Week 6 — part 1 : Escape noise

)
M(lﬂ-a 6.1 Escape noise
- stochastic intensity and point process

Neuronal Dynamics: 6.2 Interspike interval distribution

Computational Neuroscience - Time-dependend renewal process

- - Firing probability in discrete time
of Single Neurons 6.3 Likelihood of a spike train

- likelihood function
6.4 Comparison of noise models

Week 6 — Noise models:

Escape noise - escape noise vs. diffusive noise
Wulfram Gerstner 6.5. Rate code vs. Temporal Code
- timing codes

EPFL, Lausanne, Switzerland .
- stochastic resonance



Neuronal Dynamics - Review: Sources of Variability

- Intrinsic noise (lon channels)

-Finite number of channels
-Finite temperature




Review from 2.9 lon channels T

Steps:
Different number _Ca2+
of channels Ions/protel ns

TV Nat+ channel from rat heart (Patlak and Ortiz 1985)
e A traces from a patch containing several channels.
v . .
\/ 3pA Bottom: average gives current time course.

Oms B. Opening times of single channel events



Neuronal Dynamics - Review: Sources of Variability

- Intrinsic noise (lon channels)

-Finite temperature o
5“‘6\

e,',:::'a Lu ~ -Spike arrival from other neurons
o — -Beyond control of experimentalist
Noise models? o
cO



escape process,
stochastic intensity

T e
()

Noise models

>
~—

escape rate

p(t) = f(u(t) —9)

NOow:
Escape noise!

stochastic spike arrival
(diffusive noise)

noisy integration
dui
dt

T =—ui+R1+€(t)

Relation between the two models:
later this week (lecture 6.4)




Neuronal Dynamics - 6.1 EScape noise

escape process

""" oo [T
u(t)

escape rate . p(t) = py exp(

u(t) =49

4>

{

escape rate

p(t) = f(u(t) = V)

A

Example: leaky integrate-and-fire model

-

.

d
T - Eu = —(U — Uyppgt) + RI(T)

if spike at t/ = u(t/ +6) =,

~




Neuronal Dynamics - 6.1 stochastic intensity

escape process o _
Escape rate = stochastic intensity

...... e of point process
p(t) = f(u(®))

escape rate

p(t) = f(u(t) = V)

u(t) =49
)

examples

p(t) = py exp(

p(t) =




~ Neuronal Dynamics — 6.1 mean waiting time

4 d )
7ot = = (U~ Upest) + RI(D) escape rate

. / C o p(t) = fu(t) —9)

113 —— ,
|
T>>1ms
1rr'13 t 9 U

|(t) mean waiting time, after switch




Neuronal Dynamics - 6.1 escape noise/stochastic intensity

Escape rate = stochastic intensity
of point process

p(t) = f(u(t))




Neuronal Dynamics - Quiz 6.1.

Escape rate/stochastic intensity in neuron models
| ] The escape rate of a neuron model has units one over time
| ] The stochastic intensity of a point process has units one over time
| ] For large voltages, the escape rate of a neuron model always saturates

at some finite value
| ] After a step In the membrane potential, the mean waiting time until a spike Is
fired Is proportional to the escape rate
| ] After a step In the membrane potential, the mean waiting time until a spike Is
fired Is equal to the inverse of the escape rate
[ ] The stochastic intensity of a leaky integrate-and-fire model with reset only
depends on the external input current but not on the time of the last reset
| ] The stochastic intensity of a leaky integrate-and-fire model with reset depends
on the external input current AND on the time of the last reset



Week 6 — part 2 : Interspike intervals and renewal processes

EEEEEEEEEEEEEEEEE
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Neuronal Dynamics:

Week 6 — Noise models:
Escape noise

Wulfram Gerstner
EPFL, Lausanne, Switzerland

JJ 6.1 Escape noise

- stochastic intensity and point process

6.2 Interspike interval distribution
- Time-dependend renewal process
- Firing probability in discrete time

6.3 Likelihood of a spike train

- likelihood function

6.4 Comparison of noise models
- escape noise vs. diffusive noise

6.5. Rate code vs. Temporal Code
- timing codes
- stochastic resonance




/" mathematical

neuron model

deterministic part of input

|
100

{

noisy part of input/intrinsic noise

I(t) = u(t) -> escape rate

/Example: N/, | N\

. . . Example:
nonllneglr Integrate-and-fire model . o .
exponential stochastic intensity
T-—u = F(u) + RI(t)
at p(t) = f(u(t)) = pg exp(u(t) — V)
ifspikeatt! = u(t/ +6) = u,
N AN /




