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12. 1: Review:  integrate-and-fire-type models 
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12.1: Review:  leaky integrate-and-fire model 
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12.1: Review:  leaky integrate-and-fire model 
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12.1: Review:  microscopic vs. macroscopic 
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Homogeneous 

network:
-each neuron receives input

    from k neurons in network

-each neuron receives the same

    (mean) external input

12.1: Review: homogeneous population 



Stochastic spike arrival: 

  excitation, total rate Re

  inhibition, total rate Ri
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EPSC IPSC

Synaptic current pulses

)()()( ttIRuuu
dt

d mean
eq  ++−−=

Langevin equation,

Ornstein Uhlenbeck process

 )()()(

','

'
'

,

 −−−+−−=

fk

f
ki

fk

f
keeq ttqttqRuuu

dt

d


12.1: Review:  diffusive noise/stochastic spike arrival 



12.1: Aim: Fokker-Planck-Equation for Population of neurons, 
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Summary:

Describe dynamics for 

- a homogeneous population of neurons, 

- with stochastic spike arrival
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EPSC IPSC

For any arbitrary neuron in the population
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12.2: membrane potential density 
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12.2: membrane potential density 
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12.2: continuity equation connects density and flux 

The continuity equation is also called transport equation.

It is a partial differential equation.

It expresses that:

- the number of particles (neurons) does not change over time

→ trajectories are ‘continuous’ (not necessarily smooth: may contain ‘jumps’)

- the only way that the  number of particles at location near u0 changes

(that the number of trajectories with voltage close to u0 changes) is if 

a trajectory moves into the volume or out of the  volume 

න
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12.3: membrane potential density: flux by jumps 

Image:

Gerstner et al. (2014),

Neuronal Dynamics
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12.3: membrane potential density: flux by drift 

𝐽𝑑𝑟𝑖𝑓𝑡 𝑢0, 𝑡 = 𝑝 𝑢0, 𝑡 ∙
𝑑𝑢

𝑑𝑡
𝑢0

= ‘density’ ∙ ′speed′
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Membrane potential density

spike arrival ratea)
Jumps caused at

Reference level u0

What is the flux

across u0?

b)

flux caused by jumps due to

 stochastic spike arrival
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systematic drift
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Summary:
The flux has two components:

- Continuous component: The decay of the membrane potential in the absence of input or 

the increase of membrane potential in the presence of an external strong driving current.

- Discontinuous component: Small jumps in the presence of stochastic spike arrival from 

other neurons in the network

The flux J(u,t) is defined for an arbitrary time and arbitrary value of membrane potential.

A particular important concept is the flux through the threshold. Hence we evaluate later J 

at the value of u = 

Three important comments:

- We must take into account that the threshold can only be reached from below.

- The density p(u,t) at threshold MUST be zero because if we imagine that a neuron has 

voltage just below threshold the next excitatory spike arrival will definitely remove it.

- The flux through the threshold causes spike emission and reset of the membrane 

potential. But before we add the threshold effects we study the ‘free solution’.
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EPSC IPSC

For any arbitrary neuron in the population
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Continuity equation:

Flux:  - jump size! (spike arrival)

- drift!   (slope of trajectory)

12.4: from continuity equation to Fokker-Planck 
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Continuity equation: Flux:  - jump 

- drift

12.4: from continuity equation to Fokker-Planck 
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Continuity equation: Flux:  - jump 

- drift

12.4: from continuity equation to Fokker-Planck 

𝐽𝑑𝑟𝑖𝑓𝑡 𝑢0, 𝑡 = 𝑝 𝑢0, 𝑡 ∙
𝑑𝑢

𝑑𝑡
𝑢0

𝐽𝑗𝑢𝑚𝑝 𝑢0, 𝑡 = 𝜈න
𝑢0−Δ𝑢𝑗𝑢𝑚𝑝

𝑢0

𝑝 𝑢, 𝑡 𝑑𝑢



2
2

2
( , ) [ ( ) ( , )] ( , )p u t u p u t p u t

t u u
  

  
 = − +
  

Fokker-Planck

drift diffusion
+−=

k

kkwuu  )( 2 21

2
k k

k

w  = 

spike arrival rate

Membrane potential density

u

p(u)

12.4: Fokker-Planck equation 

𝜎2 = 𝐷/2

D= diffusion 

constant
𝑤k = Δ𝑢𝑗𝑢𝑚𝑝,𝑘

Jump amplitude



Summary:
In the absence of a threshold, the Fokker-Planck equation can always be solved.

The solution is a Gaussian distribution of membrane potential, with a mean that is located 

where the corresponding deterministic equation has its solution. The width of the 

membrane potential distribution is also time dependent. For example, in the absence of 

spike input the width decays back to zero. 

In the presence of a threshold, we have an absorbing boundary at the threshold (where 

trajectories disappear) and a ‘source term’ at the reset potential (where trajectories 

reappear).

For the moment, however, we work in the absence of a threshold.  This is called the ‘free 

solution’.



Quiz: stochastic spike arrival
Suppose that we have a population of neurons that all receive excitatory input spikes 

arriving with Poisson frequency  There is no external input current. 

Different neurons receive different realization of spike trains. Neurons do not have a firing threshold. 

Each spike causes a voltage jump by an amount w.      We assume a system in stationary state.

[ ] Let us increase the Poisson spike arrival frequency by a factor of 2. Then the mean membrane 

potential <u> increases by a factor of 2 as well.

[ ] Let us increase the Poisson spike arrival frequency by a factor of 2. Then the variance of the 

membrane potential increases by a factor of 2 as well.

[ ] Let us increase the parameter w by a factor of 2. Then the mean membrane potential <u>

increases by a factor of 2 as well.

