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Neuronal Dynamics - /.1 Neuron NModels and Data
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-What is a good neuron model?
-Estimate parameters of models?



Neuronal Dynamics - 7.1 What is a good neuron model?

A) Predict spike times

B) Predict subthreshold voltage

C) Easy to interpret (not a ‘black box’)

D) Flexible enough to account for a variety of pnenomena
E) Systematic procedure to ‘optimize’ parameters



Neuronal Dynamics — Review: Nonlinear Integrate-and-fire

A B
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What Is a good choice of f ? u=u



Neuronal Dynamics — Review: Nonlinear Integrate-and-fire

(1 rd—u—f(u)+RI(t)

\ (2) It u=0., then resetto u=u,

What is a good choice of f ?

(1) Extract f from more complex models

(1) Extract f from data



Neuronal Dynamics — Review: Nonlinear Integrate-and-fire

(i) Extract f from more complex models T(é_l:: f(U)+RI(0)

A. detect spike and reset
_—resting state

w

Separation of time scales:
Arrows are nearly horizontal

—60 —40 —20

o (mV] Spike initiation, from rest
See week 4: Td—uz F(U,W)-I-Rl(t) W W
2dim version of ddt
Hodgkin-Huxley ¢ b G(u,w) B. ASSUME W=Wrest

Y odt



Neuronal Dynamics — Review: Nonlinear Integrate-and-fire

(i) Extract f from more complex models _au _ £ (U)+ RI(D)

dt

A B |
ol f\\l ) | | ,.
= 5| i inear exponemtlar
5 6 - :
:% 1 L Uyrest o U_’Ieﬂ B
E 2 v 91‘{%:‘-5{1: -
0 H—s—¢] A
_9 | | L ) 50 L | - |
—5H0 0 50 — &0 — 70 —60 —5H0
w [mV] d u [MmV]
See week 4: u_

: : T —F(U ret)+RI(t) I
2dim version of dt S\ tS_eparatllon of
Hodgkin-Huxle dw me stales

J Y Ty —— =G(U,W) W= W,




Neuronal Dynamics — Review: Nonlinear Integrate-and-fire
(i1) Extract f from data Badel et al. (2008)

du du u—9
t— = f(U)-l-Rl(t) T_:_(u_urest)_I_AeXp( )
~ dt f () dt A
Fu)= . Exp. Integrate-and-Fire, Fourcaud et al. 2003

A B

"I Pyramidal neuron I " Inhibitory E

E 10| . I £l interneuron Tk

z | linear expon{tlag z | linear EXpOn@ | Engjcl)cil)esl)et B

: 5 - i 5 | 1._

*i 0 Mﬁ _ ri = :,j’: _

0 —l?o —{lao —.lam —{40 0 —l?o —130 _!50 —;m

u [mV] w [mV]



Neuronal Dynamics — Review: Nonlinear Integrate-and-fire

du

(1) 7 = F+RIE)

(2 If u=6_. then resettou=u,

Best choice of f : linear + exponential

du u—4
—=—(U—-U_.)+Aex
T ( rest ) p( A )

BUT: Limitations — need to add

-Adaptation on slower time scales
-Possibility for a diversity of firing patterns
-Increased threshold % after each spike
-Noise




Neuronal Dynamics - Quiz1.1.

The exponential integrate-and-fire model

| ] can be extracted from data

[ ] can be extracted from two-dimensional neuron model under the assumption of
a separation of time scales

[ ] has a linear and an exponential term in the voltage equation

[ ] accounts for adaptation

[ ] accounts for bursting
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Week 7 — part 2a : AdEx: Adaptive exponential integrate-and-fire
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Neuronal Dynamics - 7.2 Adaptation
Step current Input — neurons show adaptation

adapting burst - adapting
\
5 |
(1) 2 (I FHiW
- - - . Data:
. 'L Markram et al.
. = AAA—— JMWHJ“’;/\-U/ | (2004)

i o -
| |
| . _

1-dimensional (nonlinear) integrate-and-fire model cannot do this!




