

Week 6 – part 1 : Escape noise



Neuronal Dynamics: Computational Neuroscience of Single Neurons

Week 6 – Noise models: Escape noise

Wulfram Gerstner

EPFL, Lausanne, Switzerland

6.1 Escape noise

- stochastic intensity and point process

6.2 Interspike interval distribution

- Time-dependend renewal process
- Firing probability in discrete time

6.3 Likelihood of a spike train

- likelihood function

6.4 Comparison of noise models

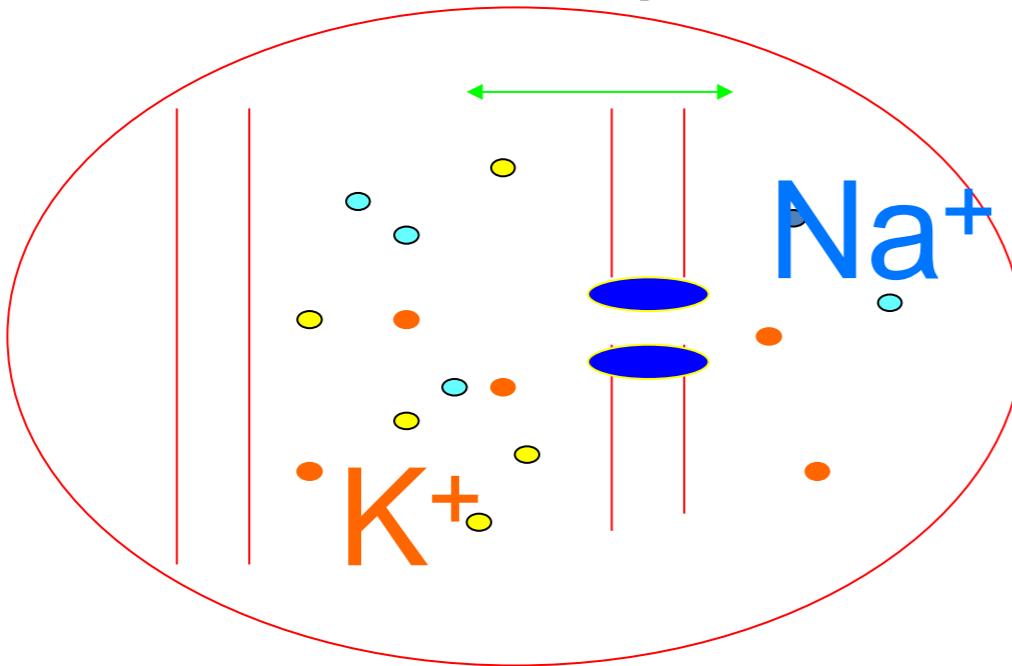
- escape noise vs. diffusive noise

6.5. Rate code vs. Temporal Code

- timing codes
- stochastic resonance

Neuronal Dynamics – Review: Sources of Variability

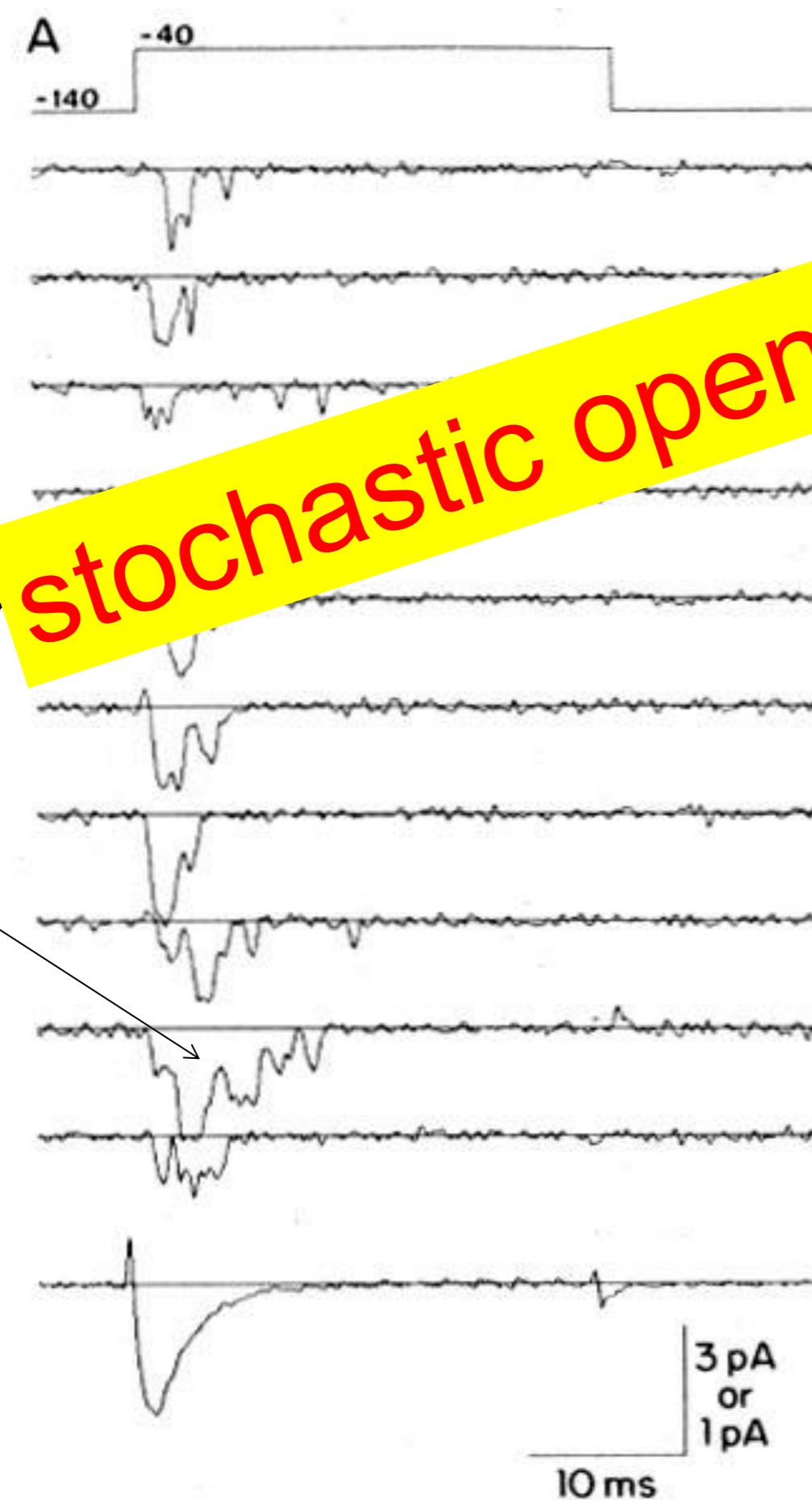
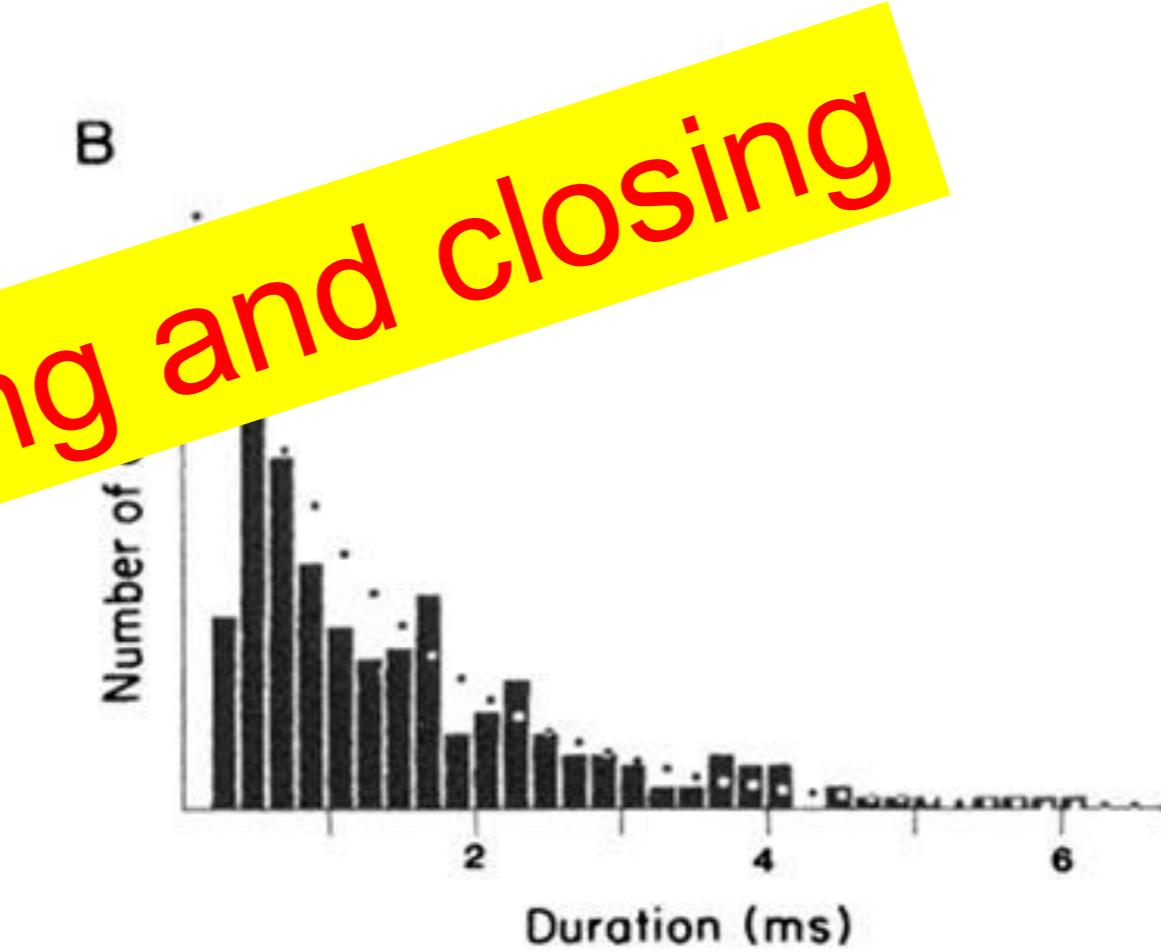
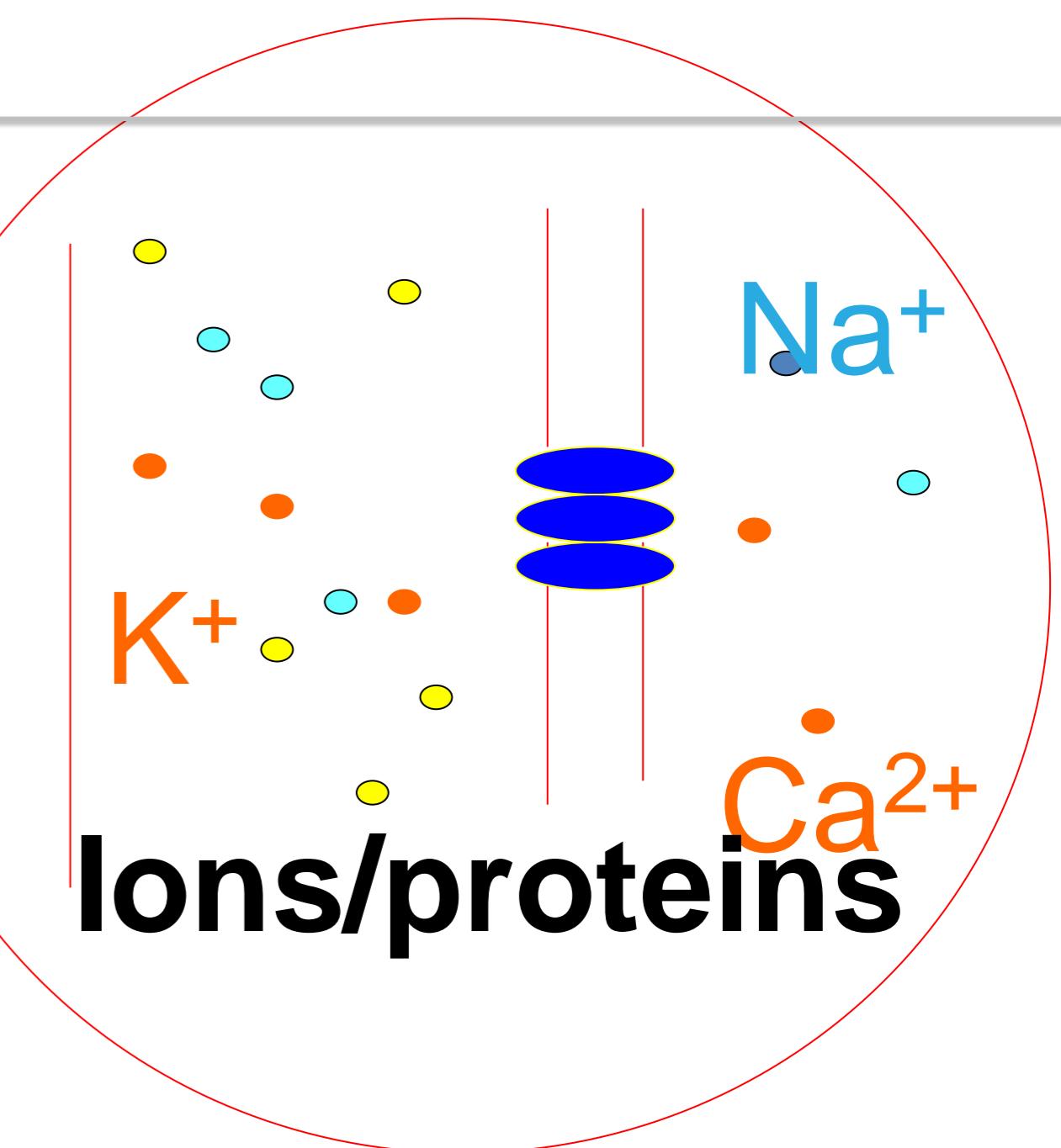
- Intrinsic noise (ion channels)



