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6.1 Escape noise

       - stochastic intensity and point process

6.2  Interspike interval distribution 
      - Time-dependend renewal process 

      - Firing probability in discrete time

6.3 Likelihood of a spike train
         - likelihood function

6.4 Comparison of noise models
        - escape noise vs. diffusive noise

6.5.  Rate code vs. Temporal Code
         - timing codes

         - stochastic resonance

Week 6 – part 1 : Escape noise



- Intrinsic noise (ion channels)

Na+

K+

-Finite number of channels

-Finite temperature

Neuronal Dynamics – Review: Sources of Variability



Na+ channel from rat heart (Patlak and Ortiz 1985)

A traces from a patch containing several channels. 

Bottom: average gives current time course.

B. Opening times of single channel events

Steps:

Different number

of channels
Ca2+

Na+

K+

Ions/proteins

Review from 2.5 Ion channels



- Intrinsic noise (ion channels)

Na+

K+

-Finite number of channels

-Finite temperature

-Network noise (background activity)

-Spike arrival from other neurons

-Beyond control of experimentalist

Neuronal Dynamics – Review: Sources of Variability

Noise models?



𝜗

escape process,

stochastic intensity

𝜗

stochastic spike arrival

(diffusive noise)

Noise models

u(t)

t

𝜌(𝑡)

𝜌(𝑡) = 𝑓(𝑢(𝑡) − 𝜗)

escape rate

𝜏 ⋅
𝑑𝑢𝑖
𝑑𝑡

= −𝑢𝑖 + 𝑅𝐼 + 𝜉(𝑡)

noisy integration

Relation between the two models:

later this week (lecture 6.4)
Now:

Escape noise!

Ƹ𝑡 Ƹ𝑡



𝜗

escape process

u(t)

t

𝜌(𝑡)

𝜌(𝑡) = 𝑓(𝑢(𝑡) − 𝜗)

escape rate

u𝜗

Neuronal Dynamics – 6.1 Escape noise

𝜌(𝑡) = 𝜌𝜗 exp(
𝑢(𝑡) − 𝜗

Δ
)escape rate

𝜏 ⋅
𝑑

𝑑𝑡
𝑢 = −(𝑢 − 𝑢𝑟𝑒𝑠𝑡) + 𝑅𝐼(𝑡)

𝑖𝑓 𝑠𝑝𝑖𝑘𝑒 𝑎𝑡 𝑡𝑓 ⇒ 𝑢 𝑡𝑓 + 𝛿 = 𝑢𝑟

Example: leaky integrate-and-fire model

Ƹ𝑡



𝜗

escape process

u(t)

t

𝜌(𝑡)

𝜌(𝑡) = 𝑓(𝑢(𝑡) − 𝜗)

escape rate

u𝜗

Neuronal Dynamics – 6.1 stochastic intensity

𝜌(𝑡) = 𝜌𝜗 exp(
𝑢(𝑡) − 𝜗

Δ
)

𝜌(𝑡) =

examples

Escape rate = stochastic intensity

of point process

𝜌(𝑡) = 𝑓(𝑢(𝑡))

Ƹ𝑡



𝜗
u(t)

t

𝜌(𝑡)

𝜌(𝑡) = 𝑓(𝑢(𝑡) − 𝜗)

escape rate

u𝜗

Neuronal Dynamics – 6.1 mean waiting time

t

I(t)

𝜏 ⋅
𝑑

𝑑𝑡
𝑢 = −(𝑢 − 𝑢𝑟𝑒𝑠𝑡) + 𝑅𝐼(𝑡)

mean waiting time, after switch

𝜏 >> 1𝑚𝑠

1ms



𝜗

u(t)

t

𝜌(𝑡)

Neuronal Dynamics – 6.1 escape noise/stochastic intensity

Escape rate = stochastic intensity

of point process

𝜌(𝑡) = 𝑓(𝑢(𝑡))