Neuronal Dynamics - 1.2 Adaptive Exponential I&F

Add adaptation variables:

du

r—=—(U-u_.)+ Aexp(u

dt /A

dw
dt

Ty

SPIKE AND
RESET

—

)_RZka

C=a, (U—Ugy) —W, "'kasz S(t—t")

\

after each spike Wi
jumps by an amount b,

If u=2@6

reset

then resetto u=u,

Exponential I&F
+ 1 adaptation vatr.
= AdEX

AdEX model,
Brette&Gerstner (2005):



Firing patterns

Response to
Step currents,
Exper. Data,

Markram et al.

(2004)

(f)

]lg

low




Firing patterns:

Response to
Step currents,
AdEXx Model,

tonic
high

low

Naud&Gerstner [ '™

(f)

Image:
Neuronal Dynamics,
Gerstner et al.
Cambridge (2002)

tonic

INITIATION PATTERN
intial burst




Neuronal Dynamics - 1.2 Adaptive Exponential I&F

((jjl: = —(U— urest)+Aexp( A ) Rw-+ RI(t)
W AdEX model
T o =a (uU—-u_,)—-w+br Zf5(t—tf)

Phase plane analysis!

Can we understand the different firing patterns?



Neuronal Dynamics - 1.2. Adaptive Exponential I&F

Td_u: f (u)—Rw+ RI(t)
dt
dw
=a (u—u —W
TW dt ( rest)

-linear + exponential
-adaptation variable

-> Various firing patterns



Neuronal Dynamics — Quiz7.2. Nuliclines of AdEx

du u—4
rT—=—(U—-u_.)+Aex Rw+ RI (1
= (U Ureg) p(——) (t)
dw
T =a(u—-u_.)—w
W dt ( rest)
A - What Is the qualitative B - What Is the qualitative
shape of the w-nullcline? shape of the w-nullcline?
[] constant [ ] I?near, slope 1
[] linear, slope a [] linear, slope 1/R
[1 linear, slope 1 [] linear + quadratic
[1 linear + quadratic [ ] linear w. slope 1/R+ exponential

| ] inear + exponential
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Week 7 - part 2b : Firing patterns and phase plane analysis
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after each spike

AdEX model u is reset to u:
du
=—(U—u + A ex — Rw+ RI (T
dt ( rest) p( A ) ()
T dw = a (u_urest)_w_l_bz- ng(t_tf)

Yo dt /
after each spike
W Jumps by an amount b

parameter a — slope of w-nullcline
Can we understand the different firing patterns?



1w [mV]

AdEXx model — phase plane analysis: large b

—10
—20
—30
—40
—50
—60
—70

U IS reset to Ur

du
= —(U—u + A exX +wW+ RI(t
e (U—U) p(— A ) (t)
dw
—a (U=t ) - W+bz > St-t")
at a=0 _
. B u-nullcline
- ! 4o 60 |
: : 50 ¢
i l 1 = 40}
= S0 |
; (/I:E ; lll / I / R
/ 10 ~o '
—/ ; b ~ 0 e — i' 1
| | | 10 RN . . I
() 100 200 S00 — 70 X 60 — 50 ,’
¢t [MV] //i TmV] /



AdEX model — phase plane analysis: small b

du u—9
—=—(U—u + A ex + W+ RI (T
T (U—Ue) p( A ) (t)
T d;/l/ =MW+bT zf5(t—tf)
adaptation o

60 |
50 |
10 |
30 |
20 |
10 |
0} —e — — %}b
10

w [pA]

70 60 — 50
J w [MmV]
U IS reset to Ur



AdEX model — phase plane analysis: a>0

du u—9
r—=—(U—U + A ex + W+ RI (t
~ (U—U.) p( A ) (t)
T d(:;: =a (U—u_ . )—w+br Zf5(t—tf)
| u-nullcline
- \\/
20 F
10 | .
e b

