitrary value of membrane potential.

A particular important concept is the flux through the threshold. Hence we evaluate later J
at the value of u = 0.

Three important comments:

- We must take into account that the threshold can only be reached from below.

- The density p(u,t) at threshold MUST be zero because if we imagine that a neuron has
voltage just below threshold the next excitatory spike arrival will definitely remove 1It.

- The flux through the threshold causes spike emission and reset of the membrane
potential. But before we add the threshold effects we study the ‘free solution’.
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- stochastic spike arrival

12.2 Density of membrane potential
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12.4: from continuity equation to Fokker-Planck
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For any arbitrary neuron in the population

d u o f o i 1 ext
—U=—4> =50t-t)-) Z5t<t')+=1"(t
. Z‘C (-1t ) ka:C e ) c (t)
\
EPSC IPSC external input

Continuity equation:

Q (U, 1) = O J(u,t) Flux: -jump size! (spike ar_rival)
ot ou - drift! (slope of trajectory)




12.4: from continuity equation to Fokker-Planck

Ccmtinuity equation: Flux: - jump Jjump (Ug, t) = vfuo p(u, t)du
2P =— 3@, e
ot | ou | - drift Jarife(Ug, t) = p(ug, t) - —u(uo)



12.4: from continuity equation to Fokker-Planck

Ccmtinuity equation: Flux: - jump Jjump (Ug, t) = vfuo p(u, t)du
2P =— 3@, e
ot | ou | - drift Jarife(Ug, t) = p(ug, t) - —u(uo)



12.4: Fokker-Planck equation

Membrane potential density

| ! /
M > O(U)
V= | =

Fokker-Planck

22 o) == 2w pw 0]+ - put)
ot u ’ PYE ‘ ’
.‘ o D= diffusion
drift diffusion
Jump amplitude y(U) =—U+7D VW, 52 — %TZVKWE constant
WkZAu]‘ump’k [ ‘ O—Z — D/Z

spike arrival rate



Summary:
In the absence of a threshold, the Fokker-Planck equation can always be solved.

The solution Is a Gaussian distribution of membrane potential, with a mean that is located
where the corresponding deterministic equation has its solution. The width of the
membrane potential distribution Is also time dependent. For example, in the absence of
spike input the width decays back to zero.

In the presence of a threshold, we have an absorbing boundary at the threshold (where

trajectories disappear) and a ‘'source term’ at the reset potential (where trajectories
reappear).

For the moment, however, we work in the absence of a threshold. This is called the ‘free
solution’.



Quiz: stochastic spike arrival yu)=-u+z>vw +RI(t) o :%Tzvkws

Suppose that we have a population of neurons that all receive excitatory input sf)ikes
arriving with Poisson frequency v. There Is no external input current.

Different neurons receive different realization of spike trains. Neurons do not have a firing threshold.

Each spike causes a voltage jump by an amount w.  We assume a system In stationary state.

| ] Let us Increase the Poisson spike arrival frequency by a factor of 2. Then the mean membrane
potential <u> increases by a factor of 2 as well.

| ] Let us Increase the Poisson spike arrival frequency by a factor of 2. Then the variance of the
membrane potential increases by a factor of 2 as well.

[ ] Let us increase the parameter w by a factor of 2. Then the mean membrane potential <u>
Increases by a factor of 2 as well.

| ] Let us increase the parameter w by factor of 2. Then the variance increases by a factor of 2
as well.

[ ] Let us instead change the parameter w by a factor of (-2). Then the variance increases by a

factor of 4.

[ ] If neurons receive two types of input, excitatory with frequency v+ and inhibitory with frequency
v- , then it Is possible to change the variance of the membrane potential without changing the
firing rates

Hint:
assume weights
W_ = —Ww,
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12.3: Threshold and reset (Sink and source terms)

Membrane potential density density at threshold

u / U
f p(u)
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Fokker-Planck

O O O°
r-— pU,t) =— —[rU) p(u, D]+ o> —— p(U, 1) +7 A(t) S(U —Uyeeey)
ot ou ‘ \ﬁu
drift diffusion
7/(U)=—U—I—Z‘Zklvkwk + Rl o’ Z%T;VKWE

Wk = Aujump,k W _ _
spike arrival rate



Membrane potential density
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12.9: Anplications of Fokker-Planck equation in Neuroscience

1) Uncoupled network of leaky integrate-and-fire neurons
- each neuron receives stationary stochastic Input

- stationary state of asynchronous firing: A(t)=Ao
- firing rate of single neuron v =A, (analytical)

2) Uncoupled network of leaky integrate-and-fire neurons
- time-dependent Input
- time-dependent population activity A(t) (numerical)
3) Coupled network of leaky integrate-and-fire neurons:
- excltatory and inhibitory populations

- all neurons have same parameters (‘Brunel network’)
- network states (analytical and/or numerical)



12.9: population firing rate Alt) = single neuron rate
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Synaptic current pulses
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1 (t) = [Io T Inoise]

effective noise current



12.9: membrane potential density [Stationary state)

firing rate/

A 6=0.2 B, ©  population activity
stochastic Y T S |5
spike arrival = BN 6=0.2 | Zo; /.