- Finite number of channels
- Finite temperature

Review from 2.5 Ion channels

Steps:
Different numbers
of channels

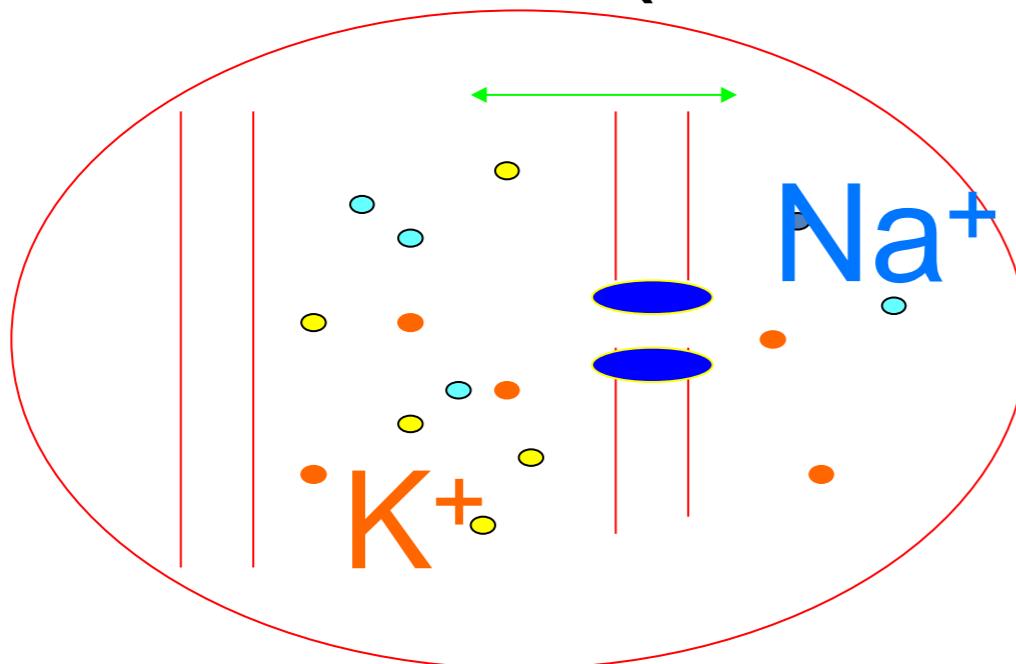


Ions/proteins

Na^+ channel from rat heart (*Patlak and Ortiz 1985*)
A traces from a patch containing several channels.
Bottom: average gives current time course.
B. Opening times of single channel events

Neuronal Dynamics – Review: Sources of Variability

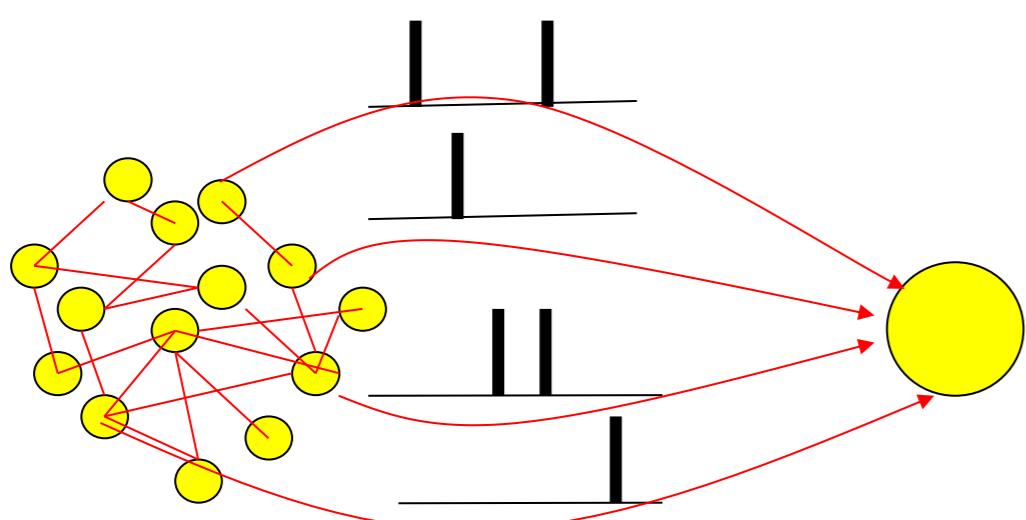
- Intrinsic noise (ion channels)



- Finite number of channels
- Finite temperature

small contribution!

- Network noise (background activity)



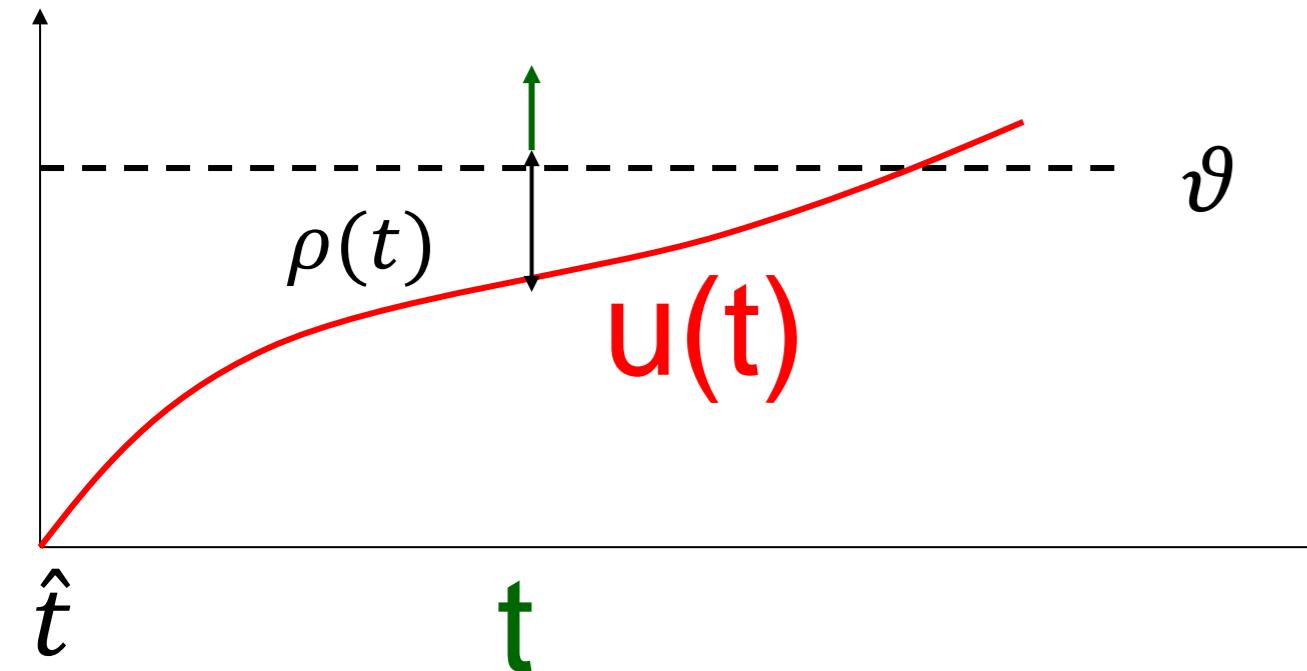
- Spike arrival from other neurons
- Beyond control of experimentalist

Noise models?

big contribution!

Noise models

escape process,
stochastic intensity

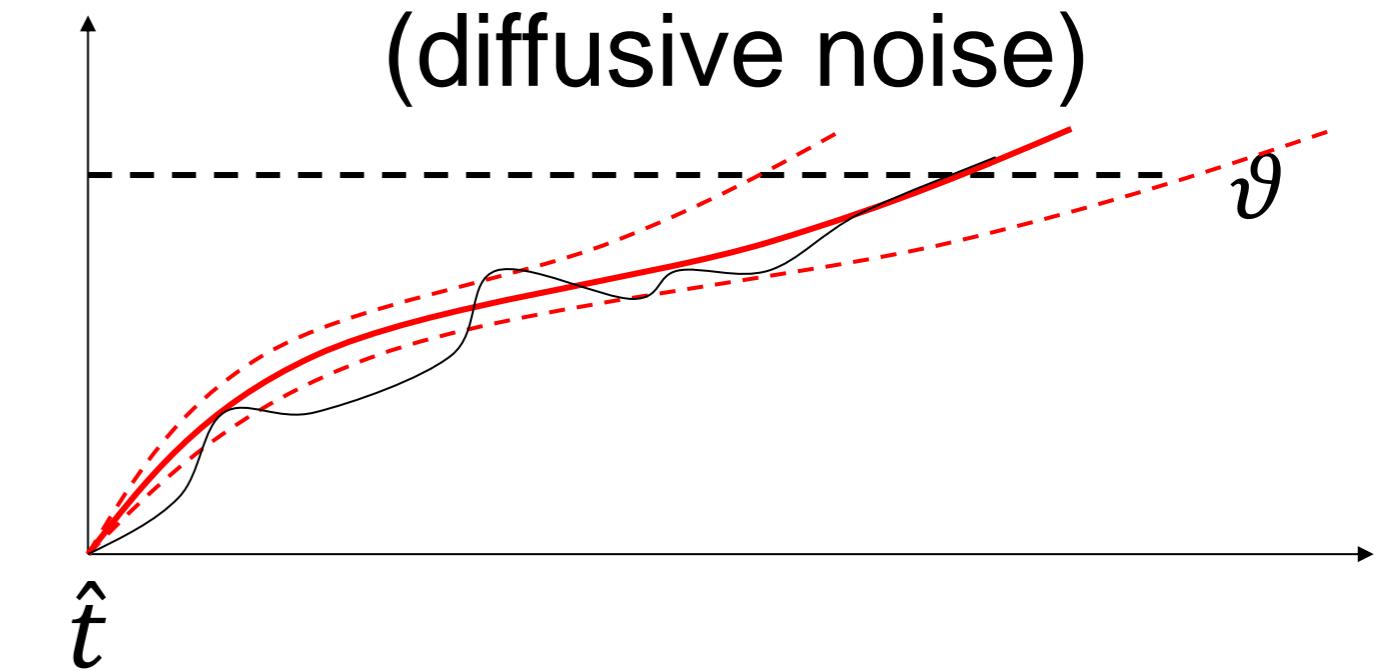


escape rate

$$\rho(t) = f(u(t) - \vartheta)$$

Now:
Escape noise!

stochastic spike arrival
(diffusive noise)