Ƹ𝑡



Neuronal Dynamics – Quiz 6.1.
Escape rate/stochastic intensity in neuron models

[ ] The escape rate of a neuron model has units one over time

[ ] The stochastic intensity of a point process has units one over time

[ ] For large voltages, the escape rate of a neuron model always saturates

at some finite value

[ ] After a step in the membrane potential, the mean waiting time until a spike is 

fired is proportional to the escape rate 

[ ] After a step in the membrane potential, the mean waiting time until a spike is 

fired is equal  to the inverse of the escape rate 

[ ] The stochastic intensity of a leaky integrate-and-fire model with reset  only 

depends on the external input current but not on the time of the last reset

[ ] The stochastic intensity of a leaky integrate-and-fire model with reset  depends 

on the external input current AND on the time of the last reset
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6.1 Escape noise

       - stochastic intensity and point process

6.2  Interspike interval distribution 
      - Time-dependend renewal process 

      - Firing probability in discrete time

6.3 Likelihood of a spike train
         - likelihood function

6.4 Comparison of noise models
        - escape noise vs. diffusive noise

6.5.  Rate code vs. Temporal Code
         - timing codes

         - stochastic resonance

Week 6 – part 2 : Interspike intervals and renewal processes



Neuronal Dynamics – 6.2. Interspike Intervals

𝜏 ⋅
𝑑

𝑑𝑡
𝑢 = 𝐹(𝑢) + 𝑅𝐼(𝑡)

𝑖𝑓𝑠𝑝𝑖𝑘𝑒𝑎𝑡𝑡𝑓 ⇒ 𝑢 𝑡𝑓 + 𝛿 = 𝑢𝑟

Example: 

nonlinear integrate-and-fire model

deterministic part of input

𝐼(𝑡) → 𝑢(𝑡)

noisy part of input/intrinsic noise

→ escape rate

𝜌(𝑡) = 𝑓(𝑢(𝑡)) = 𝜌𝜗 exp( 𝑢(𝑡) − 𝜗)

Example: 

exponential stochastic intensity

t



𝜗

escape process

u(t)

Survivor function

Ƹ𝑡 t

𝜌(𝑡)
𝜌(𝑡) = 𝑓(𝑢(𝑡) − 𝜗)

escape rate

𝑑

𝑑𝑡
𝑆𝐼(𝑡ห Ƹ𝑡) = −𝜌(𝑡)𝑆𝐼(𝑡ห Ƹ𝑡)

Neuronal Dynamics – 6.2. Interspike Interval distribution

t

t



𝜗

escape process
A

u(t)

exp( − න

𝑡^

𝑡

𝜌(𝑡′)𝑑𝑡′)𝑆𝐼(𝑡ห Ƹ𝑡) =

Survivor function

t

𝜌(𝑡)

𝜌(𝑡) = 𝑓(𝑢(𝑡) − 𝜗)

escape rate

= 𝜌(𝑡) ⋅ exp( − න

𝑡^

𝑡

𝜌(𝑡′)𝑑𝑡′)𝑃𝐼(𝑡ȁ Ƹ𝑡)
Interval distribution

Survivor function

escape

rate

𝑑

𝑑𝑡
𝑆𝐼(𝑡ห Ƹ𝑡) = −𝜌(𝑡)𝑆𝐼(𝑡ห Ƹ𝑡)

Examples now

u𝜗

Neuronal Dynamics – 6.2. Interspike Intervals

Ƹ𝑡



Ƹ𝑡

𝜌(𝑡ห Ƹ𝑡) = 𝑓(𝑢(𝑡ห Ƹ𝑡)) = 𝜌𝜗 exp( 𝑢(𝑡ห Ƹ𝑡) − 𝜗)

escape rate𝜗
𝜌(𝑡)

Example: I&F with reset, constant input

Ƹ𝑡

Survivor function
1

𝑆0(𝑡 − Ƹ𝑡) 𝑆(𝑡ȁ Ƹ𝑡) = exp( − න

መ𝑡

𝑡

𝜌(𝑡′ȁ Ƹ𝑡)𝑑𝑡′)

