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-What is a good neuron model?

-Estimate parameters of models?

Neuronal Dynamics – 7.1  Neuron Models and Data



A) Predict spike times

B) Predict subthreshold voltage

C) Easy to interpret (not a ‘black box’)

D) Flexible enough to account for a variety of phenomena

E) Systematic procedure to ‘optimize’ parameters

Neuronal Dynamics – 7.1  What is a good  neuron model?
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f u R I t
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What is a good choice of f ?

reset

r
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then reset to
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Neuronal Dynamics – Review: Nonlinear Integrate-and-fire

See:

week 1,

lecture 1.5



( ) ( )
du

f u R I t
dt

 = +

What is a good choice of f ?

(i) Extract f from more complex models

(ii) Extract f from data

reset rIf u then reset to u u= =(2)

(1)

Neuronal Dynamics – Review: Nonlinear Integrate-and-fire



( ) ( )
du

f u R I t
dt

 = +(i) Extract f from more complex models

( , ) ( )
du

F u w R I t
dt

 = +

),( wuG
dt

dw
w =

See week 4:

2dim version of 

Hodgkin-Huxley

Separation of time scales:

Arrows are nearly horizontal

resting state

restw w
Spike initiation, from rest

A. detect spike and reset

B.  Assume w=wrest

Neuronal Dynamics – Review: Nonlinear Integrate-and-fire



(i) Extract f  from more complex models

( , ) ( )
du

F u w R I t
dt

 = +

),( wuG
dt

dw
w =

Separation of 

time scales
restw w

( , ) ( )rest

du
F u w R I t

dt
 = +

linear
exponential

See week 4:

2dim version of 

Hodgkin-Huxley

Neuronal Dynamics – Review: Nonlinear Integrate-and-fire

( ) ( )
du

f u R I t
dt

 = +



(ii) Extract f from data

Pyramidal neuron Inhibitory 

interneuron

( )
( )

f u
f u


=

linear exponential

Badel et al. (2008)

Badel et al. 

(2008)

( ) exp( )rest

du u
u u

dt




−
= − − + 



Exp. Integrate-and-Fire, Fourcaud et al. 2003

Neuronal Dynamics – Review: Nonlinear Integrate-and-fire

( ) ( )
du

f u R I t
dt

 = +

linear exponential



( ) ( )
du

f u R I t
dt

 = +

Best choice of f : linear + exponential

reset rIf u then reset to u u= =

(1)

(2)

( ) exp( )rest

du u
u u

dt




−
= − − +



BUT: Limitations – need to add
-Adaptation on slower  time scales

-Possibility for a diversity of firing patterns

-Increased threshold      after each spike

-Noise


Neuronal Dynamics – Review: Nonlinear Integrate-and-fire



Neuronal Dynamics – Quiz 7.1.
The exponential integrate-and-fire model

[ ] can be extracted from data

[ ] can be extracted from two-dimensional neuron model under the assumption of

a separation of time scales

[ ] has a linear and an exponential term in the voltage equation

[ ] accounts for adaptation

[ ] accounts  for bursting
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I(t)

Step current input – neurons show adaptation

1-dimensional (nonlinear) integrate-and-fire model cannot do  this!

Data: 

Markram et al. 

(2004)

Neuronal Dynamics – 7.2 Adaptation



( ) exp( ) ( )rest kk

du u
u u R w RI t

dt




−
= − − +  − +




Add adaptation variables:

( ) ( )fk
k k rest k k k f

dw
a u u w b t t

dt
  = − − + −

kw

jumps by an amount kb

after each spike

reset rIf u then reset to u u= =

SPIKE AND

RESET

AdEx model,

Brette&Gerstner (2005):

Neuronal Dynamics – 7.2 Adaptive Exponential I&F

Exponential I&F

+ 1 adaptation var.

= AdEx



Firing patterns:
Response to 

Step currents,

Exper. Data,

Markram et al. 

(2004)

I(t)



Firing patterns:
Response to 

Step currents,

AdEx Model,

Naud&Gerstner

I(t)

Image:

Neuronal Dynamics,

Gerstner et al.

Cambridge (2002)



( ) exp( ) ( )rest

du u
u u Rw RI t

dt




−
= − − +  − +



( ) ( )f

w rest f

dw
a u u w b t t

dt
  = − − + −

AdEx model 

Can we understand the different firing patterns?

Phase plane analysis!