10 | |
— 70 — 60 —gx
T, [m‘v’%

U IS reset to Ur



Neuronal Dynamics — 7.2 Adex model and firing patterns
— after each splke U IS reset to ur

du
= —(U — U + A ex Rw+ RI (t
e ( rest ) p(= 7 ) (t)
T, d&’: —a (U—U.y)—W+bz >  St-t')

after each spike
W jumps by an amount b

parameter a — slope of w nulicline

Firing patterns arise from different parameters!
See Naud et al. (2008), see also lzikhevich (2003)



Neuronal Dynamics — Review: Nonlinear Integrate-and-fire

(1) Y W)+ RI(M)

dt
/ (2) If u=0, then resetto u=u,

Best choice of f : linear + exponential

du u—9
—=—(Uu—-uU + A ex
T (U—U.) p( A )

BUT: Limitations — need to add

/ -Adaptation on slower time scales

/ -Possibility for a diversity of firing patterns
-Increased threshold % after each spike
-Noise




Neuronal Dynamics - 7.2 AdEx with dynamic threshold

Add dynamic threshold:

SR urest)+Aexp( Y-RS w, +RI(t)

dt

Threshold increases after each spike
I=60,+) 6(t—-t")

C Model

40 mV

250 ms

A



Neuronal Dynamics - 7.2 Generalized Integrate-and-fire

du

— =T W)+ RI(t
r = T (t)

If u=6_. then resetto u=u

reset

add

./ -Adaptation variables

/ -Possibility for firing patterns

/ -Dynamic threshold %
-Noise



Neuronal Dynamics — Quiz7.3. Nullclines for constant input

du u— &
—=—(U—u + A ex + W+ RI (L
re = —(U—U) + Aexp(—) ()
---Only during reset
T aw =M—W+br z"?»y&
at a=0
- u-nulicline

What happens If input
switches from I=0 to [>07?
[ ] u-nulicline moves horizontally sonulicline

[ ] u-nullcline moves vertically
[ ] w-nullcine moves horizontally = ﬁ/

| | w-nullcline moves vertically
T~




Week 7 — part 3 :Spike Response Model (SRM)
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Exponential versus Leaky Integrate-and-Fire
du u—9

i —(u—u_.)+Aexp( @ )+ RI(t) Badel et al (2008)
I | ol l l l l ll
150 - ] I - 2 10 |
g 100 1 : .' / / : ||| - SE , }}
E 50 |- B | ."I - E ol j _
g 0 _ _ *L_'r_g}f’ S e e e
_5[1?1[] 0 " 60 _.:3{] _I;m = —lTo —L‘.D —.l'%{} —lm
o ImV1 u [MmV]
du
TE =—(u—-u_.)+RI(t)

Leaky Integrate-and-Fire
Reset if u= &



Neuronal Dynamics - 7.3 Adaptive leaky integrate-and-fire

(;Iltj =—(u-u,,)— RZ w, + RI (1)
dw
2" dtk :ak(u_urest)_wk"'kaka S(t—t')

—

after each spike
SPIKEAND _ w, jumps by an amount b,

RESET If u=9(t) then resetto u=u,
- \

Dynamic threshold




Neuronal Dynamics - 7.3 Adaptive leaky I&F and SRM

TS —(U—U,)— R W, +RI(t)

Adaptive

dw, leaky |&F

dtk =, (U—Ugy ) — W, +kaka S(t—t')

Ty

Linear equation = can be integrated!

u(t):zfn (t—tf)+Tds/<(s)I(t—s)
0 Spike Response Model (SRM)
I =0,+Y O,t-t') Gerstner et al. (1996)



Neuronal Dynamics — 7.3 Spike Response Model (SRM)

\ Gerstner et al.,

I 1993, 1996
i | 3
Input ) U " g
t — k() o U
/JQ\/\ RN B Spike emission
Arbitrary Ut
Linear filt L
poteen%\
u(t)=>" n(t-t J+[ x(s)I(t—s)ds+Uy,

threshold ~ 9(t) = 90t+26’1(t 1)



Neuronal Dynamics — 7.3 Bursting in the SRM

SRM with appropriate 77 leads to bursting

40

u (mV]