Interval distribution

Ƹ𝑡

𝑃0(𝑡 − Ƹ𝑡)
𝑃(𝑡ȁ Ƹ𝑡) = 𝜌(𝑡ȁ Ƹ𝑡) exp( − න

መ𝑡

𝑡

𝜌(𝑡′ȁ Ƹ𝑡)𝑑𝑡′)

= −
𝑑

𝑑𝑡
𝑆(𝑡ȁ Ƹ𝑡)

Neuronal Dynamics – 6.2. Renewal theory 



Ƹ𝑡

𝜌(𝑡ห Ƹ𝑡) = 𝑓(𝑢(𝑡ห Ƹ𝑡)) = 𝜌𝜗 exp( 𝑢(𝑡ห Ƹ𝑡) − 𝜗)

escape rate𝜗
𝜌(𝑡)

Example: I&F with reset, time-dependent input, 

Ƹ𝑡

Survivor function
1 𝑆(𝑡ห Ƹ𝑡) 𝑆(𝑡ȁ Ƹ𝑡) = exp( − න

መ𝑡

𝑡

𝜌(𝑡′ȁ Ƹ𝑡)𝑑𝑡′)

Interval distribution

Ƹ𝑡

𝑃(𝑡ห Ƹ𝑡)
𝑃(𝑡ȁ Ƹ𝑡) = 𝜌(𝑡ȁ Ƹ𝑡) exp( − න

መ𝑡

𝑡

𝜌(𝑡′ȁ Ƹ𝑡)𝑑𝑡′)

= −
𝑑

𝑑𝑡
𝑆(𝑡ȁ Ƹ𝑡)

Neuronal Dynamics – 6.2. Time-dependent Renewal theory 



Neuronal Dynamics – 6.2. Firing probability in discrete time

𝑆(𝑡𝑘+1ȁ𝑡𝑘) = exp[ − න

𝑡𝑘

𝑡𝑘+1

𝜌(𝑡′)𝑑𝑡′]

𝑡1 𝑡2 𝑡30 𝑇

Probability to survive 1 time step

𝑆(𝑡𝑘+1ȁ𝑡𝑘) = exp[ − 𝜌(𝑡𝑘)Δ] = 1 − 𝑃𝑘
𝐹

Probability to fire in  1 time step

𝑃𝑘
𝐹 =



Neuronal Dynamics – 6.2. Escape noise - experiments

𝜌(𝑡) =
1

Δ
exp(

𝑢(𝑡) − 𝜗

Δ
)escape

rate

𝑃𝑘
𝐹 = 1 − exp[ − 𝜌(𝑡𝑘)Δ]

Jolivet et al. ,

J. Comput. Neurosc.

2006



Neuronal Dynamics – 6.2. Renewal process, firing probability

Escape noise = stochastic intensity

-Renewal theory

- hazard function

- survivor function

- interval distribution

-time-dependent renewal theory

-discrete-time firing probability

-Link to experiments

→ basis for modern methods of

neuron model fitting (week 7)



Ƹ𝑡

escape rate

𝜗

𝜌(𝑡) = 𝜌0
𝑢

𝜗
𝑓𝑜𝑟𝑢 > 𝜗

neuron with relative refractoriness, constant input 

Ƹ𝑡 ⥂+
⥂ Δ

Ƹ𝑡

Survivor function
1 𝑆0(𝑡ห Ƹ𝑡) 𝑆0(𝑡ȁ Ƹ𝑡) = ቄ

Interval distribution

Ƹ𝑡

𝑃0(𝑡ห Ƹ𝑡) 𝑃0(𝑡ȁ Ƹ𝑡) = ሼ
𝜌0

Neuronal Dynamics – Homework assignement 6.1
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6.1 Escape noise