Neuronal Dynamics – 7.2 Adaptive Exponential I&F



( ) ( )
du

f u Rw RI t
dt

 = − +

( )w rest

dw
a u u w

dt
 = − −

Neuronal Dynamics – 7.2. Adaptive Exponential I&F

-linear + exponential

-adaptation variable

→ Various firing patterns



( ) exp( ) ( )rest

du u
u u Rw RI t

dt




−
= − − +  − +



( )w rest

dw
a u u w

dt
 = − −

A - What is the qualitative 

shape of the w-nullcline?
[ ]  constant

[ ]  linear, slope a

[ ]  linear, slope 1

[ ]  linear + quadratic

[ ] linear + exponential

Neuronal Dynamics – Quiz 7.2.  Nullclines of AdEx

B - What is the qualitative

shape of the w-nullcline?
[ ]  linear, slope 1

[ ]  linear, slope 1/R

[ ]  linear + quadratic

[ ] linear  w. slope 1/R+ exponential
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( ) exp( ) ( )rest

du u
u u Rw RI t

dt




−
= − − +  − +



( ) ( )f

w rest f

dw
a u u w b t t

dt
  = − − + −

AdEx model 

w jumps by an amount b

after each spike

u is reset to ur

after each spike

parameter a – slope of w-nullcline

Can we understand the different firing patterns?



( ) exp( ) ( )rest

du u
u u w RI t

dt




−
= − − +  + +



( ) ( )f

rest f

dw
a u u w b t t

dt
  = − − + −

AdEx model – phase plane analysis: large b

b

u-nullcline

u is reset to ur

a=0



AdEx model – phase plane analysis: small b

b

u-nullcline

u is reset to ur

adaptation

( ) exp( ) ( )rest

du u
u u w RI t

dt




−
= − − + + +



( ) ( )f

rest f

dw
a u u w b t t

dt
  = − − + −



b

u-nullcline

u is reset to ur

( ) exp( ) ( )rest

du u
u u w RI t

dt




−
= − − + + +



( ) ( )f

rest f

dw
a u u w b t t

dt
  = − − + −

AdEx model – phase plane analysis: a>0



( ) exp( ) ( )rest

du u
u u Rw RI t

dt




−
= − − + − +



( ) ( )f

w rest f

dw
a u u w b t t

dt
  = − − + −

Firing patterns arise from different parameters!

w jumps by an amount b
after each spike

u is reset to urafter each spike

parameter a – slope of w nullcline

See Naud et al. (2008), see also Izikhevich (2003)

Neuronal Dynamics – 7.2 AdEx model and firing patterns



( ) ( )
du

f u R I t
dt

 = +

Best choice of f : linear + exponential

reset rIf u then reset to u u= =

(1)

(2)

( ) exp( )rest

du u
u u

dt




−
= − − + 



BUT: Limitations – need to add
-Adaptation on slower  time scales

-Possibility for a diversity of firing patterns

-Increased threshold      after each spike

-Noise


Neuronal Dynamics – Review: Nonlinear Integrate-and-fire



( ) exp( ) ( )rest kk

du u
u u R w RI t

dt




−
= − − +  − +




Add dynamic threshold:

0 1( )f

f
t t  = + −

Threshold increases after each spike

Neuronal Dynamics – 7.2 AdEx with dynamic threshold



( ) ( )
du

f u R I t
dt

 = +

reset rIf u then reset to u u= =

add
-Adaptation variables

-Possibility for firing patterns

-Dynamic  threshold      

-Noise


Neuronal Dynamics – 7.2 Generalized Integrate-and-fire



( ) exp( ) ( )rest

du u
u u w RI t

dt




−
= − − + + +



( ) ( )f

rest f

dw
a u u w b t t

dt
  = − − + −

u-nullcline
a=0

u

What happens if input 

switches from I=0 to I>0?

u-nullcline
[ ] u-nullcline moves horizontally

[ ] u-nullcline moves vertically

[ ] w-nullcine moves horizontally

[ ] w-nullcline moves vertically

Only during reset

Neuronal Dynamics – Quiz 7.3.  Nullclines for constant input
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( ) exp( ) ( )rest

du u
u u RI t

dt




−
= − − +  +



Exponential versus Leaky Integrate-and-Fire

( ) ( )rest

du
u u RI t

dt
 = − − +

Reset if u=

Badel et al (2008)

2mV =

Leaky Integrate-and-Fire



( ) ( )rest kk

du
u u R w RI t

dt
 = − − − +

( ) ( )fk
k k rest k k k f

dw
a u u w b t t

dt
  = − − + −

kw jumps by an amount kb
after each spike

( ) rIf u t then reset to u u= =

SPIKE AND

RESET

Dynamic  threshold

Neuronal Dynamics – 7.3 Adaptive leaky integrate-and-fire



( ) ( )rest kk

du
u u R w RI t

dt
 = − − − +

( ) ( )fk
k k rest k k k f

dw
a u u w b t t

dt
  = − − + −

Linear equation → can be integrated!