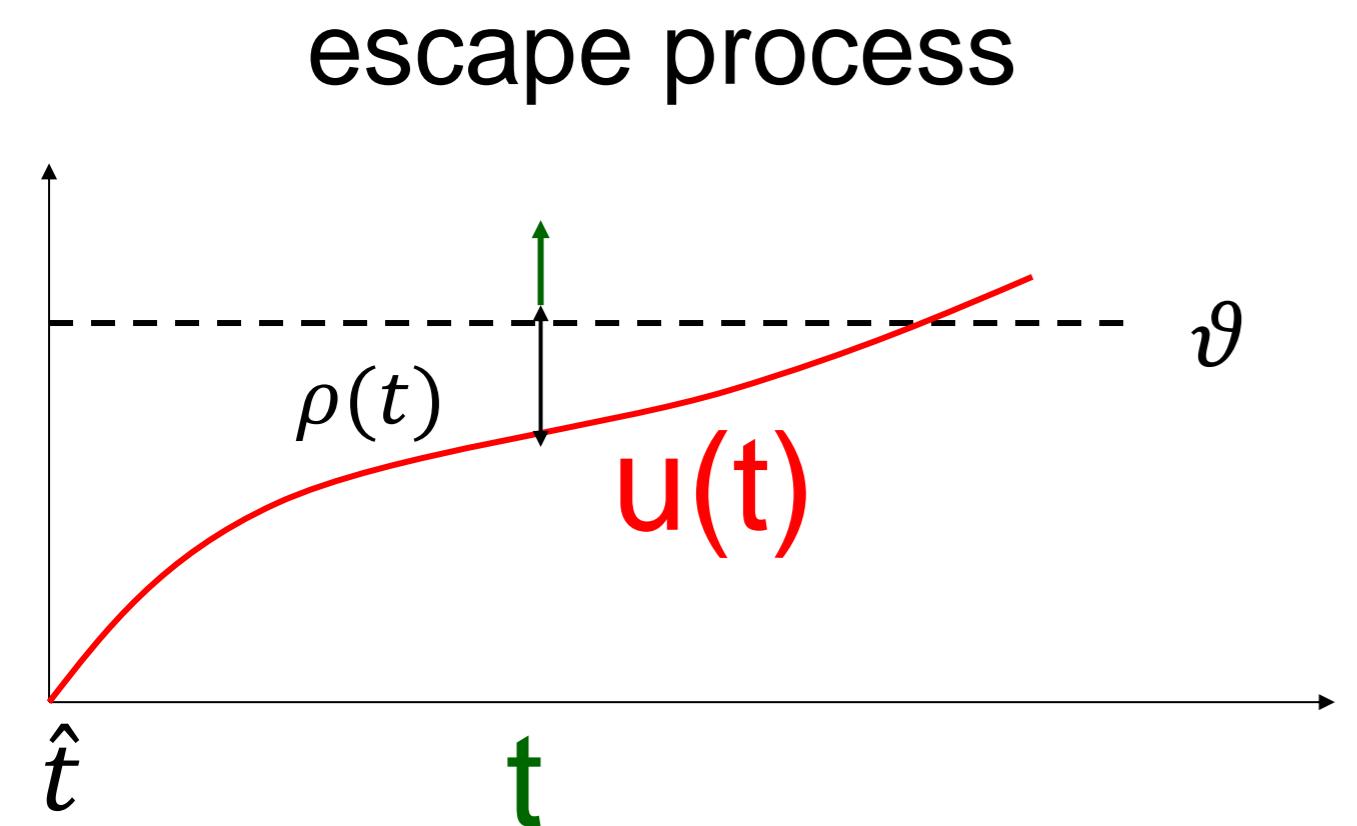
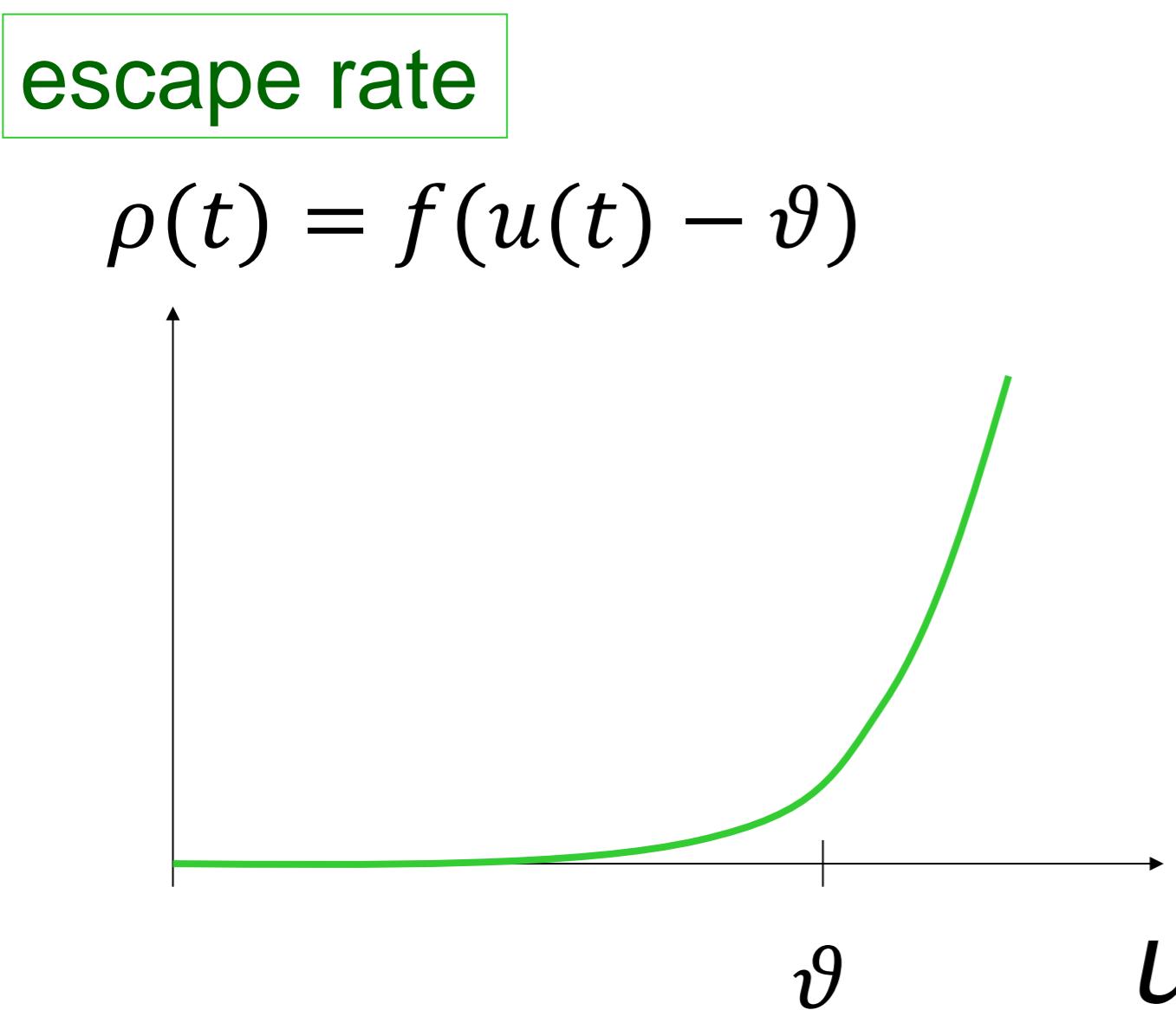


noisy integration

$$\tau \cdot \frac{du_i}{dt} = -u_i + RI + \xi(t)$$

Relation between the two models:
later this week (lecture 6.4)

Neuronal Dynamics – 6.1 Escape noise



escape rate

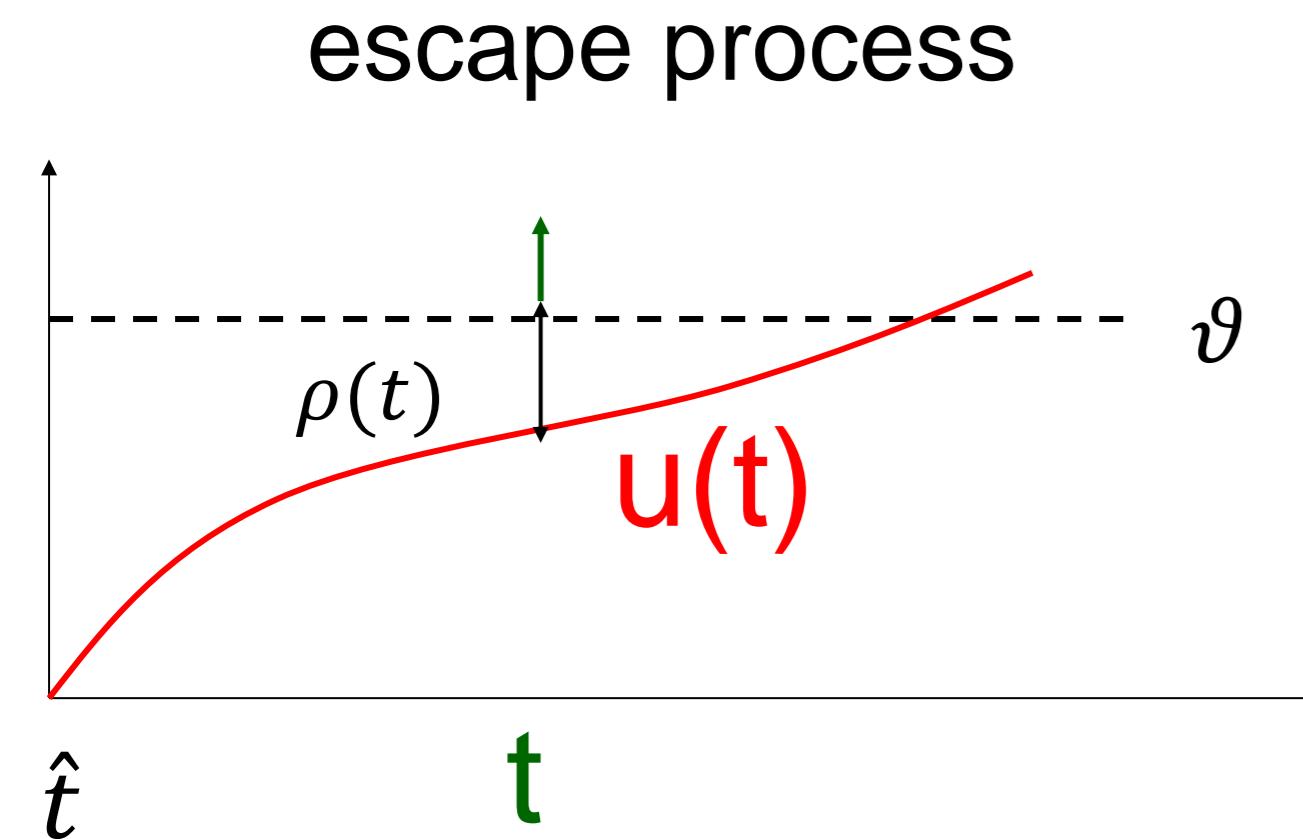
$$\rho(t) = \rho_\vartheta \exp\left(\frac{u(t) - \vartheta}{\Delta}\right)$$