_ _ : o ] 0 1 <3
Ve =V = | ] .
Y0 20 40 60 80 0 z 4 6 -0 L2
t [ms] p(u) ho
Fig. 13.5: A. Membrane potential trajectories of 5 neurons (R = 1 and 7,, = 10ms)
driven by a constant background current /o = 0.8 and stochastic background input with
vy = v_ = 0.8kHz and w4 = £0.05. These parameters correspond to hg = 0.8 and

o = 0.2 in the diffusive noise model. B. Stationary membrane potential distribution in
the diffusion limit for o = 0.2 (solid line), o = 0.1 (short-dashed line), and ¢ = 0.5 (long-
dashed line). (Threshold ¥ = 1). C. Mean activity of a population of integrate-and-fire

Image:
Gerstner et al. (2014),
Neuronal Dynamics



12.9: Anplications of Fokker-Planck equation in Neuroscience

1) Uncoupled network of leaky integrate-and-fire neurons
- each neuron recelves stochastic background input

- stationary state of asynchronous firing: A(t)=Ao
- firing rate of single neuron v =A, (analytical)

2) Uncoupled network of leaky integrate-and-fire neurons

- time-dependent Input
- time-dependent population activity A(t) (numerical)
3) Coupled network of leaky integrate-and-fire neurons:
- excltatory and inhibitory populations

- all neurons have same parameters (‘Brunel network’)
- network states (analytical and/or numerical)




12.3: nonulation activity, ime-dependent
Theory
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Image:

Fig. 13.4: Comparison of theory and simulation. A. Population firing rate A(t) as a func-
tion of time in a simulation of 1 000 neurons (histoeram bars) compared to the prediction

Gerstner et al. (2014),
Neuronal Dynamics



Summary:

In the absence of a threshold, the Fokker-Planck equation can always be solved.
In the presence of a threshold, the Fokker-Planck equation that corresponds to stochastic
spike arrival needs special care.

The threshold acts as an absorbing boundary condition; hence the density at threshold
must be zero (for stochastic spike arrivals that arrive infinitely often and cause Iinfinitely
small jumps).

For fixed spike arrival rate, the Fokker-Planck equation predicts that the membrane
potential distribution converges to a stationary state. We can predict analytically the
stationary distribution of membrane potentials and can compare it with simulations.

The stationary distribution Is not Gaussian. It has a peak about one sigma below threshold.

For time dependent input we can numerically solve the Fokker-Planck equation and
compare It to simulations of a large number of neurons. Again the simulations agree with
the predictions If the number of neurons is sufficiently large.
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12.9: Anplications of Fokker-Planck equation in Neuroscience

1) Uncoupled network of leaky integrate-and-fire neurons
- each neuron recelves stochastic background input

- stationary state of asynchronous firing: A(t)=Ao
- firing rate of single neuron v =A, (analytical)

2) Uncoupled network of leaky integrate-and-fire neurons
- time-dependent Input
- time-dependent population activity A(t) (numerical)
3) Coupled network of leaky integrate-and-fire neurons:

- excitatory and inhibitory populations, random connections
- all neurons have same parameters (‘Brunel network’)
- network states (analytical and/or numerical)



Review/week 7: Random connectivity — fixed number of inputs

. . . . W,
random: input connections K=500 fixed, weights chosen as W;; = 1~
i Network N=5000  ,, Network N=10 000
NN 10
=5
z <
0
a 1
=0
\
0
o 7 e . Fig. 12.8: Simulation of a model network with a fixed number of presynaptic partners
5 (400 excitatory and 100 inhibitory cells) for each postsynaptic neuron. A. Top: Population
OO activity A(t) averaged over all neurons in a network of 4 000 excitatory and 1 000 inhibitory
> 0 - / - K
: mean uz =RI({)+7)> v,w
fluctations of A decrease, but “ ) kzll <k

— fluctations of Input
(and of u) remain

1 K

. . 2 2

— d|ﬂ:US|On O :Efzvkwk
k=1




12.9: network states: feedback from population activity

frequency
V= I
- P g, (1)

Mean current I(t) depends on state
- 1, Variance/noise depends on state

r%u =—(U—Ug)+R{ > go(t—t/)— Zqi5(t ~t.) |

EPSC IPSC

—~




12.5: Connectivityscheme - Brunel network N.. >> K.,

%ui — _(U/T)_I_IBII exc I\IeXC INh Ninh

B Z Wiil?h 5(t - tkf ) ....... 2
K, f

Each neuron receives K . excitatory
and K__/4 inhibitory synapses WEC

Mean and variance of membrane potential In Wij —
Brunel network
-> Drift and diffusion in Fokker-Planck equation



- 12.5: network states: Brunelnetwork

Al=Asynchronous Irregular SR=Synchronous Regular
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12.9: Summary Fokker-Planck equation

r-g p(u,t) = 0 [v(W) p(u,t)]+ o 0 p(u,t)+7 A(t)o(u—u

reset )

ot ou ou’
source term
drift

K
y(UW=-U+u =—U+RI(M)+7)> v, W | |
1 kZ; < diffusion parameter

‘target mean’, see Ex. 2 1 &
J o’ = ETkaWﬁ
k=1

j K
1 =RIM)+7) vWw,
k=1

Note: a sink term —7 A(t) o(u—39)
IS equivalent to an absorbing boundary condition



Summary:
The final step of this lecture Is to consider two interconnected populations of neurons. The
first one contains excitatory neurons, the second one inhibitory neurons.

To simplify the analysis we assume that all neurons are of the same type (same membrane
time constant, same threshold).

Hence each neuron receives input from Kexc neurons in the excitatory population and from
Kinh neurons In the inhibitory population. Therefore all neurons receive statistically the same
Input, but the actual inputs are different because each neurons receives inputs from a
different subset of neurons. In the model it is assumed (based on experimental counts) that
the excitory group Is 4 times bigger than the inhibitory one.

An important parameter is the ratio g = Q. / ¢, of the jump size (charge) of excitatory
versus inhibitory inputs.

The model can be solved by a combined analytical-numerical approach.

The solution shows different types of solutions:
Al = asynchronous irregular; Q=quiescent. Sl — synchronous irregular. SR= synchronous

regular.
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