0

( ) ( ) ( ) ( )f

f
u t t t ds s I t s 



= − + − 

0 1( ) ( )f

f
t t t  = + −

Spike Response Model (SRM)
Gerstner et al. (1996)

Neuronal Dynamics – 7.3 Adaptive leaky I&F and SRM

Adaptive 

leaky I&F




Spike emission

( )
0

( ) rests I t s ds u


+ − +
potential

( )'

't

t t −( )=tu

0 1

'

( ) ( ')
t

t t t  = + −threshold

Arbitrary 

Linear filters

( )t

iu
i

Input

I(t) ( )s

Gerstner et al.,

1993, 1996

u(t)

Neuronal Dynamics – 7.3 Spike Response Model (SRM)



SRM with appropriate      leads to bursting

0

( ) ( ) ( ) ( )f

restf
u t t t ds s I t s u 



= − + − + 



Neuronal Dynamics – 7.3 Bursting in the  SRM



ih

( )
0

( ) rests I t s ds u


+ − +potential ( )'

't

t t −( )=tu

0 1

'

( ) ( ')
t

t t t  = + −threshold

Input

I(t) ( )s

( )s

S(t)

1( )s

+
u =

firing if ( ) ( )u t t=

Gerstner et al.,

1993, 1996

Neuronal Dynamics – 7.3 Spike Response Model (SRM)



+

Neuronal Dynamics – 7.3 Spike Response Model (SRM)

Linear filters for

- input

- threshold

- refractoriness

( )
0

( ) rests I t s ds u


+ − +

potential

( )'

't

t t −( )=tu

0 1

'

( ) ( ')
t

t t t  = + −
threshold



+

Neuronal Dynamics – 7.3 Spike Response Model (SRM)

Linear filters for

- input

- threshold

- refractoriness



( ) ( )rest

du
u u w RI t

dt
 = − − − +

( )f

w w f

dw
w b t t

dt
  = − + −

Exercise 4: from adaptive IF to SRM

Integrate the above system of two  differential 

equations  so as to  rewrite the equations as

( )
0

( ) rests I t s ds u


+ − +potential ( )
0

( )s S t s ds


−( )=tu

A – what is         ?

B – what is        ?  

( )s

( )s

( ) exp( )
R s

x s
 

= − ( ) exp( )
w w

R s
x s

 
= −

( ) [exp( ) exp( )]w

w w

b R s s
x s

 

   
= − − −

−

(i) (ii)

(iii) (iv) other

rIf u then reset to u u= =
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Spike Response Model (SRM)

Generalized Linear Model GLM

( )
0

( ) rests I t s ds u


+ − +potential ( ) ( )s S t s ds −( )=tu

0 1( ) ( ) ( )t s S t s ds  = + −threshold

firing intensity ( ) ( ( ) ( ))t f u t t = −

Gerstner et al.,

1992,2000
Truccolo et al., 2005

Pillow et al. 2008

ihI(t) ( )s

( )s

S(t)

1( )s

+
( )f u −





escape process

u(t)

t

)(t

))(()(  −= tuft

escape rate

u

Neuronal Dynamics – review from week 6: Escape noise

1 ( )
( ) exp( )

u t
t




−
=
 

escape rate

( ) ( )rest

d
u u u RI t

dt
  = − − +

( )f f

rif spike at t u t u + =

Example: leaky integrate-and-fire model

t̂





escape process

(

u(t)

−
t

t

dtt
^

)')'(exp( )ˆ( ttS I =

Survivor function

^t t

)(t

( )( ) ( ( ) )t f u t t = −

escape rate

−=

t

t

dttt
^

)')'(exp()( )ˆ( ttPI

Interval distribution

Survivor function

escape

rate

)ˆ()()ˆ( ttStttS IIdt
d −=

u
( )

( )
0

( )
( ) ( ( ) ) exp[ ]

u t t
t f u t t

u


  

−
= − =



Good choice

Neuronal Dynamics – review from week 6: Escape noise



( ) ( )f

f

S t t t= −

1t 2t 3t

1 2, ,... Nt t t
Measured spike train with spike times 

Likelihood L that this spike train

could have been generated by model?