[ ] Let us increase the parameter w by factor of 2. Then the variance increases by a factor of 2    

as well. 

[ ] Let us instead change the parameter w by a factor of (-2). Then the variance increases by a 

factor of 4.

[ ] If neurons receive two types of input, excitatory with frequency + and inhibitory with frequency 

− , then it is possible to change the variance of the membrane potential without changing the 

firing rates 
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Hint: 

assume weights

𝑤− = −𝑤+
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12. 5: Threshold and reset (sink and source terms) 

𝑤k = Δ𝑢𝑗𝑢𝑚𝑝,𝑘

density at threshold
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12.5: population firing rate A(t)  

Population Firing rate A(t): flux at threshold



12.5: Applications of Fokker-Planck equation in Neuroscience 

1) Uncoupled network of leaky integrate-and-fire neurons

3) Coupled network of leaky integrate-and-fire neurons:

- excitatory and inhibitory populations

- all neurons have same parameters (‘Brunel network’)

- network states (analytical and/or numerical)

- stationary state of asynchronous firing: A(t)=A0

- firing rate of single neuron 0A=

2) Uncoupled network of leaky integrate-and-fire neurons

(analytical)

- time-dependent input

- time-dependent population activity  A(t) (numerical)

- each neuron receives stationary stochastic  input
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12.5: population firing rate A(t) = single neuron rate  
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12.5: membrane potential density (stationary state) 

Image:

Gerstner et al. (2014),

Neuronal Dynamics
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12.5: Applications of Fokker-Planck equation in Neuroscience 

1) Uncoupled network of leaky integrate-and-fire neurons

3) Coupled network of leaky integrate-and-fire neurons:

- excitatory and inhibitory populations

- all neurons have same parameters (‘Brunel network’)

- network states (analytical and/or numerical)

- stationary state of asynchronous firing: A(t)=A0

- firing rate of single neuron 0A=

2) Uncoupled network of leaky integrate-and-fire neurons

(analytical)

- time-dependent input

- time-dependent population activity  A(t) (numerical)

- each neuron receives stochastic background input



12.5: population activity, time-dependent 

Nykamp+Tranchina,

2000

Image:

Gerstner et al. (2014),

Neuronal Dynamics

Theory

Histograms:

simulation



Summary:
In the absence of a threshold, the Fokker-Planck equation can always be solved.

In the presence of a threshold, the Fokker-Planck equation that corresponds to stochastic 

spike arrival needs special care.

The threshold acts as an absorbing boundary condition; hence the density at threshold 

must be zero (for stochastic spike arrivals that arrive infinitely often and cause infinitely 

small jumps). 

For fixed spike arrival rate, the Fokker-Planck equation predicts that the membrane 

potential distribution  converges to a stationary state. We can predict analytically the 

stationary distribution of membrane potentials and can compare it with simulations.

The stationary distribution is not Gaussian. It has a peak about one sigma below threshold.

For time dependent input we can numerically solve the Fokker-Planck equation and 

compare it to simulations of a large number of neurons. Again the simulations agree with 

the predictions if the number of neurons is sufficiently large. 
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12.5: Applications of Fokker-Planck equation in Neuroscience 

1) Uncoupled network of leaky integrate-and-fire neurons

3) Coupled network of leaky integrate-and-fire neurons:

- excitatory and inhibitory populations, random connections

- all neurons have same parameters (‘Brunel network’)

- network states (analytical and/or numerical)

- stationary state of asynchronous firing: A(t)=A0

- firing rate of single neuron 0A=

2) Uncoupled network of leaky integrate-and-fire neurons

(analytical)

- time-dependent input

- time-dependent population activity  A(t) (numerical)

- each neuron receives stochastic background input



Review/week 7: Random connectivity – fixed number of inputs 
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12.5: network states: feedback from population activity
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12.5: Connectivity scheme – Brunel network 

exc inh

)(

)(

)/(

,

,

f

k

fk

inh

ik

f

k

fk

exc

iki

iidt
d

ttw

ttwI

Iuu

−−

−=

+−=











0wwexc

ij =

excinh NN =4

excN
inhN

0wgwinh

ij =Mean and variance of membrane potential in 

Brunel network

→ Drift and diffusion in Fokker-Planck equation

excC

excexc CN 

Each neuron receives         excitatory

and                       inhibitory synapses4/excC

K

K
K



12.5: network states: Brunel network 

Brunel 2000

AI=Asynchronous Irregular SR=Synchronous Regular

Q=Quiescent ei qqg /=
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12.5: Summary Fokker-Planck equation  

)()(  −− utANote: a  sink term

is equivalent to an absorbing boundary condition 

source term

drift

‘target mean’, see Ex. 2 2



Summary:
The final step of this lecture is to consider two interconnected populations of neurons. The 

first one contains excitatory neurons, the second one inhibitory neurons.

To simplify the analysis we assume that all neurons are of the same type (same membrane 

time constant, same threshold).

Hence each neuron receives input from  Kexc neurons in the excitatory population and from 

Kinh neurons in the inhibitory population. Therefore all neurons receive statistically the same 

input, but the actual inputs are different because each neurons receives inputs from a 

different subset of neurons. In the model it is assumed (based on experimental counts) that 

the excitory group is 4 times bigger than the inhibitory one. 

An important parameter is the ratio                     of the jump size (charge) of excitatory 

versus inhibitory inputs. 

The model can be solved by a combined analytical-numerical approach. 

The solution shows different types of solutions:

AI = asynchronous irregular; Q=quiescent. SI – synchronous irregular. SR= synchronous 

regular.

ei qqg /=
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