Neuronal Dynamics - 6.2. Interspike Interval distribution

escape process

escape rate

N 9 p(t) = fu(t) —9)
p(t) |

Survivor function

>
~—

d . .
Esl(t‘t) = _P(t)sl(t‘t)




Neuronal Dynamics - 6.2. Interspike Intervals

A escape process Survivor function Examples NOW
""" o | i |
u(t) Esl(t‘t) = —p(t)S;(t|E)
A C
L ,(¢[8) [ perae
escape rate : B exp( ) p(E)dt)
p(t) = f(u(t) — ) —

Interval distribution t

AD = o) exp(— | p(eae

N

escape —=~t— - —
rate Survivor function




Neuronal Dynamics - 6.2. Renewal theory

Example: |&F with reset, constant input

v ‘p(t) """ escape rate
- p(t|D) = f(u(t|t)) = py exp(u(t|t) —9)
t
1 Survivor function ‘
Sy (t — D) S(tlf) = exp( — | p(¢'1D)de)
t
t
' t
Interval distribution P(tIF) = p(t|D) exp(—fp(t’lf)dt')
i PO (t o t) 7

= dStlf

>




Neuronal Dynamics - 6.2. Time-dependent Renewal theory

Example: I1&F with reset, time-dependent input,

L s Bt R escape rate

~— | p(®) A A A
/J/\ p(t|E) = Fu(t|D) = po exp(u(t]t) — )

>

1 | Survivor function t
S(t‘f) S(tlt) = eXp(—fp(t’lf)dt')
t
I t
: Intervg((yrgglbutlon P(t|t) = p(t|D) exp(_ffp(tllf)dt,)

= dStlf

>




Neuronal Dynamics — 6.2. Firing probability in discrete time

4 N

Probabillity to survive 1 time step

Lk+1
S(tr+1lty) = exp[ — f p(tdt'] S(trsalti) = exp[ — p(t)A] =1 — Py

i

Probabillity to fire In 1 time step
P =



Neuronal Dynamics - 6.2. Escape noise - experiments
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>
o

S
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"

&
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2006
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| .I escape p(t) = %exp(u(t)A_ U
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Neuronal Dynamics — 6.2. Renewal process, firing prohability

Escape noise = stochastic intensity

-Renewal theory

- hazard function
- survivor function
- Interval distribution

-time-dependent renewal theory
-discrete-time firing probabillity
-Link to experiments

- basis for modern methods of
neuron model fitting (week 7)




Neuronal Dynamics — Homework assignement 6.1

neuron with relative refractoriness, constant input

u
[ esScape rate p(t) = po gforu > 9

>

Po

t o+
oA

Survivor function {

So(t|t) So(tlt) =

Interval disAtribution
Py (t(t) Py (t]t) =




Week 6 — part 3 : Likelihood of a spike train

M(Pﬂ-a ] 6.1 Escape noise
- stochastic intensity and point process
Neuronal Dynamics: \J 6.2 Interspike interval distribution
Computational Neuroscience - Time-dependend renewal process

- Firing probability in discrete time

of Single Neurons 6.3 Likelihood of a spike train
- generative model

Week 0 - Noise models: 6.4 Comparison of noise models
Escape noise - escape noise vs. diffusive noise

Wulfram Gerstner 6.5. Rate code vs. Temporal Code
- timing codes
- stochastic resonance

EPFL, Lausanne, Switzerland



Neuronal Dynamics - 6.3. Likelihood of a spike train

g S(t)=25(t—tf) A
| I |
0 tl t2 £3 T
Measured spike train with spike times th,t?,...t"

Likelihood L that this spike train

Explanation now: | could have been generated by model?

t1 t2

L(th,...,t") = exp( —f p(t"Hdt") p(t1) - exp( — f p(thdt)...

0 tl



Neuronal Dynamics - 6.3. Likelihood of a spike train

S(t)=25(t—tf) A
f

l 1 2 3 l
Q r r r T Y,




Neuronal Dynamics - 6.3. Likelihood in discrete time

4 N\
n(ty) = lift, <t/ < tpyq
o R
Q t t t r J

Prob. to fire iIn  tk <t = tx41
Pt

Prob. to be silent in & <t = tk+1
SA

how about A — 0 ?’%




Neuronal Dynamics - 6.3. Likelihood in discrete time

; N
n(tk) — 1lftk < tf S tk_|_1
0t ) : )
i-p] 0
s \ ;' A
| | ” | ' pA
IIIIIIIII by - t, I Ao