1 2

1

1 1

0

( ,..., ) exp( ( ') ') ( ) exp( ( ') ')...

t t

N

t

L t t t dt t t dt  = −  − 

0 T

Neuronal Dynamics – 7.4 Likelihood of a spike train in GLMs



1 2

1

1 1 2

0

( ,..., ) exp( ( ') ') ( ) exp( ( ') ') ( )... exp( ( ') ')
N

t t T

N

t t

L t t t dt t t dt t t dt    = −  −  −  

( ) ( )f

f

S t t t= −

1t 2t
3t0 T

1

0

( ,..., ) exp( ( ') ') ( )

T

N f

f

L t t t dt t = − 

1

0

log ( ,..., ) ( ') ' log ( )

T

N f

f

L t t t dt t = − +

Neuronal Dynamics – 7.4 Likelihood of a spike train



+

Neuronal Dynamics – 7.4 SRM with escape noise =  GLM

-linear filters

-escape rate

→likelihood of observed

spike train
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( )
0

( ) rests I t s ds u


+ − +Subthreshold

potential
( ) ( )s S t s ds −( )=tu

Linear filters/linear in parameters

known spike train known input

Neuronal Dynamics – 7.5 Parameter estimation: voltage 

ih

I(t)

( )s

( )s

S(t)

1( )s

+
( )f u −

Spike Response Model  (SRM)

Generalized Lin. Model  (GLM)



( )n k n k restu t k I u−= +

Linear in parameters = linear fit = quadratic problem

Neuronal Dynamics – 7.5 Parameter estimation: voltage 

comparison model-data

( )
0

( ) ( ) restu t s I t s ds u


= − +



( )
0

( ) ( ) restu t s I t s ds u


= − +

( )n k n k restu t k I u−= +

Linear in parameters = linear fit

Neuronal Dynamics – 7.5 Parameter estimation: voltage 

I

( )datau t

2

1

[ ( ) ]
K

data

n k n k rest

n k

E u t k I u−

=

= − − 



( )
0

( ) ( ) restu t s I t s ds u


= − +
( )n k n k rest

k

u t k I u−= +

Model
Data ( )datau t

I

( )datau t

2

1

[ ( ) ]
K

data

n k n k rest

n k

E u t k I u−

=

= − − 

Linear in parameters = linear fit = quadratic optimization

Neuronal Dynamics – 7.5 Parameter estimation: voltage 



( )n k n k rest

k

u t k I u−= +

2

1

[ ( ) ]
K

data

n k n k rest

n k

E u t k I u−

=

= − − 

( )n nu t k x= 

Neuronal Dynamics – 7.5 Parameter estimation: voltage 

Vector notation

( )n nu t k x= 



( )
0

( ) ( ) restu t s I t s ds u


= − +

( )n k n k restu t k I u−= +

Linear in parameters = linear fit = quadratic problem

( )n nu t k x= 

2

1

[ ( ) ]
K

data

n k n k rest
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Neuronal Dynamics – 7.5 Parameter estimation: voltage 



Mensi et al., 2012
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Neuronal Dynamics – 7.5 Extracted parameters: voltage 



Fitting models to data: so far ‘subthreshold’
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Neuronal Dynamics – 7.5 Threshold: Predicting spike times
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Neuronal Dynamics – 7.5 Generalized Linear Model (GLM) 
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Neuronal Dynamics – 7.5 GLM: concave error function 



Neuronal Dynamics – 7.5 quadratic and convex/concave optimization

Voltage/subthreshold

- linear in parameters

→ quadratic error function

Voltage/subthreshold

- nonlinear, but GLM

→ convex error function



n nu RI=

Exercise 5 NOW: optimize 1 free parameter
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Exercise 6 NOW – question 1:
What are the units of             ? (i) Voltage?

(ii) Resistance?

(iii) Resistance/s?

(iv)Current?
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Exercise 6 NOW – question 2:
What are the units of             ? (i) Voltage?

(ii) Resistance?

(iii) Resistance/s?

(iv)Current?