60 ;Illl " '{\\._d-ﬂ/ l'll |-'Il l'ﬁﬂ ” |.'III .IFH_ - h'lll Ili'll — .I'I l'l ."W_I -'II / §

o 'l.'L.""x_ f',‘l' r"‘x,_.--r"'llrl, f'(\‘___-fp'll-'lll-'
0.0 f [mb] 500.0
S0 e e
I Ill
§4ﬂ- u
= l'.
() e
(0.0 10.0 20.0 30.0

1O =3 7 -t + [dsx@IE-9)+uy



. h Gerstner et al.,
/ ] ‘@.(.S_)_ \ 1993, 1996
Input ) h v / A
(1) O K(S) L :$ """"""""""""""""""""" S(1)
NAZ AR il 4 =T
\ AL//\ 17(S) \ <?/
potential u(t)= Z n(t-t +I ) 1(t—s)ds+U,,

firing if u(t) = '9('[)



potential . [ _ ﬁ\
( ) Z 77 t t +I (t S)ds_l_urest . [ / W‘
| YW\ = 4+ P
\_ TL;/\/} “
threshold Linear filters for
9(t) =6, +Z 0,(t—t") - Input
------- - threshold

- refractoriness



o
\_ TLf\/ } “
Linear filters for

- Input

- threshold

- refractoriness




Exercise 4: from adaptive |IF to SRM

r(;l: =—(UuU—u__.)—w+ RI (1)
I If u=& then resetto u =u,
. (;"t’ — —w+bz,> St-t")

Integrate the above system of two differential
equations so as to rewrite the equations as

potential  ul(t f 7(s)S(t—s)ds +I )1 (t—s)ds +u,
A —whatis 7(5) 2 (i) X(S)=Eexp(—;) (ii) X(S)=TBGXP( TS)
B —what is £(s)? bR . )
(i) *(8)== T:W [exp(——) ~ exp( :W>] (iv) other




Week 7 — part 4 :Generalized Linear Model (GLM)
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Spike Response Model (SRM)
Generalized Linear Model GLM

Gerstner et al.,

1992.2000
Truccolo et al., 2005

r

g \
()

-~ > :
——

1

N ns)
-

/
A/I\(t/)\/\@ x)
N
potential u(t

firing intensity p(t) =

(t)=[7(s)S(t-s)ds +j
threshold 4(t) =6,

F(u(t)- 9())

\a Pillow et al. 2008
N
f(U—-J
-9 X Sft)
\ /
@
(t s)ds+u_.




Neuronal Dynamics - review irom week 6: Escape noise

escape process

""" IO
0

escape rate  p(t) = — exp(

u(t) —9

t t

escape rate

p(t) = T(u(t)-35)

A A

)

Example: leaky integrate-and-fire model

-

.

r

L
t

u=—-(Uu-u_,)+RI(t)

rest

if spike att’ =u(t"+5)=

~




Neuronal Dynamics - review irom week 6: Escape noise

escape process Survivor function
! (
“ ] ] A
_________________________ dg (tf) = —p(t) S, (tf
P T it S1 (U0 ==, S, (¢}
i) |
S Sil) = exp(-[ p(t)at)
escape rate - s —~
pt) = fu)—9(1)) Interval distribution
| P = () - exp(- j p(t)dt)
escape - V _
Good choice rate Survivor function
u(t) —9(t
p®) = F )~ (1) = oy expl D=2,

N, u AU



Neuronal Dynamics - 7.4 Likelihood of a spike train in GLMs

a sy =>st—-t")
S | ] l
o t t° t3 T,
tt te,...t"

Measured spike train with spike times

Likelihood L that this spike train
could have been generated by model?

L(tY,...,.tN) = exp(— j ot)dt)p(th) - exp(— j o(t)dth...