       - stochastic intensity and point process

6.2  Interspike interval distribution 
      - Time-dependend renewal process 

      - Firing probability in discrete time

6.3 Likelihood of a spike train
         - generative model

6.4 Comparison of noise models
        - escape noise vs. diffusive noise

6.5.  Rate code vs. Temporal Code
         - timing codes

         - stochastic resonance

Week 6 – part 3 : Likelihood of a spike train



Explanation now:

𝑆(𝑡) =෍

𝑓

𝛿(𝑡 − 𝑡𝑓)

𝑡1 𝑡2 𝑡3

𝑡1, 𝑡2, . . . 𝑡𝑁Measured spike train with spike times 

Likelihood L that this spike train

could have been generated by model?

𝐿(𝑡1, . . . , 𝑡𝑁) = exp( − න

0

𝑡1

𝜌(𝑡′)𝑑𝑡′) 𝜌(𝑡1) ⋅ exp( − න

𝑡1

𝑡2

𝜌(𝑡′)𝑑𝑡′) . . .

0 𝑇

Neuronal Dynamics – 6.3. Likelihood of a spike train



𝑆(𝑡) =෍

𝑓

𝛿(𝑡 − 𝑡𝑓)

𝑡1 𝑡2 𝑡30 𝑇

Neuronal Dynamics – 6.3. Likelihood of a spike train



𝑛(𝑡𝑘) = 1𝑖𝑓𝑡𝑘 < 𝑡𝑓 ≤ 𝑡𝑘+1

𝑡1 𝑡2 𝑡30 𝑇

Neuronal Dynamics – 6.3. Likelihood in discrete time

𝑃𝑡𝑘
Δ

Prob. to fire in 𝑡𝑘 < 𝑡 ≤ 𝑡𝑘+1

Prob. to be silent in 𝑡𝑘 < 𝑡 ≤ 𝑡𝑘+1

𝑆Δ

Δ → 0how about             ?? 



𝑛(𝑡𝑘) = 1𝑖𝑓𝑡𝑘 < 𝑡𝑓 ≤ 𝑡𝑘+1

𝑡1 𝑡2 𝑡30 𝑇

Neuronal Dynamics – 6.3. Likelihood in discrete time

Δ → 0

𝑃𝑡𝑘
Δ



𝑆(𝑡) =෍

𝑓

𝛿(𝑡 − 𝑡𝑓)

𝑡1 𝑡2 𝑡3

𝐿(𝑡1, . . . , 𝑡𝑁) = exp( − න

0

𝑡1

𝜌(𝑡′)𝑑𝑡′) 𝜌(𝑡1) ⋅ exp( − න

𝑡1

𝑡2

𝜌(𝑡′)𝑑𝑡′) 𝜌(𝑡2). . .⋅ exp( − න

𝑡𝑁

𝑇

𝜌(𝑡′)𝑑𝑡′)

0 𝑇

𝐿(𝑡1, . . . , 𝑡𝑁) = exp( − න

0

𝑇

𝜌(𝑡′)𝑑𝑡′)ෑ

𝑓

𝜌(𝑡𝑓)

Neuronal Dynamics – 6.3. Likelihood of a spike train



𝑆(𝑡) =෍

𝑓

𝛿(𝑡 − 𝑡𝑓)

𝑡1 𝑡2 𝑡30 𝑇

𝐿(𝑡1, . . . , 𝑡𝑁) = exp( − න

0

𝑇

𝜌(𝑡′)𝑑𝑡′)ෑ

𝑓

𝜌(𝑡𝑓)

log 𝐿 (𝑡1, . . . , 𝑡𝑁) = −න

0

𝑇

𝜌(𝑡′)𝑑𝑡′ +෍

𝑓

log 𝜌(𝑡𝑓)

Neuronal Dynamics – 6.3. Log-likelihood of a spike train



log 𝐿 (𝑡1, . . . , 𝑡𝑁) = 0׬−
𝑇
𝜌(𝑡′)𝑑𝑡′ +σ𝑓 log 𝜌(𝑡𝑓)