Example: leaky integrate-and-fire model

$$\tau \cdot \frac{d}{dt} u = -(u - u_{rest}) + RI(t)$$

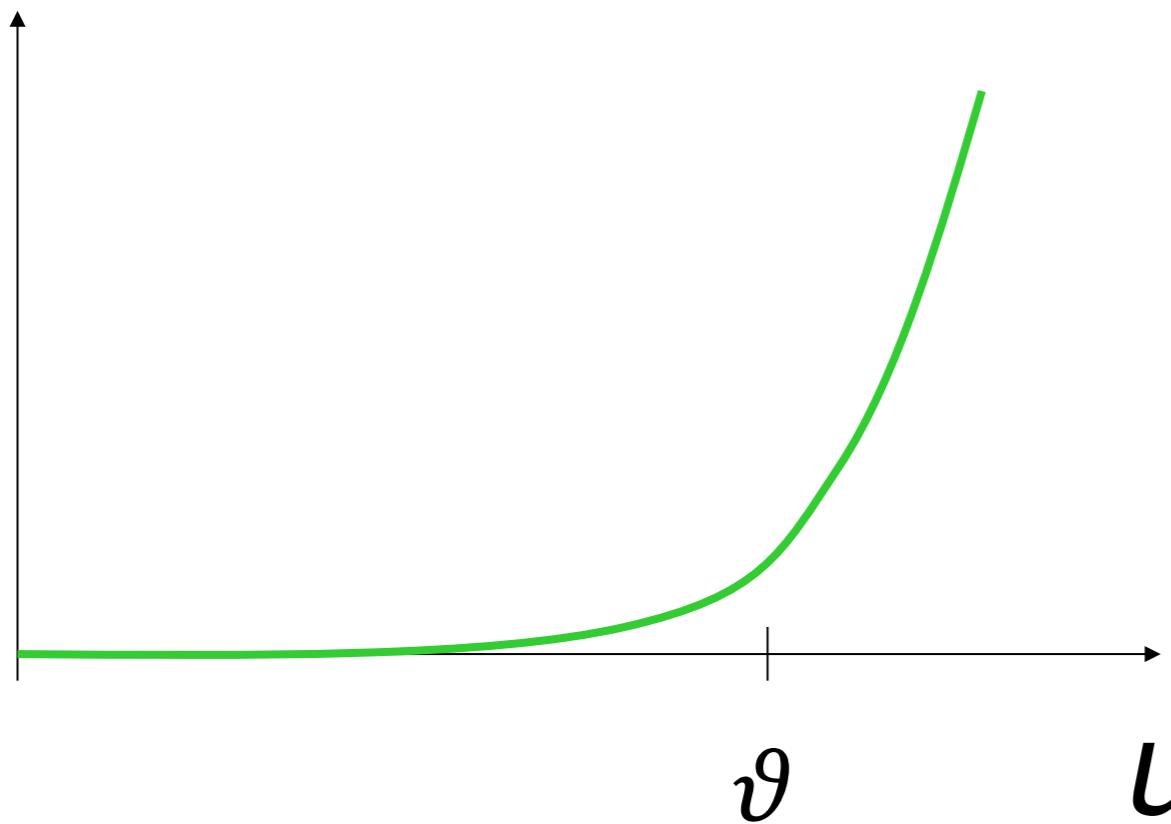
if spike at $t^f \Rightarrow u(t^f + \delta) = u_r$

Neuronal Dynamics – 6.1 stochastic intensity



escape rate

$$\rho(t) = f(u(t) - \vartheta)$$



Escape rate = stochastic intensity
of point process

$$\rho(t) = f(u(t))$$

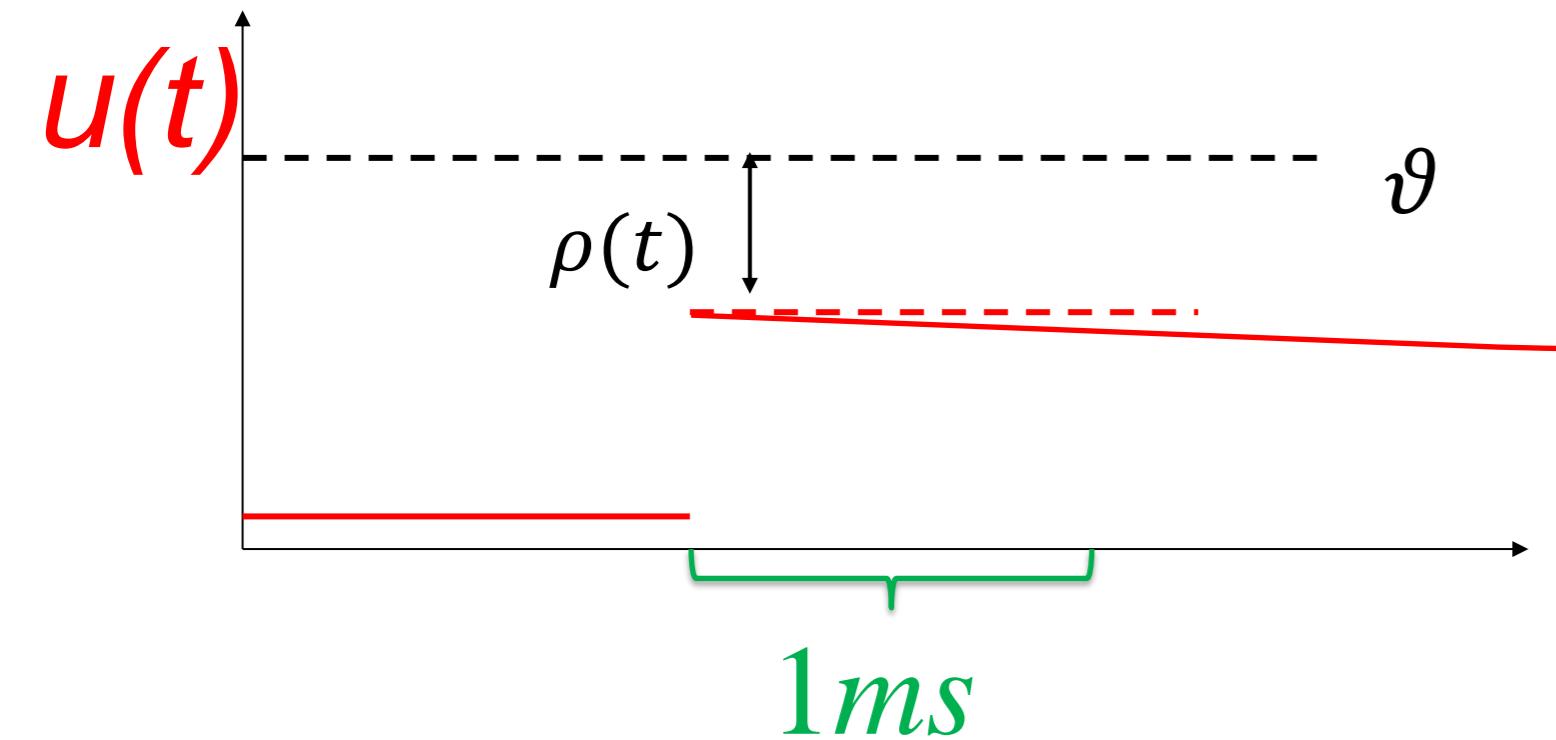
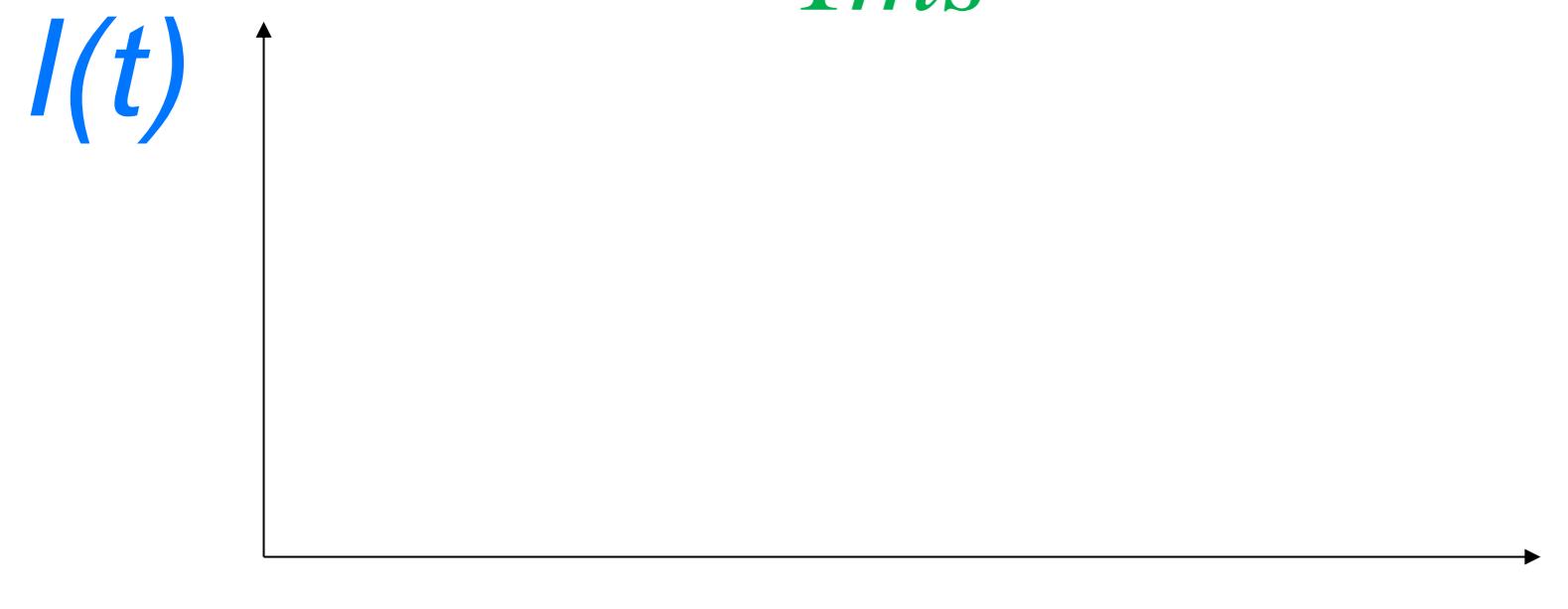
examples

$$\rho(t) = \rho_\vartheta \exp\left(\frac{u(t) - \vartheta}{\Delta}\right)$$

$$\rho(t) =$$

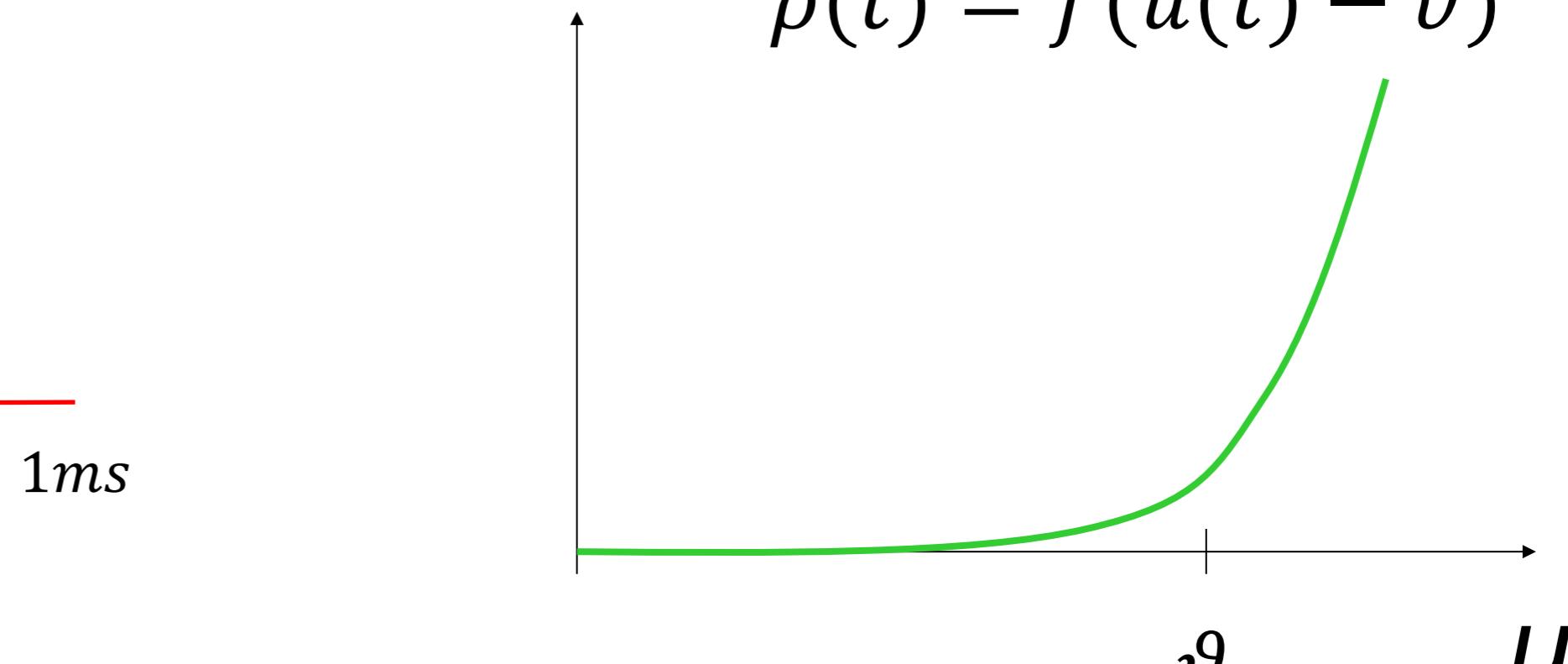
Neuronal Dynamics – 6.1 mean waiting time