Neuronal Dynamics - 7.4 Likelihood of a spike train

-

S(t)=>) s(t-t")
o

o

tl

t2

: l
t r

L(t',....t") =exp(=] p(t )dt)p(t") -exp(~| p(t)dt)p(t?)...-exp(- | p(t)dt)

L(t,....t") :exp(—jp(t')dt')Hp(tf)

log L(t,...,t") = —T[p(t " dt '+Z logo(t")



Neuronal Dynamics — 7.4 SRM with escape noise = GLM

-~
PUNAENC

N ms
-linear filters

-escape rate
-2 likelihood of observed
spike train



Week 7 — part 5 : Parameter estimation
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Neuronal Dynamics - 7.5 Parameter estimation: voltage

Spike Response Model/(SRM)
Generalized Lin. Model (GLM)

/\/\/\/\ Ej> /I,'/\‘J\(:\(\S) ) ;

{1 i
subthreshold ) (s S(t s)ds +[ & (s)1(t—s)ds +Uy,
potential T

Known splke train kKnown Input

Linear filters/linear in parameters



Neuronal Dynamics - 7.5 Parameter estimation: voltage
Linear In parameters = linear fit = quadratic problem
u(t) = j )1(t —s)ds +u

rest

(t,) Z@ -k © Trest comparlson model data

T }CK
e, ) | I |
0. "'-.. | Ill" .l \
-.______- - l"-,. -"\!V"ky\‘\‘ﬂ 'Wl"'w
=8 T | |
model
optimization
i I I Y YY v
kg\m'**"""‘"‘“m‘ W




Neuronal Dynamics - 7.5 Parameter estimation: voltage

Linear In parameters = lIinear fit
u(t) = j )1(t—s)ds+u...,

u(tn) — @I n—k T l"Irest
|

I’ }LK
I | | | | | | | | | |
e L1
-
‘Ll " I.l"'.,
| !
I I udata (t)
: I

K
E = Z [udata (tn) - Z kk In—k - urest]2
" (=1



Neuronal Dynamics - 7.5 Parameter estimation: voltage

Linear In parameters = linear fit = quadratic optimization

Model  u(t) = j
|

1 data (t)

(t s)ds +u
u(tn) B Zkk In—k _I_urest
K

rest

Data U data (t)

K
E = Z [udata (tn) - Z kk In—k - urest]2
" (=1



Neuronal Dynamics - 7.5 Parameter estimation: voltage

Vector notation

u(tn) — @Ink T urest
K

ac JFLK
ﬁ.rl_' ) lll.l."'-.. —_—
III"'-... t . k . —
I N U(t,) =KX,

K
E :Z [udata(tn)_zkk In—k _urest]2
- k=1



u(t) = j

‘ 11

cdt

Kdt

ﬂmt
time

r=K+1

f
r=K+2| |

r=K+3

|
~

[

K
E = Z [udata (tn) _Z kk In—k _urest]2
h k=1

X

Neuronal Dynamics - 7.5 Parameter estimation: voltage

Linear In parameters = linear fit = quadratic problem
JI(t-s)ds+U, +| 7

U(t ) @ n— k rest

S (t —s)ds
U (tn ) =Kk
X, X, X, Xy
Ip Iy, dp_ 1 ",I
Ty Ip g 1, '|
Ieen Ly 1y 1, |
dr
I, 1., I, [



Neuronal Dynamics - 7.5 Extracted parameters: voltage

Subthreshold u(t)=joo (s)1(t—s)ds+u,_ +j77(s)S(tT—s)ds
|

. 0
potential | |
kﬂOWﬂ input knOwn Splke trall
A B
V.U | | | | | | o [ | | | | | ]
- l"r rr(t) = Ge —t/O. ag B B B 1 (t) = 2e “9 —.6eT /3T 1 4 _“EE_
057 ™ Inhibitory L —
D 0.4 \ _ B 0 ; T
[ interneuron| = |/ - ]
S 030 4 & _9 x np(t) = .6(e” 1% —eTH/15)
é 0ol \\re(t)=.45¢"*/18 _ = 3 / -
= | !
: —4n . -
0.1 - \ pyramidal - _5 |/ pyramidal _
0 0 | T e B s _6 L | | | | | |
0 10 20 30 40 50 60 O 50 100 150 200 250 300 350

Time [ms] Mensi et al., 2012 Time [ms]