Neuronal Dynamics – 6.3. generative model of a spike train

𝜗

u(t)

Ƹ𝑡 t

𝜌(𝑡)
𝜌(𝑡) = 𝑓(𝑢(𝑡) − 𝜗)

escape rate

generative model of spike train
- generates spikes stochastically

- calculated likelihood that an

observed experimental spike train

could have been generated



Neuronal Dynamics – Quiz 6.2. Tick all correct answers

[ ] A leaky integrate-and-fire model with escape noise can be

interpreted as a generative model of a spike train

[ ] For a leaky  integrate-and-fire model with escape noise

we can (numerically) calculate the likelihood that observed

experimental data could have been generated by the model

[ ] Suppose we inject a time-dependent current into a real neuron and observe the

resulting spike train. We the inject the same time-dependent current  into a 

nonlinear integrate-and-fire model with exponential escape noise with

parameter theta. For each choice of theta we  can then calculate the likelihood 

that the model could have generated the observed spike train. 



6.1 Escape noise

       - stochastic intensity and point process

6.2  Interspike interval distribution 
      - Time-dependend renewal process 

      - Firing probability in discrete time

6.3 Likelihood of a spike train
         - generative model

6.4 Comparison of noise models
        - escape noise vs. diffusive noise

6.5.  Rate code vs. Temporal Code
         - timing codes

         - stochastic resonance

Week 6 – part 4 : Comparison of noise models
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𝜗

escape process

(fast noise)

𝜗

stochastic spike arrival

(diffusive noise)

u(t)

𝑡^ 𝑡^t

𝜌(𝑡)

𝜌(𝑡) = 𝑓(𝑢(𝑡) − 𝜗)

escape rate

𝜏 ⋅
𝑑𝑢𝑖
𝑑𝑡

= −𝑢𝑖 + 𝑅𝐼 + 𝜉(𝑡)

noisy integration

Neuronal Dynamics – 6.4. Comparison of Noise Models



Assumption: 

stochastic spiking

 rate 

  

Poisson spike arrival: Mean and autocorrelation of filtered signal 

𝑆(𝑡) =෍

𝑓

𝛿(𝑡 − 𝑡𝑓)
𝑥(𝑡) = න 𝐹(𝑠)𝑆(𝑡 − 𝑠)𝑑𝑠

mean𝜈(𝑡)

𝐹(𝑠)

𝑥(𝑡) = න 𝐹(𝑠) 𝑆(𝑡 − 𝑠) 𝑑𝑠

𝑥(𝑡) = න 𝐹(𝑠) 𝜈(𝑡 − 𝑠) 𝑑𝑠

𝑥(𝑡)𝑥(𝑡′) = න 𝐹(𝑠)𝑆(𝑡 − 𝑠)𝑑𝑠න 𝐹(𝑠′)𝑆(𝑡′ − 𝑠′)𝑑𝑠′

𝑥(𝑡)𝑥(𝑡′) = න 𝐹(𝑠)𝐹(𝑠′) 𝑆(𝑡 − 𝑠)𝑆(𝑡′ − 𝑠′) 𝑑𝑠𝑑𝑠′

Autocorrelation of output

Autocorrelation of input

Filter



Stochastic spike arrival: 

  excitation, total rate Re

  inhibition, total rate Ri

𝜏
𝑑

𝑑𝑡
𝑢 = −(𝑢 − 𝑢𝑟𝑒𝑠𝑡) +෍

𝑘,𝑓

𝑞𝑒
𝐶
𝛿(𝑡 − 𝑡𝑘

𝑓
) − ෍

𝑘′,𝑓′

𝑞𝑖
𝐶
𝛿(𝑡 − 𝑡𝑘′

𝑓′
)

u
𝑢0

EPSC IPSC

Synaptic current pulses

Diffusive noise (stochastic spike arrival)

𝜏
𝑑

𝑑𝑡
𝑢 = −(𝑢 − 𝑢𝑟𝑒𝑠𝑡) + 𝑅𝐼(𝑡) + 𝜉(𝑡)