( )s



Neuronal Dynamics:
Computational Neuroscience

of Single Neurons

Week 7 – Optimizing Neuron Models

For Coding and Decoding

Wulfram Gerstner

EPFL, Lausanne, Switzerland

7.1 What is a good neuron model?

       - Models and data

7.2  AdEx model 
      - Firing patterns and analysis

7.3  Spike Response Model (SRM)
         - Integral formulation

7.4 Generalized Linear Model (GLM)
        -  Adding noise to the SRM 

7.5 Parameter Estimation
         - Quadratic and convex optimization

7.6. Modeling in vitro data
         -  how long lasts the effect of a spike?

7.7. Helping Humans

Week 7 – part 6 : Parameter estimation  



Neuronal Dynamics – 7.6 Models and Data

comparison model-data

Predict

-Subthreshold voltage

-Spike times
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Neuronal Dynamics – 7.6 GLM/SRM with escape noise



neuron

model

Image:Mensi et al.

Neuronal Dynamics – 7.6 GLM/SRM predict subthreshold voltage



Mensi et al., 2012

No moving threshold

With moving threshold

Role of moving threshold

Neuronal Dynamics – 7.6 GLM/SRM predict spike times
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exponential
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current

‘soft-threshold

adaptive IF model’



Pozzorini et al. 2013

Time scale of filters?
→ Power law

A single spike has a measurable effect

more than 10 seconds later!

( )s 1( )s

Neuronal Dynamics – 7.6 How long lasts the effect of a single spike



-Predict spike times

-Predict subthreshold voltage

-Easy to interpret (not a ‘black box’)

-Variety of phenomena

-Systematic: ‘optimize’ parameters

Neuronal Dynamics – 7.6 Models and Data

BUT so far limited to in vitro
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7.1 What is a good neuron model?

       - Models and data

7.2  AdEx model 
      - Firing patterns and analysis

7.3  Spike Response Model (SRM)
         - Integral formulation

7.4 Generalized Linear Model (GLM)
        -  Adding noise to the SRM 
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-Predict spike times

-Predict subthreshold voltage

-Easy to interpret (not a ‘black box’)

-Variety of phenomena

-Systematic: ‘optimize’ parameters

Neuronal Dynamics – Review:  Models and Data

BUT so far limited to in vitro



Now: extracellular

recordings
visual 

cortex

Model of ‘Encoding’

A) Predict spike times, given stimulus

B) Predict subthreshold voltage

C) Easy to interpret (not a ‘black box’)

D) Flexible enough to account for a variety of phenomena

E) Systematic procedure to ‘optimize’ parameters

Neuronal Dynamics – 7.7 Systems neuroscience, in vivo



Estimation of spatial (and temporal) receptive fields

( ) k K k restu t k I u−= +

firing intensity ( ) ( ( ) ( ))t f u t t = −

LNP

Neuronal Dynamics – 7.7 Estimation of receptive fields



Special case of

GLM=

Generalized Linear Model

LNP = 

Linear-Nonlinear-Poisson

visual

stimulus

Neuronal Dynamics – 7.7 Estimation of Receptive Fields



GLM for prediction of retinal ganglion ON cell activity

Pillow et al. 2008



Neuronal Dynamics – 7.7 GLM with lateral coupling



Pillow et al. 2008

One cell in a Network of Ganglion cells



visual 

cortex

Model of ‘Encoding’

A) Predict spike times, given stimulus

B) Predict subthreshold voltage

C) Easy to interpret (not a ‘black box’)

D) Flexible enough to account for a variety of phenomena

E) Systematic procedure to ‘optimize’ parameters

Neuronal Dynamics – 7.7 Model of ENCODING



visual 

cortex

Model of ‘Decoding’:

predict stimulus, given spike times

Neuronal Dynamics – 7.7 Model of DECODING

Predict stimulus!



Model of 

‘Decoding’
Predict intended arm movement,

given Spike Times

Application: Neuroprosthetics

frontal
cortex

Neuronal Dynamics – 7.7 Helping Humans

Many groups

world wide

work on this 

problem!

motor
cortex



Application: Neuroprosthetics

Hand velocity

Decode the intended arm movement

Neuronal Dynamics – 7.7 Basic neuroprosthetics



Mathematical models 

for neuroscience

help humans

The end

Neuronal Dynamics – 7.7  Why mathematical models?



( ) exp( ) ( )rest

du u
u u w RI t

dt




−
= − − +  + +



( ) ( )f

w rest f
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  = − + −

Exercise 3: AdEx model – phase plane analysis

b

u-nullcline

u is reset to ur

What firing pattern do you expect?
(i) Adapting

(ii) Bursting

(iii) Initial burst

(iv)Non-adapting
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