$$\tau \cdot \frac{d}{dt} u = -(u - u_{rest}) + RI(t)$$



escape rate

$$\rho(t) = f(u(t) - \vartheta)$$

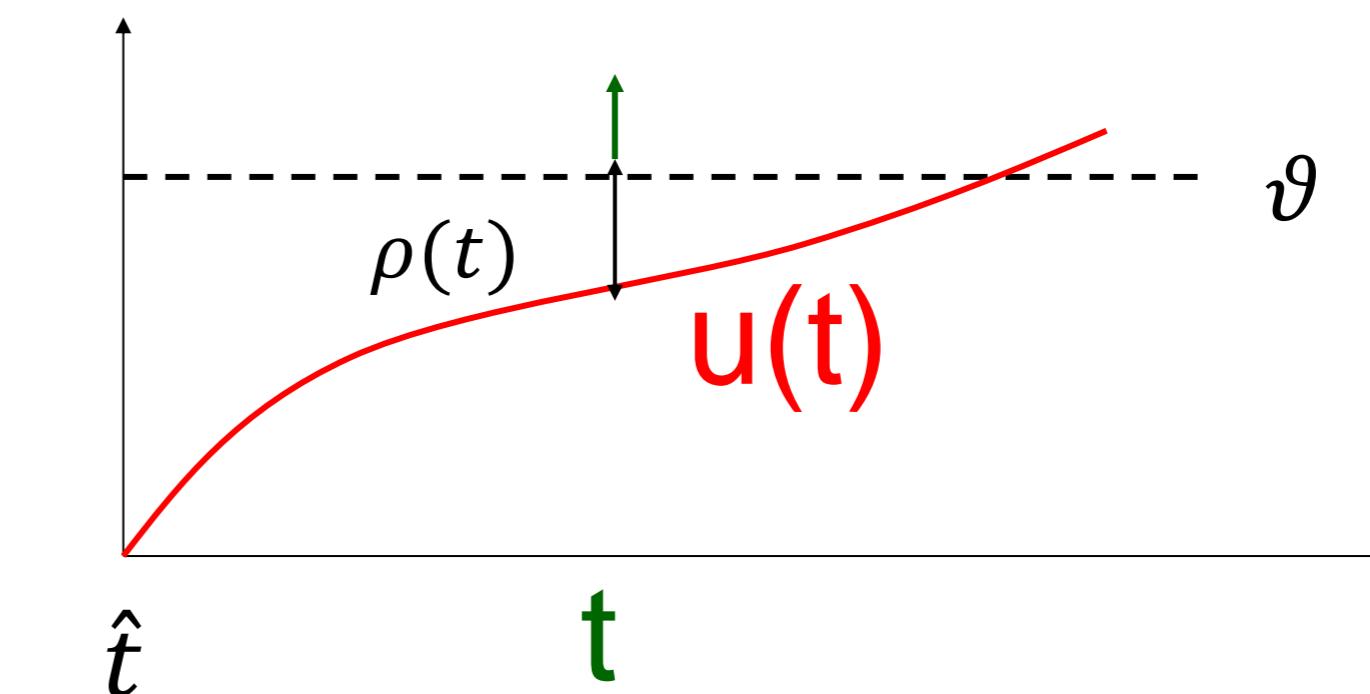


mean waiting time, after switch

Neuronal Dynamics – 6.1 escape noise/stochastic intensity

Escape rate = stochastic intensity
of point process

$$\rho(t) = f(u(t))$$



Neuronal Dynamics – Quiz 6.1.

Escape rate/stochastic intensity in neuron models

- [] The escape rate of a neuron model has units one over time
- [] The stochastic intensity of a point process has units one over time
- [] For large voltages, the escape rate of a neuron model always saturates at some finite value
- [] After a step in the membrane potential, the mean waiting time until a spike is fired is proportional to the escape rate
- [] After a step in the membrane potential, the mean waiting time until a spike is fired is equal to the inverse of the escape rate
- [] The stochastic intensity of a leaky integrate-and-fire model with reset only depends on the external input current but not on the time of the last reset
- [] The stochastic intensity of a leaky integrate-and-fire model with reset depends on the external input current AND on the time of the last reset

Week 6 – part 2 : Interspike intervals and renewal processes

Neuronal Dynamics: Computational Neuroscience of Single Neurons

Week 6 – Noise models: Escape noise

Wulfram Gerstner

EPFL, Lausanne, Switzerland

↓ 6.1 Escape noise

- stochastic intensity and point process

6.2 Interspike interval distribution

- Time-dependend renewal process
- Firing probability in discrete time

6.3 Likelihood of a spike train

- likelihood function

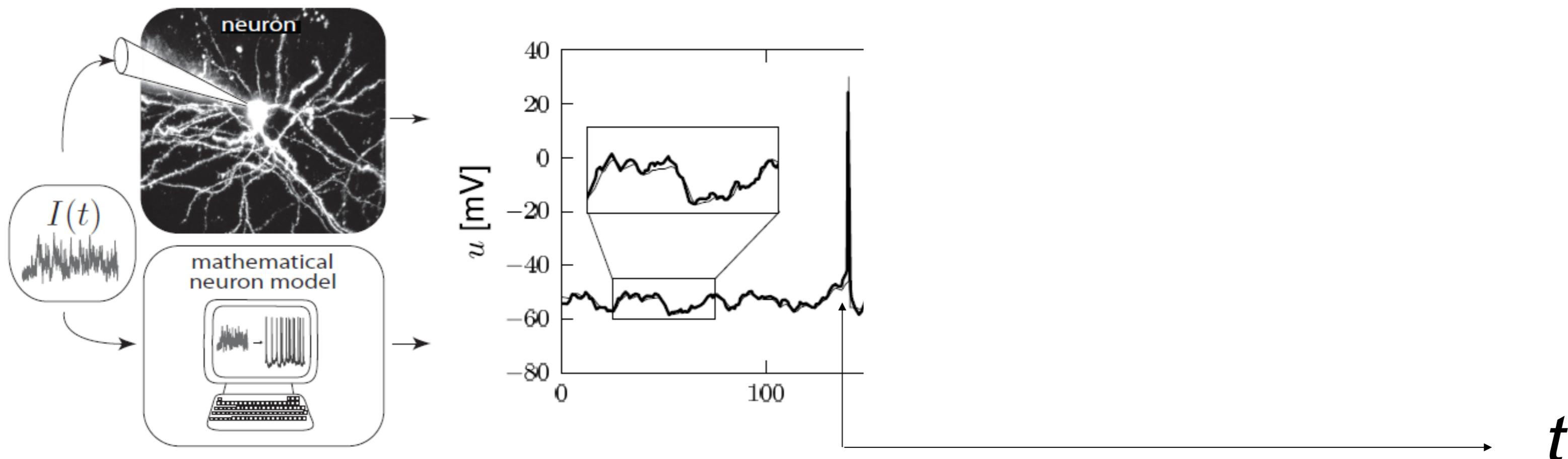
6.4 Comparison of noise models

- escape noise vs. diffusive noise

6.5. Rate code vs. Temporal Code

- timing codes
- stochastic resonance

Neuronal Dynamics – 6.2. Interspike Intervals



deterministic part of input

$$I(t) \rightarrow u(t)$$

Example:

nonlinear integrate-and-fire model

$$\tau \cdot \frac{d}{dt} u = F(u) + RI(t)$$

$$\text{if spike at } t^f \Rightarrow u(t^f + \delta) = u_r$$

noisy part of input/intrinsic noise

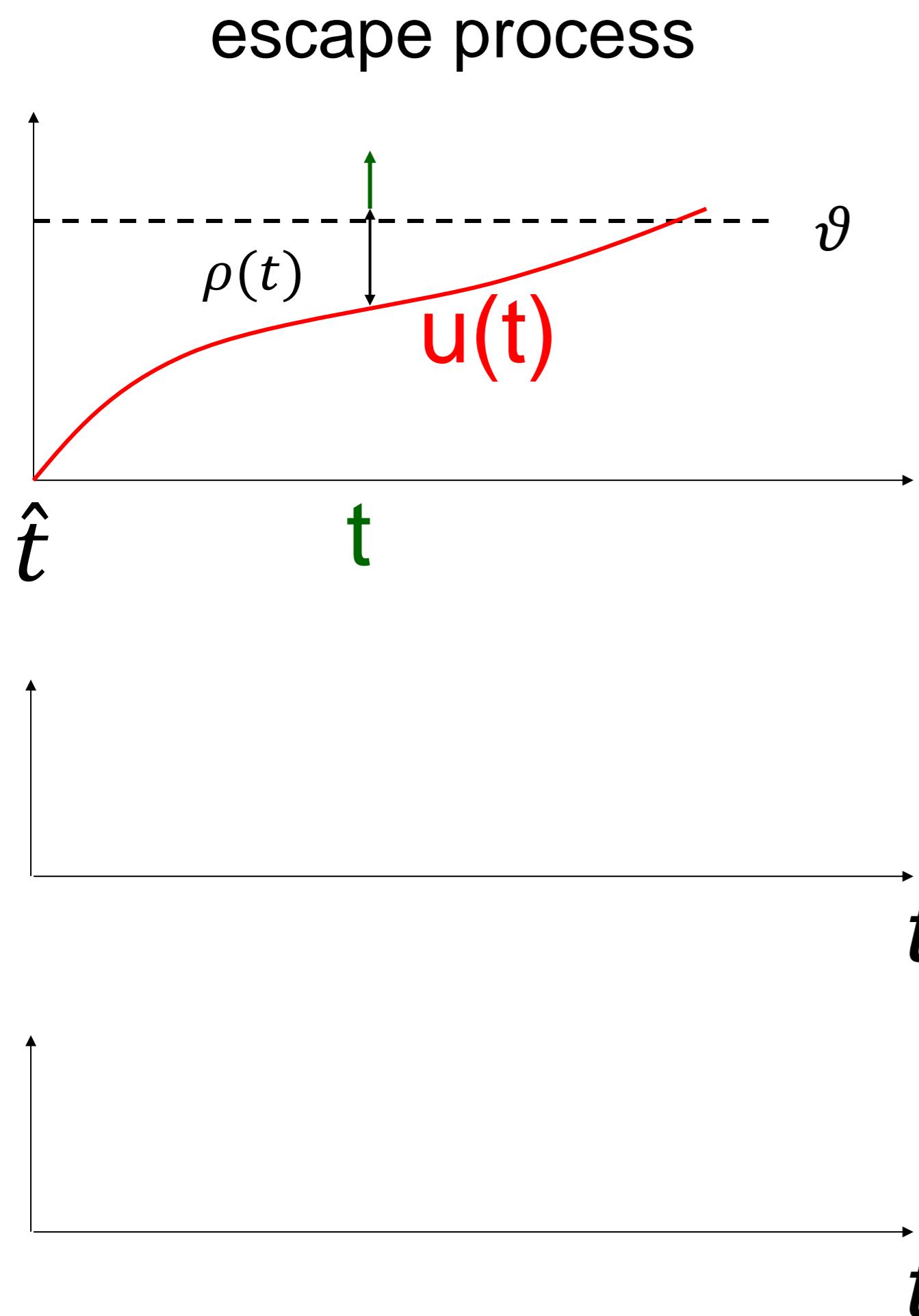
→ escape rate

Example:

exponential stochastic intensity

$$\rho(t) = f(u(t)) = \rho_\vartheta \exp(u(t) - \vartheta)$$

Neuronal Dynamics – 6.2. Interspike Interval distribution



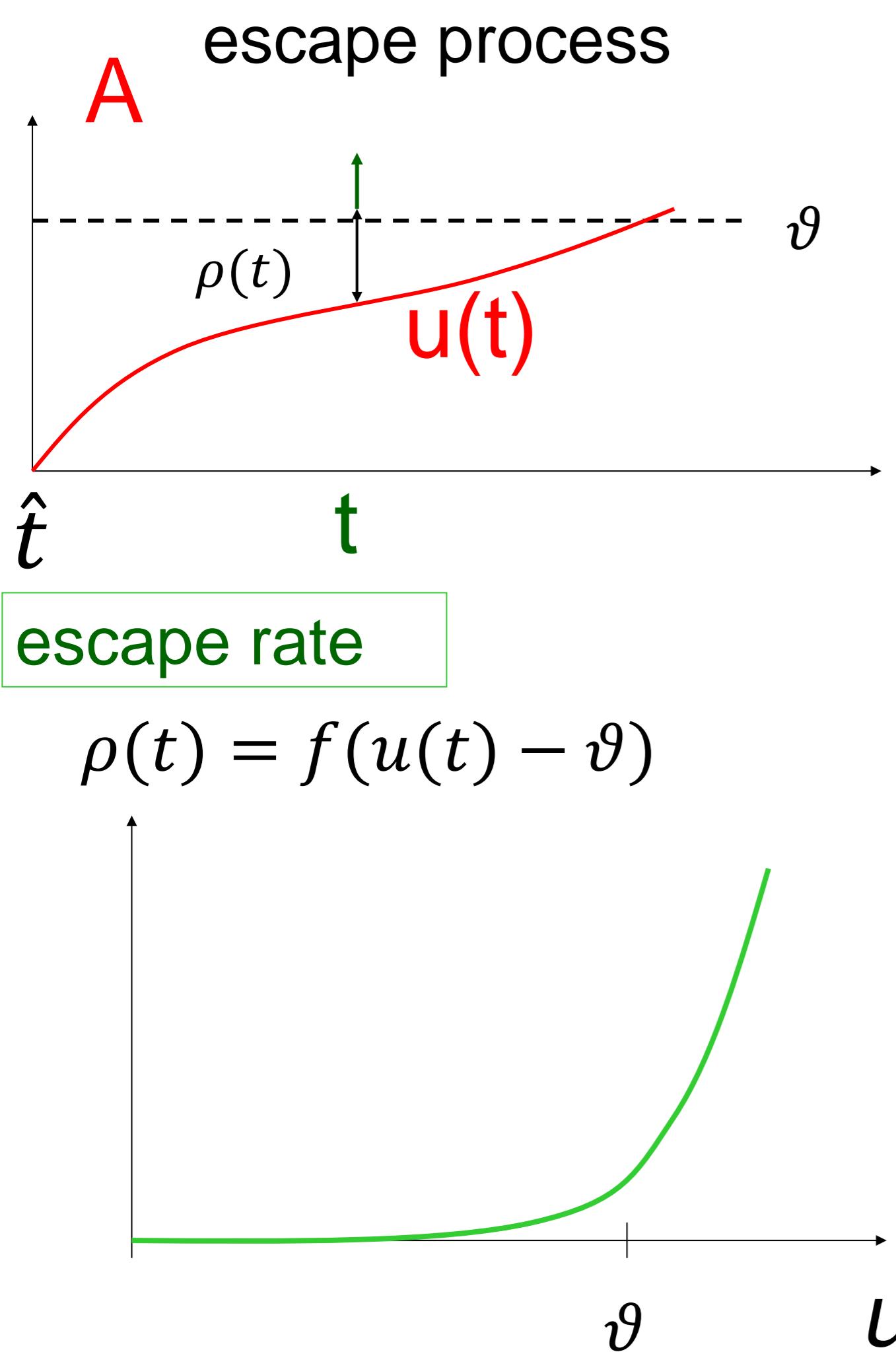
escape rate

$$\rho(t) = f(u(t) - \vartheta)$$

Survivor function

$$\frac{d}{dt} S_I(t|\hat{t}) = -\rho(t) S_I(t|\hat{t})$$

Neuronal Dynamics – 6.2. Interspike Intervals



Survivor function

$$\frac{d}{dt} S_I(t|\hat{t}) = -\rho(t) S_I(t|\hat{t})$$

Examples now

$$S_I(t|\hat{t}) = \exp\left(-\int_{\hat{t}}^t \rho(t') dt'\right)$$

Interval distribution

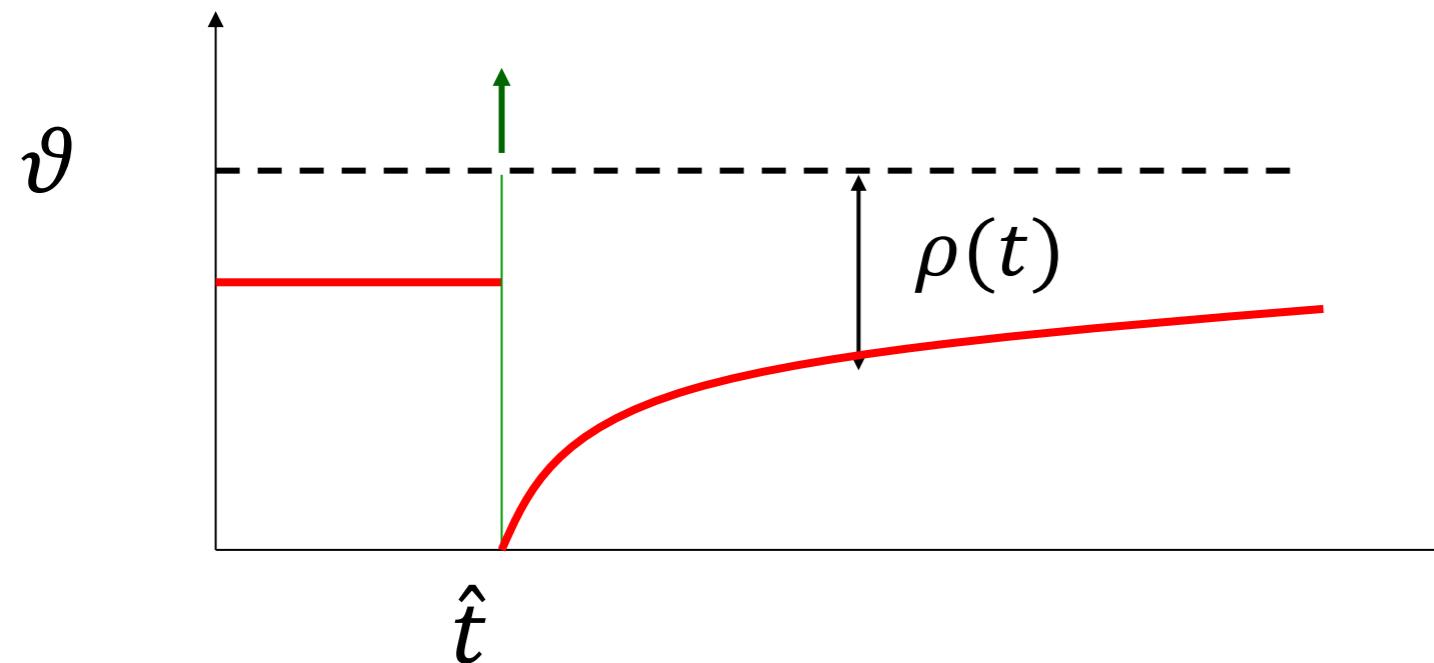
$$P_I(t|\hat{t}) = \rho(t) \cdot \exp\left(-\int_{\hat{t}}^t \rho(t') dt'\right)$$

escape rate

Survivor function

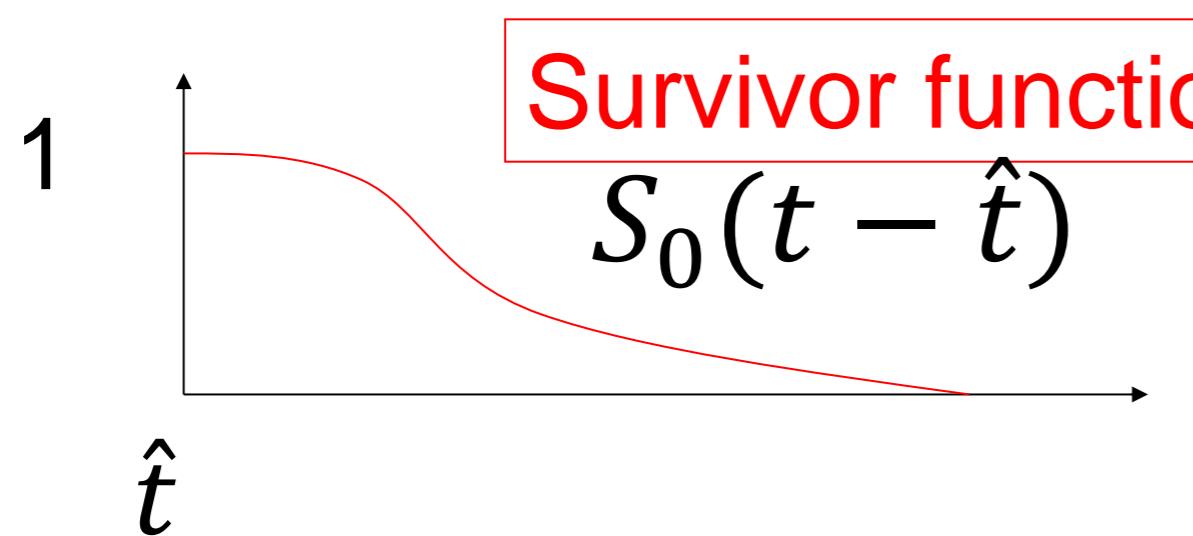
Neuronal Dynamics – 6.2. Renewal theory

Example: I&F with reset, **constant input**

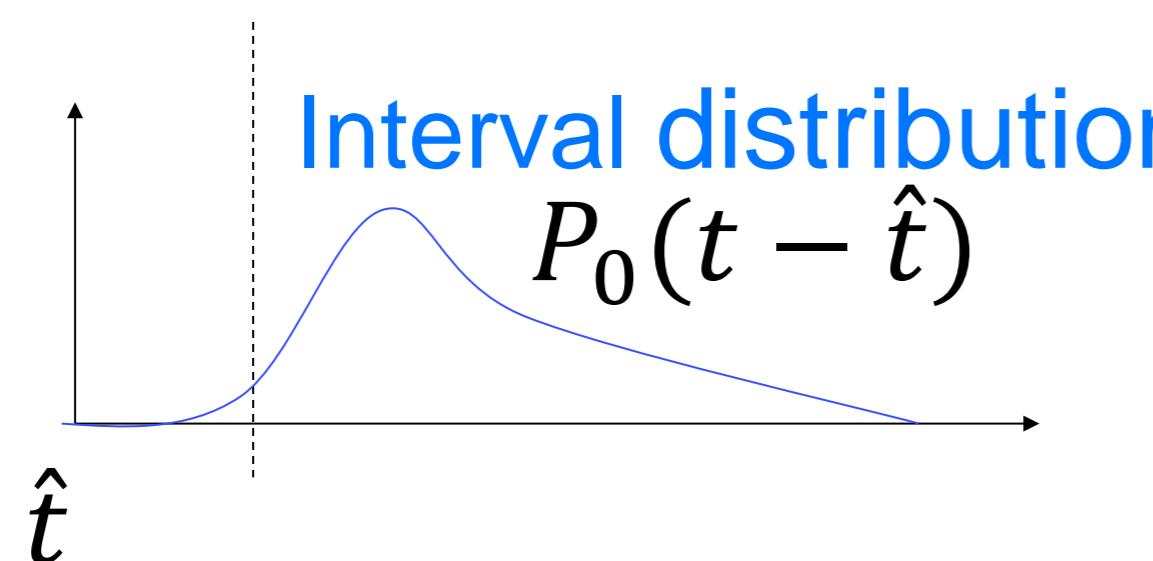


escape rate

$$\rho(t|\hat{t}) = f(u(t|\hat{t})) = \rho_\vartheta \exp(u(t|\hat{t}) - \vartheta)$$