Langevin equation,

Ornstein Uhlenbeck process

Blackboard



Diffusive noise (stochastic spike arrival)

𝜗

Δ𝑢(𝑡)Δ𝑢(𝑡) = 𝑢(𝑡)𝑢(𝑡) − 𝑢(𝑡) 2 =

Δ𝑢(𝑡)
𝑢(𝑡)

𝜏
𝑑

𝑑𝑡
𝑢 = −(𝑢 − 𝑢𝑟𝑒𝑠𝑡) + 𝑅𝐼(𝑡) + 𝜉(𝑡)

Δ𝑢(𝑡′)Δ𝑢(𝑡) = 𝑢(𝑡)𝑢(𝑡′) − 𝑢(𝑡) 𝑢(𝑡′) =

Math argument:

- no threshold

- trajectory starts at

known value



Diffusive noise (stochastic spike arrival)

Δ𝑢(𝑡)Δ𝑢(𝑡) = 𝑢(𝑡)𝑢(𝑡) − 𝑢(𝑡) 2 =

Δ𝑢(𝑡)

𝑢(𝑡) = 𝑢0(𝑡)

𝜏
𝑑

𝑑𝑡
𝑢 = −(𝑢 − 𝑢𝑟𝑒𝑠𝑡) + 𝑅𝐼(𝑡) + 𝜉(𝑡)

Math argument

Δ𝑢(𝑡′)Δ𝑢(𝑡) = 𝑢(𝑡)𝑢(𝑡′) − 𝑢(𝑡) 𝑢(𝑡′) =

[Δ𝑢(𝑡)]2 = 𝜎𝑢
2[1 − exp( − 2𝑡/𝜏)]



u
u

Membrane potential density: Gaussian

p(u)

constant input rates

no threshold

Neuronal Dynamics – 6.4. Diffusive noise/stoch. arrival

A) No threshold, stationary  input

𝜏 ⋅
𝑑𝑢𝑖
𝑑𝑡

= −𝑢𝑖 + 𝑅𝐼 + 𝜉(𝑡)

noisy integration



u
u

Membrane potential density: 
Gaussian at time t

p(u(t))

Neuronal Dynamics – 6.4. Diffusive noise/stoch. arrival

B) No threshold, oscillatory  input

𝜏 ⋅
𝑑𝑢𝑖
𝑑𝑡

= −𝑢𝑖 + 𝑅𝐼 + 𝜉(𝑡)

noisy integration



u

Membrane potential density

𝜗

u

p(u)

Neuronal Dynamics – 6.4. Diffusive noise/stoch. arrival

C) With threshold, reset/ stationary  input



Superthreshold vs. Subthreshold regime

u
p(u) p(u)

Nearly Gaussian

subthreshold distr.

Neuronal Dynamics – 6.4. Diffusive noise/stoch. arrival



𝜗

escape process

(fast noise)

𝜗

stochastic spike arrival

(diffusive noise)
A C

u(t)

noise

= 𝜌(𝑡) ⋅ exp( − න

Ƹ𝑡 

𝑡

𝜌(𝑡′)𝑑𝑡′)

𝑃𝐼(𝑡ȁ Ƹ𝑡) : first passage

time problem

𝑃𝐼 𝑡 Ƹ𝑡 =

Interval distribution

t

Survivor function
escape

rate

𝜌(𝑡)

𝜌(𝑡) = 𝑓(𝑢(𝑡) − 𝜗)

escape rate

𝜏 ⋅
𝑑𝑢𝑖
𝑑𝑡

= −𝑢𝑖 + 𝑅𝐼 + 𝜉(𝑡)

noisy integration

11.4. Comparison of Noise Models

Stationary input:

-Mean ISI

-Mean firing rate

𝑓 =
1

𝑠

𝑡 − Ƹ𝑡
Ƹ𝑡Ƹ𝑡

white

(fast noise)

synapse

(slow noise)