Fittina models to data: so far ‘subthreshold’

A Experimental data set

()
S

V(t)

E 250 ms
&

yty I | 1| I |

C Model

o ] 20 ms Dyn

= 'S | ' thre old _zsoms
PIM . = ail R s -

Adaptation current



Neuronal Dynamics - 7.5 Threshold: Predicting spike times

Joiivet&Gerstner, 2005

/ . 0.(s) \a Paninski et al., 2004
\\]i-__

» Pillow et al. 2008
O o @ L e S
=) K)o (D e
PN = gt 1L
potential  u(t f 77(s)S(t—s)ds + j ) I(t—s)ds +u,

firing intensity p(t) = f(U(t) S(t))



Neuronal Ilvnamips - 15 Generalized Linear Model (GLM]
log L(t,...,t") = —Ip(t dt '+Z logp(t') =-E

potential  ult ff? )S(t—s)ds +j ) I(t—s)ds+U,

opt



Neuronal Dynamics - 7.5 GLM: concave error function

potential  u(t j 77(s)S(t—s)ds +I ) I(t—s)ds+U,

threshold Q(t) = 6, + j 0, (s)S (t — s)ds

firing intensity o(t) = f(U(t) (1))

log L(t,...,t") = —T[p(t Ndt '+Z logo(t')

Paninski, 2004



Neuronal Dynamics — 7.5 quadratic and convex/concave optimization

» (1)

Voltage/subthreshold

- linear In parameters
-> quadratic error function

Voltage/subthreshold

- honlinear, but GLM
- convex error function



Exercise 5 NOW: optimize 1 free parameter

Model Data
u = RI udata(tn)

n n

Optimize parameter R, so as to have a minimal error

E = Z [udata(tn) - I:an]z

U data (t)




Exercise 6 NOW — question 1.

What are the units of &(S) ? (i) Voltage?
o \ () Resistance?
/ \QL(-S_). @ (111) Resistance/s’

N
/

: h — —a[ -
/\)@\/\[ﬁ\ @j:g :%/ -9 ‘E‘ j g(t)
Lo
nns) | <
\_ — /

potential  ul(t jn )S(t—s)ds +j )1 (t—s)ds +u,

threshold (t) = 6, + j 0, (s)S (t — s)ds

firing intensity o(t) = f(U(t) F(t))




Exercise 6 NOW — question 2:

What are the units of 77(s) 2 (i) Voltage?
L a(s) () Resistance?
/ *1~(-—)- @ (1) Resistance/s’

: K(S) n v -------------------- f(U—J) s (iV) Cgrﬁrsnt’j\

SJONT NS S pe > | ]

4 I
() 4
\ e B

ootential  u(t)=|7(s)S(t—s)ds +IOOO r(s)1(t—s)ds+u,

_/

firing intensity o(t) = T (u(t) —&(t))



Week 7 — part 6 : Parameter estimation

(P \l 7.1 What is a good neuron model?
T - Models and data
\J 7.2 AdEx model

Ne“rnna_l nvnamlc&_ - Firing patterns and analysis
of Single Neurons - Integral formulation
\|7.4 Generalized Linear Model (GLM)
Week 7 — Optimizing Neuron Models - Adding noise to the SRM
For Coding and Decoding \ 7.5 Parameter Estimation

- Quadratic and convex optimization
Wulfram Gerstner

7.6. Modeling in vitro data
EPFL, Lausanne, Switzerland - how lonq lasts the effect of a spike?

7.7. Helping Humans



Neuronal Dynamics - 7.6 Models and Data

comparison model-data
, P N

Sl B A Lt it -Subthreshold voltage

model

‘n ﬂuM\QW J/_ mathemaical \ Y Gmeiiatii]: Y

B neuron i

w nreF uuuu iel -Spike times
'\___,_, |‘ (M 4UMH| e \
\ )) e




(

~ G (s)

7

r R
1 j
-

Neuronal Dynamics —7.6 GLM/SRM with escape noise

Jolivet&Gerstner, 2005
Paninski et al., 2004

Pillow et al. 2008

votential  u(t)=[7(s)St-s)ds +| &

firing intensity p(t) = f(U(t) S(t))

- ™
) xc(s) n -9 S(t)
=N e (e e >
MNP == e 1 [
4 S I
160 j/
(t s)ds+uU._..