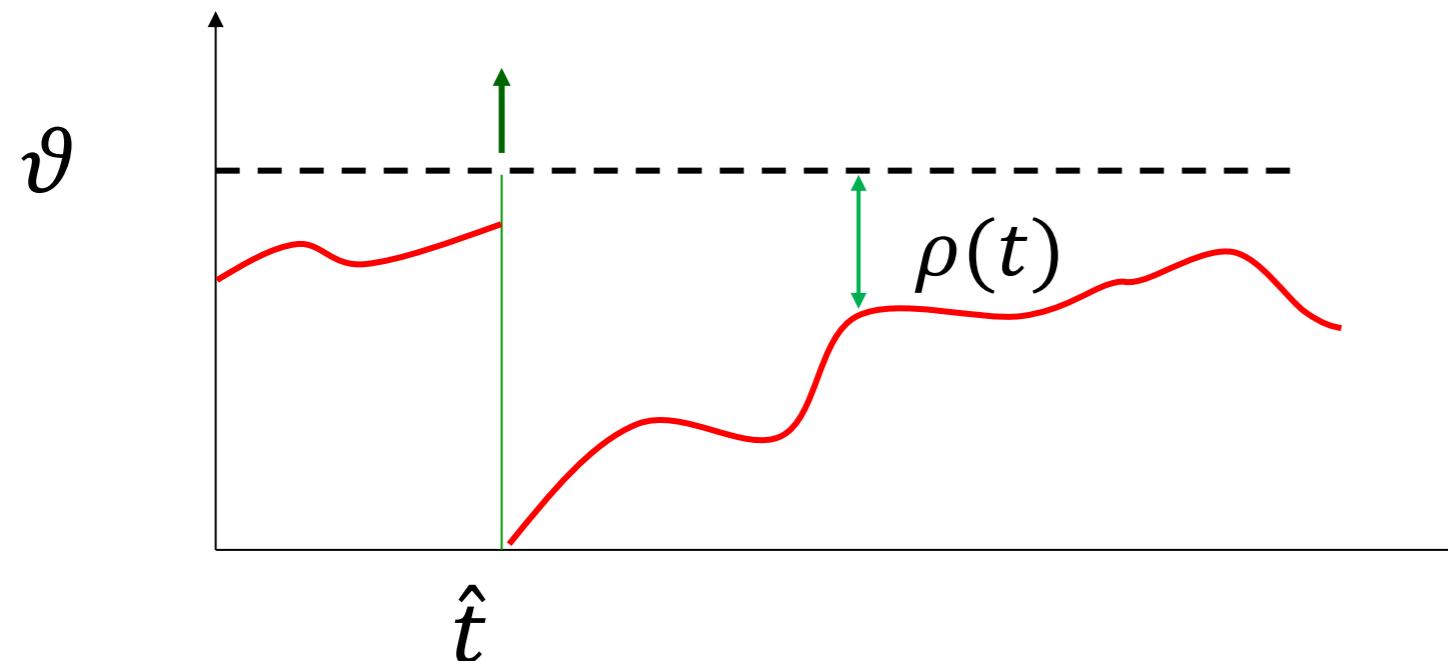
$$S(t|\hat{t}) = \exp\left(-\int_{\hat{t}}^t \rho(t'|\hat{t}) dt'\right)$$



$$\begin{aligned} P(t|\hat{t}) &= \rho(t|\hat{t}) \exp\left(-\int_{\hat{t}}^t \rho(t'|\hat{t}) dt'\right) \\ &= -\frac{d}{dt} S(t|\hat{t}) \end{aligned}$$

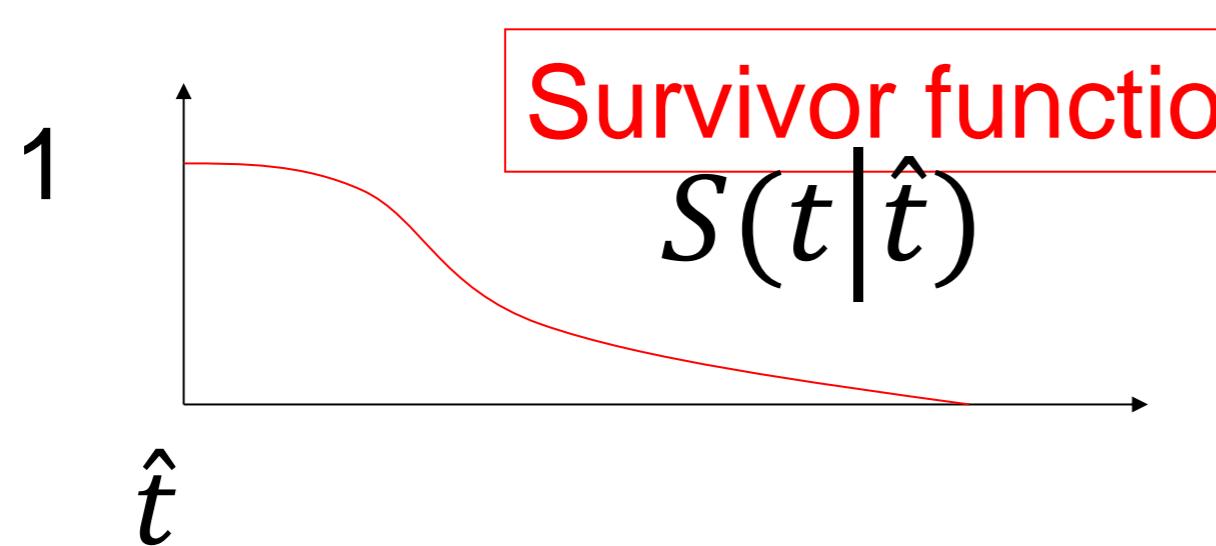
Neuronal Dynamics – 6.2. Time-dependent Renewal theory

Example: I&F with reset, time-dependent input,

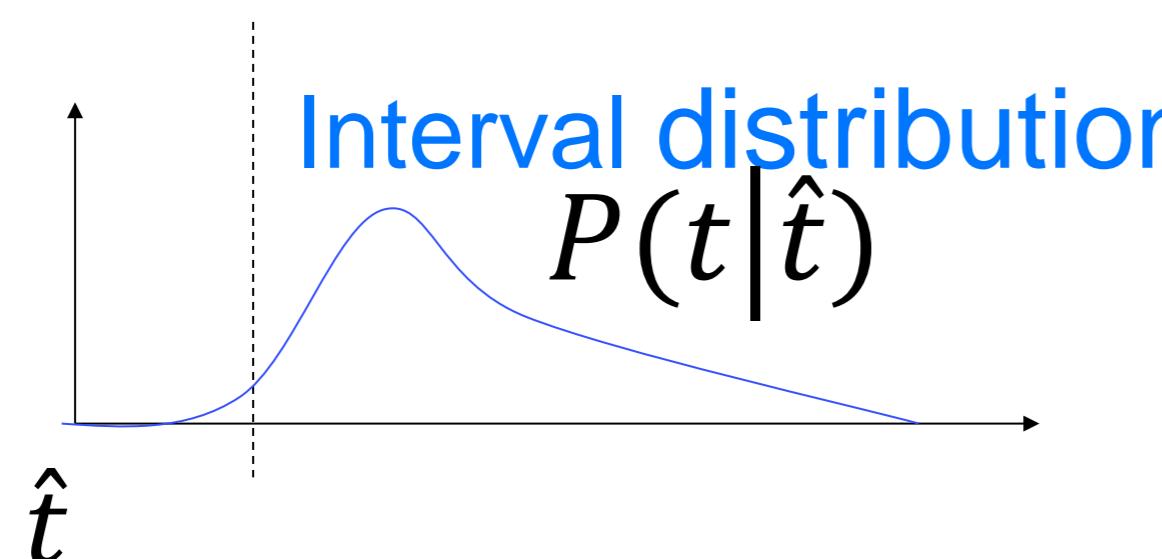


escape rate

$$\rho(t|\hat{t}) = f(u(t|\hat{t})) = \rho_\vartheta \exp(u(t|\hat{t}) - \vartheta)$$

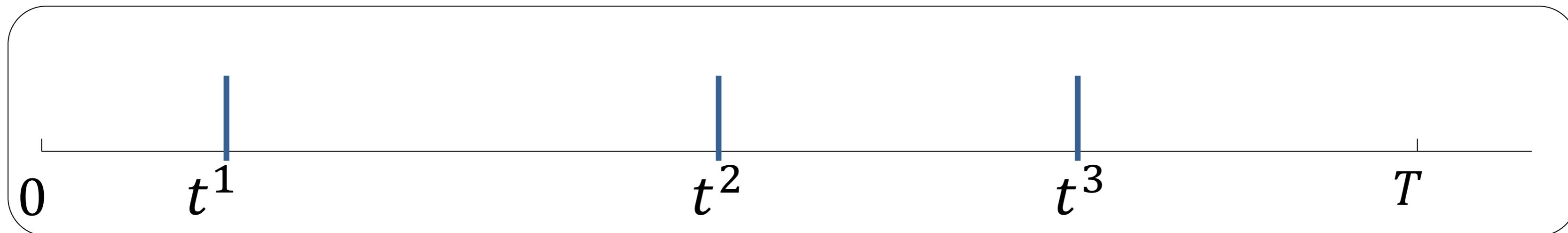


$$S(t|\hat{t}) = \exp\left(-\int_{\hat{t}}^t \rho(t'| \hat{t}) dt'\right)$$



$$\begin{aligned} P(t|\hat{t}) &= \rho(t|\hat{t}) \exp\left(-\int_{\hat{t}}^t \rho(t'| \hat{t}) dt'\right) \\ &= -\frac{d}{dt} S(t|\hat{t}) \end{aligned}$$

Neuronal Dynamics – 6.2. Firing probability in discrete time



Probability to survive 1 time step

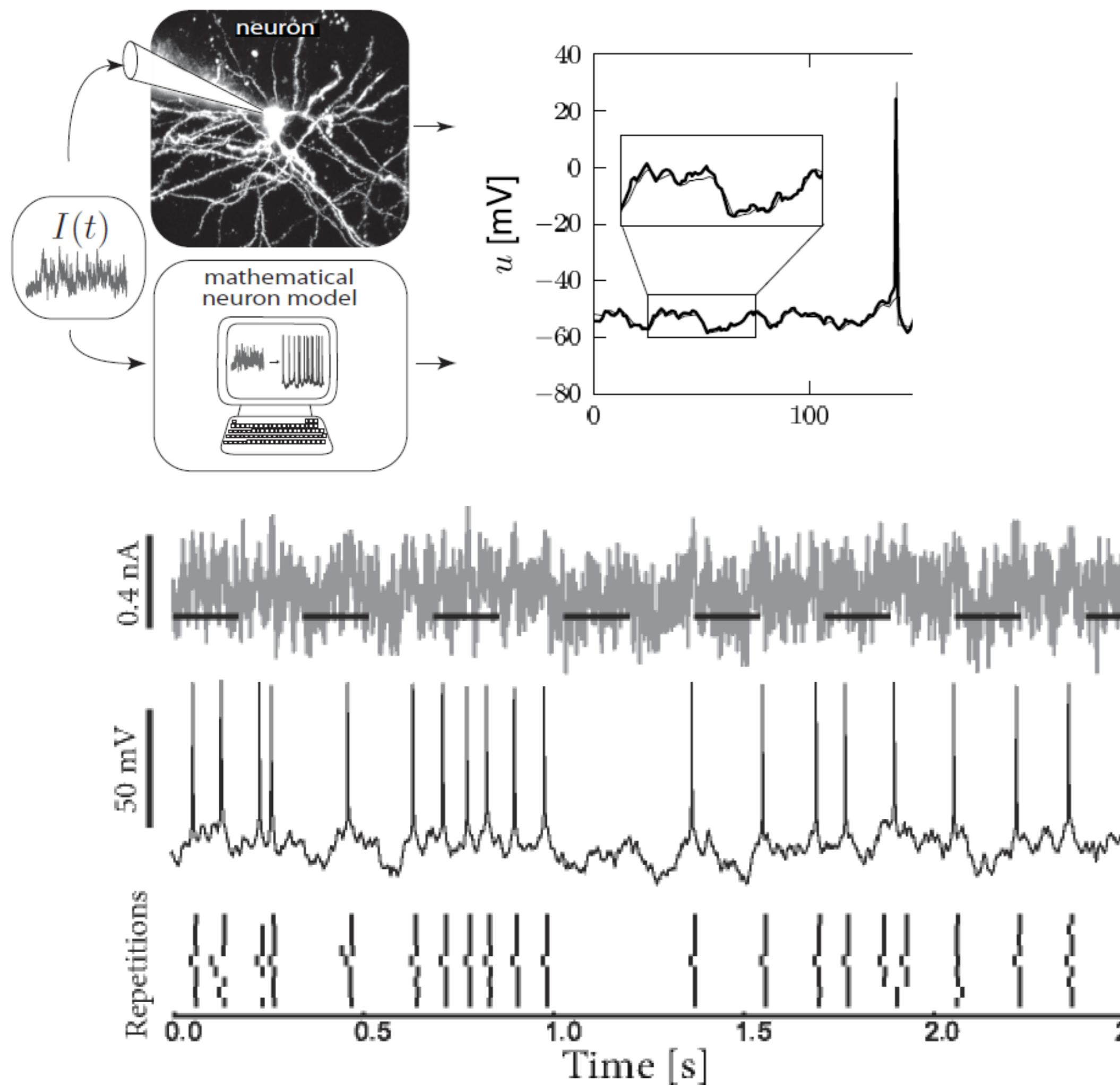
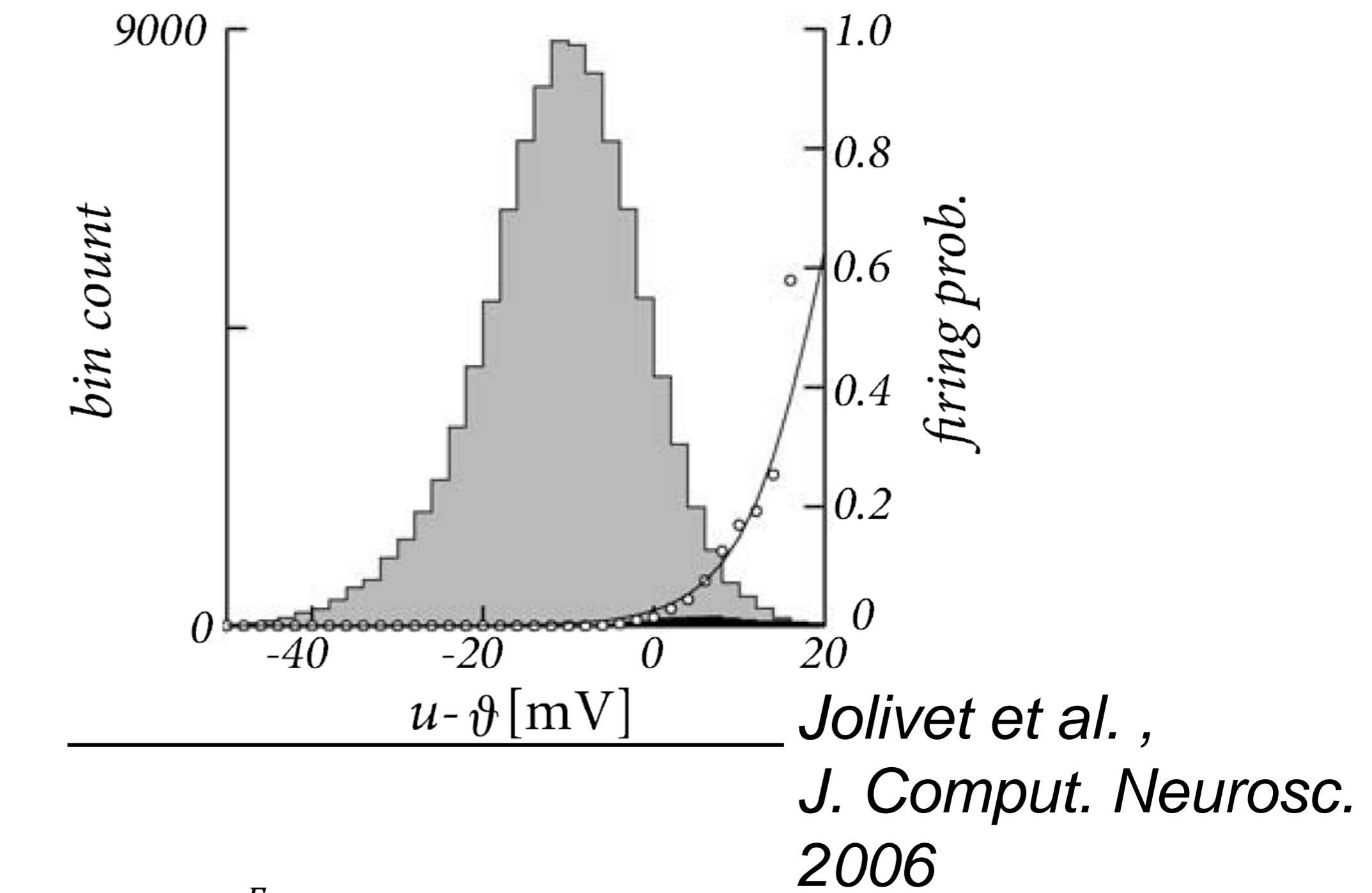
$$S(t_{k+1}|t_k) = \exp \left[- \int_{t_k}^{t_{k+1}} \rho(t') dt' \right]$$