(Brunel et al., 2001)



𝜗

stochastic spike arrival

(diffusive noise)

Noise models: from diffusive noise to escape rates

𝜌(𝑡) = 𝑓(𝑢0(𝑡) − 𝜗)

escape rate

noisy integration

𝑢0(𝑡)
𝜎

𝜎𝑡

exp( −
(𝑢0(𝑡) − 𝜗)2

2𝜎2
)

𝑒𝑟𝑓((𝑢0(𝑡) − 𝜗)/𝜎)

∝

𝑢0′𝜎𝑡 = 𝜎

𝜌(𝑡) = 𝑓(𝑢0(𝑡), 𝑢′0(𝑡)) ∝ [
𝑐1
𝜏
+
𝑐2 𝑢′0 𝑡 +

𝜎
]



Comparison:  diffusive noise vs. escape rates

𝜌(𝑡) = 𝑓(𝑢0(𝑡) − 𝜗)

escape rate

exp( −
(𝑢0(𝑡) − 𝜗)2

2𝜎2
)∝𝜌(𝑡) = 𝑓(𝑢0(𝑡), 𝑢′0(𝑡)) ∝

subthreshold

potential

Probability of first spike

diffusive

escape

[
𝑐1
𝜏
+
𝑐2 𝑢′0 𝑡 +

𝜎
]



Neuronal Dynamics – 6.4. Comparison of Noise Models

Diffusive noise

- represents stochastic spike arrival

- easy to simulate

- hard to calculate

Escape noise
- represents internal noise

- easy to simulate

- easy to calculate

- approximates diffusive noise 

- basis of modern model fitting methods



6.1 Escape noise

       - stochastic intensity and point process

6.2  Interspike interval distribution 
      - Time-dependend renewal process 

      - Firing probability in discrete time

6.3 Likelihood of a spike train
         - generative model

6.4 Comparison of noise models
        - escape noise vs. diffusive noise

6.5.  Rate code vs. Temporal Code
         - timing codes

         - stochastic resonance

Week 6 – part 5 : Rate Codes versus Temporal Codes

Neuronal Dynamics:
Computational Neuroscience

of Single Neurons

Week 6 – Noise models:

Escape noise

Wulfram Gerstner

EPFL, Lausanne, Switzerland



T

nsp

I(t)

A(t)

𝐴(𝑡) =
𝑛(𝑡; 𝑡 + Δ𝑡)

𝑁Δ𝑡

population

averaging

𝑃𝑆𝑇𝐻(𝑡) =
𝑛(𝑡; 𝑡 + Δ𝑡)

𝐾Δ𝑡

t

Neuronal Dynamics – 6.5 Rate codes versus temporal codes

Temporal averaging Trial averaging

3 rate codes



The problem of neural coding: temporal codes   

Time to first spike after input

Neuronal Dynamics – 6.5. Temporal codes

Brain 



Time to first spike after input

Phase with respect to oscillation

Neuronal Dynamics – 6.5. Temporal codes

Spike timing codes:

-time-to-first spike

-phase code

Brain 



Stochastic Resonance: changing the noise level

u

Sinusoidal  input 

+ noise

+ threshold

𝐼(𝑡) = 𝐼0 cos(𝜔𝑡)

𝐼𝑛𝑜𝑖𝑠𝑒(𝑡) = 𝜎𝜉(𝑡)

𝜗

I(t)

Neuronal Dynamics – 6.5. Stochastic Resonance



u 𝜗

𝑛𝑜𝑖𝑠𝑒𝜎

Transmission

of periodic signal

Neuronal Dynamics – 6.5. Stochastic Resonance



Neuronal Dynamics – 6.5 Rate codes versus temporal codes

-Rate codes

- population rate

-Temporal Codes

- time-to-first spike

- phase of spike

- stochastic resonance



Time to first spike after input

With deterministic model

With Poisson model

With noisy IF (escape noise)

Neuronal Dynamics – Homework assignment
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