Neuronal Dynamics - 6.3. Likelihood of a spike train

S(t) = 25(1: — ¢
f

0 t1 t2 t3

tl

LGt t") = exp(— [ p()dE) p(E) - exp(— | p(E)dE) p(2).. exp(— | p()dE)
tl N

t

T

o

T

L(tt,...,t") = exp( — f p(thdt") Hp(tf)
f

0



Neuronal Dynamics - 6.3. Log-likelihood of a spike train

lllll

. S(t) = 2 5(t — t9) A
| | |
0 tt t? t3 r,
T
) = exp(— | p@)de) [ [ o))
0 f
T
logL (t1,...,tN) —fp(t')dt'

0




Neuronal Dynamics - 6.3. generative model of a spike train

e T

ut)y  p® = fu® -9

escape rate

{

g b

generative model of spike train

- generates spikes stochastically

- calculated likelihood that an
observed experimental spike train
could have been generated

T / !
log L (t',...,t") = — [/ p(t)dt' + X ¢log p(t/)



Neuronal Dynamics - Quiz 6.2. Tick all correct answers

[ ] A leaky integrate-and-fire model with escape noise can be
Interpreted as a generative model of a spike train
| ] For a leaky integrate-and-fire model with escape noise
we can (numerically) calculate the likelihood that observed
experimental data could have been generated by the model
| | Suppose we Inject a time-dependent current into a real neuron and observe the
resulting spike train. We the inject the same time-dependent current into a
nonlinear integrate-and-fire model with exponential escape noise with
parameter theta. For each choice of theta we can then calculate the likelihood
that the model could have generated the observed spike train.




Week 6 — part 4 : Comparison of noise models

M(Pﬂ-a ] 6.1 Escape noise
- stochastic intensity and point process
Neuronal Dynamics: \J 6.2 Interspike interval distribution
Computational Neuroscience - Time-dependend renewal process
of Single Neurons - Firing probability in discrete time

\J 6.3 Likelihood of a spike train

- generative model

Week 0 - Noise models: 6.4 Comparison of noise models
Escape noise - escape noise vs. diffusive noise
Wulfram Gerstner 6.5. Rate code vs. Temporal Code

- timing codes

EPFL, Lausanne, Switzerland .
- stochastic resonance



€sCape Process stochastic spike arrival
“ (fast noise) i (diffusive noise)
_____________________ —_—— 19 —_——
o T
u(t)
t" t t"
escape rate noisy integration
p(t) = f(u(t) —9) r-dui = —u; + RI + &(t)

dt




Poisson spike arrival: Mean and autocorrelation of filtered signal

[ I - r\/\/ /\
— .
S@) =y 6t —th) - W= | FESE-s)ds
f

AssumptiOn: Fllter (x(t)):f F(s){(S(t —s))ds
stochastic spiking
rate v(t) mean )= f F(s){(v(t = s))ds

Autocorrelation of output
(x()x(t) = <f F(s)S(t — S)de F(s)S(t' — S')ds’>

(x(t)x(t)) = f F(S)F(s){S(t — s)S(t' — s"))dsds’

Autocorrelation of Input




Diffusive noise (stochastic spike arrival)

Stochastic spike arrival:
. excitation, total rate Re
L inhibition, total rate Ri
Synaptic current pulses

d (e f qi fr
T Eu — _(u — urest) + ;?5@ _ tk) _ z Eld(t o tkl)

ki, fr
EPSC IpsC
d !
t Eu = —(U — Upest) + RI(E) +$(E) BIaCkbOard
9 A Langevin equation,

Vi e Ornstein Uhlenbeck process




Diffusive noise (stochastic spike arrival)

4 %u — _(u urest) + Rl(t) + é(t)

(Bu(t)du(D)) = (u®u()) — (u(H)? =

(Au(t)Au(t)) = (u@u)) — w@Nu(t)) =

Math argument:

- no threshold
- trajectory starts at

known value




Diffusive noise (stochastic spike arrival)

(Bu(t)du(D)) = (u®u()) — (u(H)? =

(Au(t)Au(t)) = (u@u)) — w@Nu(t)) =

Math argument ims

U () — w0 ([Au(6)]?) = o2[1 — exp( — 2t/7)]
N IR ) I




Neuronal Dynamics - 6.4. Diffusive noise/stoch. arrival
A) No threshold, stationary Input

Membrane potential density: Gaussian

U ‘.
/ U constant input rates
no threshold

NoIsy Integration

dui
e

—U; + RI + f(t)