Neuronal Dynamics —7.6 cLM/SRM predict subthreshold voltage

Al ! Yy L .

T

-
~f
=

heuron-._ Image:Mensi et al.
—
5
model |A oA
N{“ o ; {II | l i HH e
' - T I l
odel § |, | | I,
Y {|! - .||H~ 1L
205 210 215 220 25  23.0



Neuronal Dynamics — 7.6 GLM/SRM predict spike times

Role of moving threshold ~ No moving threshold

A B With moving thresholcj/
14 — 1.0
12 - o \
0.8 - -
— 10 -
E S F\ . 0.6 - -
Rl o L I 01(t) = 12e—t/37 4 9—t/500 E
- ) 0.4 -
= 4L \ |
2 ~— - 092 L _
@1(t) = O0mVv - .
(} I I I I I I I Y0
0.0
0 50 100 150 200 250 300 350 Inh. —XC.

Time [ms]

Mensi et al., 2012



Change In model formulation:
What are the units of .... ?

expone

(1)

A =] NG,

potential C—u

threshold

firing Intensit

‘soft-threshold
adaptive IF model’

q@
4 I

o \QL (_S_)_ \<:\

S(0 “

_/

\_

d

dt

p(t) = 1 (u(t) —5(t))

(t) = jﬁ(s)S(t —s)ds +1(t)

adaptation
current




Neuronal Dynamics — 7.6 How long lasts the effect of a single spike
Time scale/of filterg?

4 I
A 7(S) - Power law .6,(s)
A | V : B N~ i 4
0.5 - ~ 20
— 10°
= =
L 1':.]_1
= 94 B 15
% 1072 =
-
E;’ o 107 % 10
£ a =
£ 0.2 10 i‘f‘
T _5 =
E 0.1 10 10° 10% 10' 10° 10’ = 5 10°
= =
0.0 0
0 5 10 15 20 0 5 10 15 20
Time [s] Time [s]
A single spike has a measurable effect Pozzorini et al. 2013

more than 10 seconds later!



Neuronal Dynamics - 7.6 Models and Data

-Predict spike times

-Predict subthreshold voltage
-Easy to interpret (not a ‘black box’)
-Variety of phenomena
-Systematic: ‘optimize’ parameters

BUT so far limited to in vitro



Week 7 - part 7: Helping Humans

(P \l 7.1 What is a good neuron model?
T - Models and data
\J 7.2 AdEx model

Ne“rona_l nvnamlc&_ - Firing patterns and analysis
Computational Neuroscience \I 7.3 Sp|ke Response Model (SRM)
of Single Neurons - Integral formulation

\|7.4 Generalized Linear Model (GLM)
Week 7 — Optimizing Neuron Models - Adding noise to the SRM
For Coding and Decoding \7.5 Parametgr Estimation. o

- Quadratic and convex optimization

Wulfram Gerstner \J7.6. Modeling in vitro data

EPFL, Lausanne, Switzerland - how long lasts the effect of a spike?
7.7. Helping Humans



Neuronal Dynamics — Review: Models and Data

-Predict spike times

-Predict subthreshold voltage
-Easy to interpret (not a ‘black box’)
-Variety of phenomena
-Systematic: ‘optimize’ parameters

BUT so far limited to in vitro



Neuronal Dynamics — 7.7 Systems neuroscience, in vive

Now: extracellular
reC O rd I n g S SRt Dl Wt BT e, SE £ o
o (e AN (CA L visual
cortex
]

edict spike times, given stimulus

Nwd U | LOY UIVIAE L JIUU V U oNY

C) Easytointerpret (not a ‘black box’) ‘Encoding’
D) Flexible enough-to_ account for a vari enomena