Neuronal Dynamics - 6.4. Diffusive noise/stoch. arrival
B) No threshold, oscillatory Input

Membrane potential density:
Gaussian at time t

> p(u(D)

U

NoIsy Integration

dui
e

—U; + RI + E(t)



Neuronal Dynamics - 6.4. Diffusive noise/stoch. arrival

C) With threshold, reset/ stationary input
Membrane potential density




Neuronal Dynamics - 6.4. Diffusive noise/stoch. arrival

Superthreshold vs. Subthreshold regime

2.0 ¢ ] 2.0 +
— SR o A O W ot : ___ N
= BRI~ o AT =
° s I1:1[r?'1?3]l 150 200 0 = 't1[:12]' 150 200 Nearly Gaussian
IIIIIIIIIIIIIIIIIII o subthreshold distr.

0.1
o ' 1 o’ !
oo 44— — o b 0.0 M

0 50 100 150 200 * 0 50 100 4150 200
S
S



11.4. Gomparison of Noise Models

escape process
A (fast noise)

______ o | T Y
/ u(t)
t t
escape rate
p(t) = f(u(t) —9)
Interval distribution
PI(t‘a) =
= (- e~ | pary
escape - -

rvivor function
rate Su or functio

stochastic spike arrival

P;(t|t) :firstpassage | C " (diffusive noise)
time problem F---------------- il
t— ¢ b
noisy integration
Stationary Input: du;
-Mean IS Tr—r T Tu RS f(t)

du exp (u?) [1 4 erf(u)

_hD

ﬂ()lx
synapse

-Mean firing rate white
£ 1 (fast noise) (slow noise)
(s) (Brunel et al., 2001)



Noise models: from diffusive noise to escape rates

noisy integration

U

stochastic spike arrival
(diffusive noise)

escape rate, . ( - (uO (t) _ 19)2) [ | (t)]
p(t) = fuo(0), u'o(t)) o« —F 207 =+
erf ((uo(£) = 9)/0)




Comparison: diffusive noise vs. escape rates

Probability of first spike 0.3

diffusive
__________________ .1
escape
1.0 - " - - "T"=""="—-—®="_-"=-="-=-==-=== -
subthreshold =
potential
£3_0) .
) 100D =3

escape rate

(U (t) — V)2 1 CZ[u’o(t)]+]

p(t) = fuo(t),u'o(t)) o exp( 0z ) T o



Diffusive noise

- represents stochastic spike arrival

- easy to simulate
- hard to calculate

Escape noise

- represents internal noise

- easy to simulate

- easy to calculate

- approximates diffusive noise

- basis of modern model fitting methods



Week 6 — part 5 : Rate Codes versus Temporal Codes

M(Pﬂ-a ] 6.1 Escape noise
- stochastic intensity and point process
Neuronal Dynamics: \J 6.2 Interspike interval distribution
Computational Neuroscience - Time-dependend renewal process
of Single Neurons - Firing probability in discrete time

\l 6.3 Likelihood of a spike train

- generative model

Week 0 - Noise models: \| 6.4 Comparison of noise models
Escape noise - escape noise vs. diffusive noise

Wulfram Gerstner 6.5. Rate code vs. Temporal Code

- timing codes
- stochastic resonance

EPFL, Lausanne, Switzerland




Neuronal Dynamics — 6.5 Rate codes versus temporal codes

3 rate codes
AN

Temporal averaging

/

PSTH (t) =

n(t; t + At)

KAt

Trial averaging

A(t) =

n(t;t + At)
NAt

population
averaging



Neuronal Dynamics - 6.9. Temporal codes

The problem of neural coding: temporal codes

Time to first spike after input

N

[ —




Neuronal Dynamics - 6.9. Temporal codes

Spike timing codes:
-time-to-first spike
-phase code

. . Phase with respect to oscillation




~ Neuronal Dynamics - 6.5. Stochastic Resonance

Stochastic Resonance: changing the noise level

I(t) = I cos( wt) - 1(0)
[MOBe(t) = g (t) //

Sinusoidal Input |
+noise 1l
+ threshold

________




Neuronal Dynamics - 6.9. Stochastic Resonance

v

N
4

Transmission
of periodic sign




Neuronal Dynamics — 6.5 Rate codes versus temporal codes

-Rate codes
- population rate

-Temporal Codes

- time-to-first spike
- phase of spike
- stochastic resonance



Neuronal Dynamics — Homework assignment

Time to first spike after input

With deterministic model
With Poisson model
With noisy IF (escape noise)
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