E) Systematic procedure to ‘optimize’ parameters




Neuronal Dynamics - 7.7 Estimation of receptive fields
Estimation of spatial (and temporal) receptive fields

\—

U(t):Zkk IK—k+urest LNP
firing intensity o(t) = T (u(t) —4(1))
x | x |x, n$ X XX X . Xy
=] 0 1 0 0 0
Y, - /00 1 o0 0
=3 0 0 0 0 1
. ‘ dr
=T O 0 0 O 1 0
5




Neuronal Dynamics — 7.7 Estimation of Receptive Fields

visual | NP =
stimulus? . . .
HNP mode Linear-Nonlinear-Poisson
—rg—h / = , ‘ ‘ ‘
Linear filter Nonlinearity :;':ﬁ';"
Special case of
Soft-Threshold IF model GLM=
linear filter intleesgnr “soft threshold” Gen erallzed Llnear MOdeI

== :::: —1 ‘ ‘ ‘

=3~/ -

f _ I.-"'. H"'\—\.....\,.
[
f

post-spike current




GLM for prediction of retinal ganglion ON cell activity

variance

NV A L e WA Pillow et al. 2008




Neuronal Dynamics — 7.7 GLM with lateral coupling

A

-

Linear filter

LNP model

- @]

Nonlinearity

Poisson
spiking

Soft-Threshold IF model

linear filter

=3/ -

: eaky “soft threshold”
integrator
Fe -
L _duns

post-spike current

C
Generalized

linear filter

=3

Linear Model (GLM)

probabilistic
nonlinearity  spiking

M

post-spike current

Cell 1 parameters

=3

Cell 2 parameters

(1

\_

coupling currents

et
|




One cell In a Network of Ganglion cells

RGC

Full model

100

PSTH |Hz|

0 Time [s] I

B

Fully coupled

-

Fully coupled

o0

PSTH prediction

-
-
-

O I

-
=

b
oy

-

(% variance)

60 80 100

Spike prediction
(bits per spike)

| 1.5
Uncoupled

Pillow et al. 2008



Neuronal Dynamics — 7.7 Model of ENCODING

R

s wddese e : Vlsual
cortex

edict spike times, given stimulus

Nwd U | LOY UIVIAE L JIUU V U oNY

C) Easytointerpret (not a ‘black box’) ‘Encoding’
D) Flexible enough-to_ account for a vari enomena

E) Systematic procedure to ‘optimize’ parameters




Neuronal Dynamics — 7.7 Model of DECODING

Predict stimulus!

visual
cortex

odel of ‘Decoding’:
redict stimulus, given spike times




Neuronal Dynamics — 7.7 Helping Humans
Application: Neuroprosthetics

[ N
any groups
0 frontal otor \ y group
cortex world wide

IinoianiiiTiii

<, ] A M =<)Ly work on this
problem!

Model of
‘Decoding’

Predict iIntended arm movement,
given Spike Times



Neuronal Dynamics — 7.7 Basic neuroprosthetics

Application: Neuroprosthetics
Decode the Intended arm movement

. » 10}
Hand velocity =
= 0
O
L -10¢
= 10/
S 0
<
T -10} .
0 Time [s] S

Fig. 11.12: Decoding had velocity from spiking activity in area MI of cortex. The real
hand velocity (thin black line) is compared to the decoded velocity (thick black line) for
the z— (top) and the y—components (bottom). Modified from Truccolo et al. (2005).



Neuronal Dynamics - 7.7 Why mathematical models?

Mathematical models
for neuroscience

|

help humans

The end



X € o 3: AdExXx model — phase plane analysis

du u—.%
= —(U—u + A ex + W+ R (t
Tdt ( rest) p( A ) ()
. d(‘;‘t’ —a (U—u,)+bz > St-t")

What firing pattern do you exrgect’? - u-nulicline
(1) Adapting 30 \\/ _
(11) Bursting 20 |
(1) Initial burst 10 | - |
(Iv)Non-adapting 0 E- — . . . |tp

—10 | |
— 70 —60 — 5
.u [IT'IV%

U IS reset to Ur
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