$$S(t_{k+1}|t_k) = \exp[-\rho(t_k)\Delta] = 1 - P_k^F$$

Probability to fire in 1 time step

$$P_k^F =$$

Neuronal Dynamics – 6.2. Escape noise - experiments



$$P_k^F = 1 - \exp[-\rho(t_k)\Delta]$$

escape
rate

$$\rho(t) = \frac{1}{\Delta} \exp\left(-\frac{u(t) - \vartheta}{\Delta}\right)$$

Neuronal Dynamics – 6.2. Renewal process, firing probability

Escape noise = stochastic intensity

-Renewal theory

- hazard function
- survivor function
- interval distribution

-time-dependent renewal theory

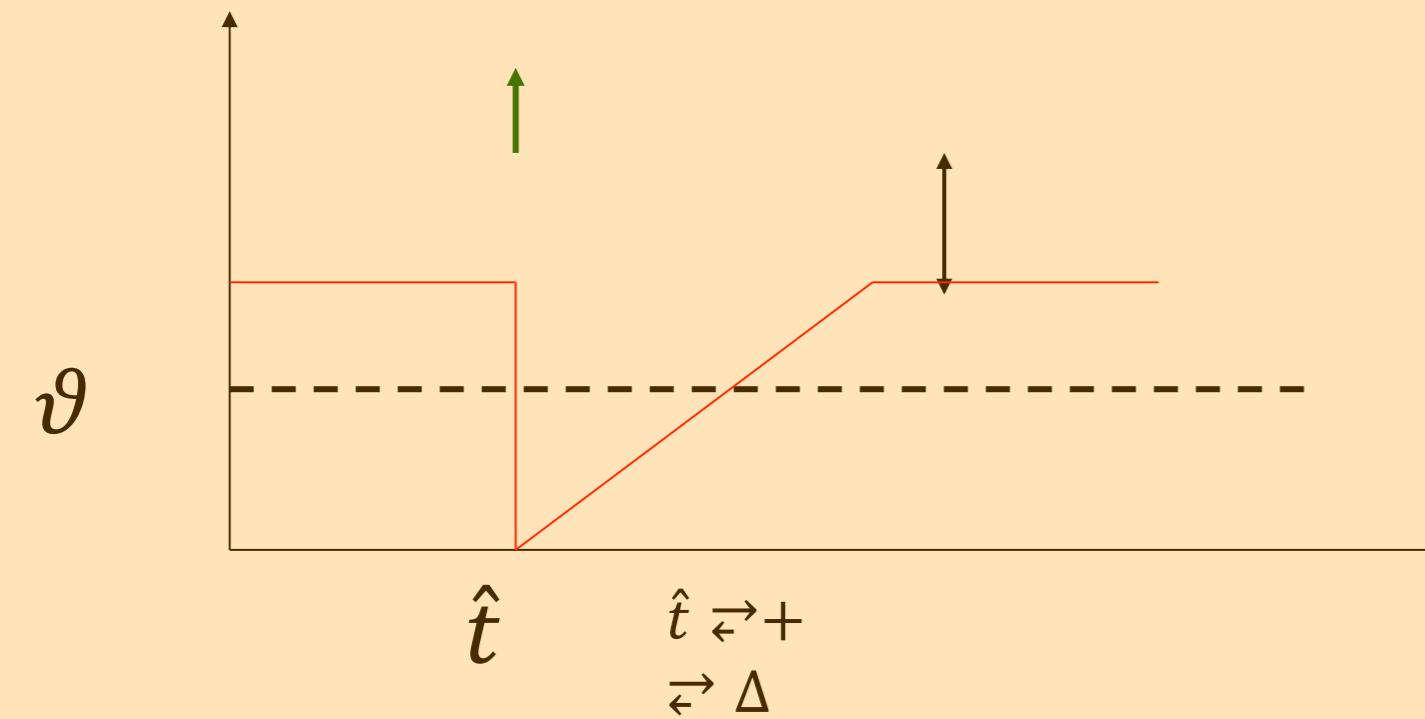
-discrete-time firing probability

-Link to experiments

→ basis for modern methods of
neuron model fitting (week 7)

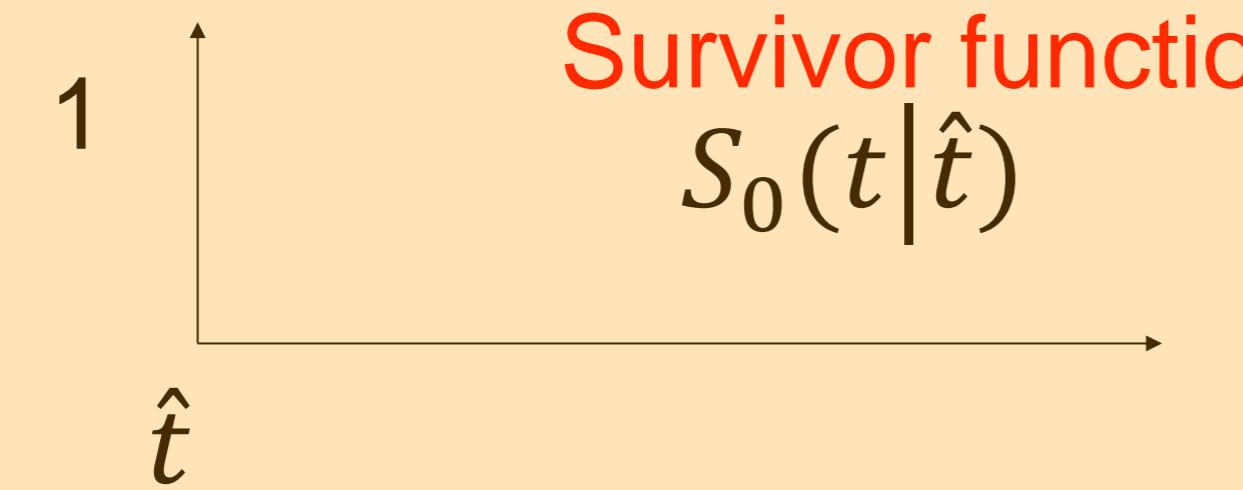
Neuronal Dynamics – Homework assignment 6.1

neuron with relative refractoriness, constant input

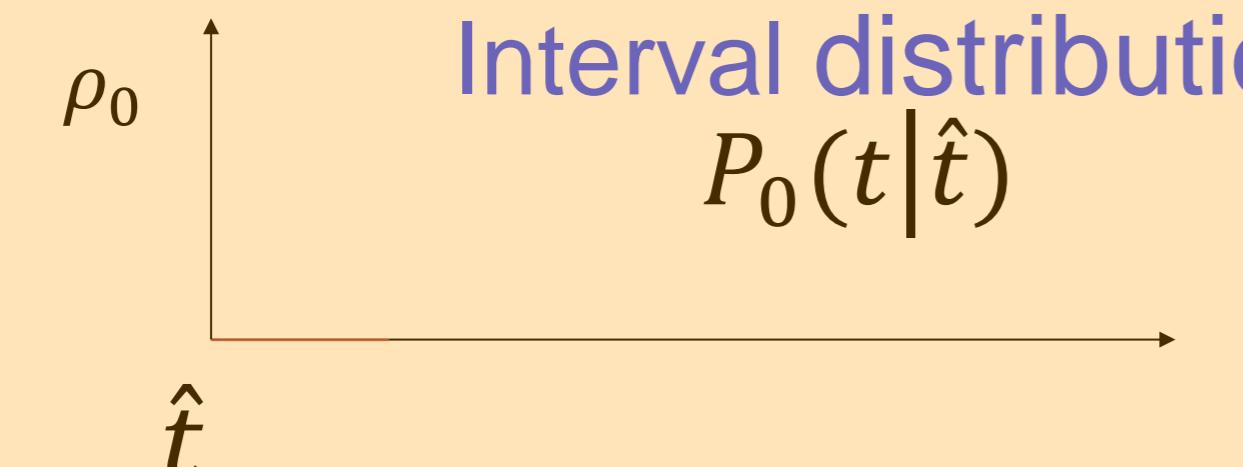


escape rate

$$\rho(t) = \rho_0 \frac{u}{\vartheta} \text{ for } u > \vartheta$$

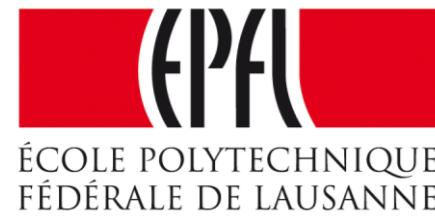


$$S_0(t|\hat{t}) = \{$$



$$P_0(t|\hat{t}) = \{$$

Week 6 – part 3 : Likelihood of a spike train



Neuronal Dynamics: Computational Neuroscience of Single Neurons

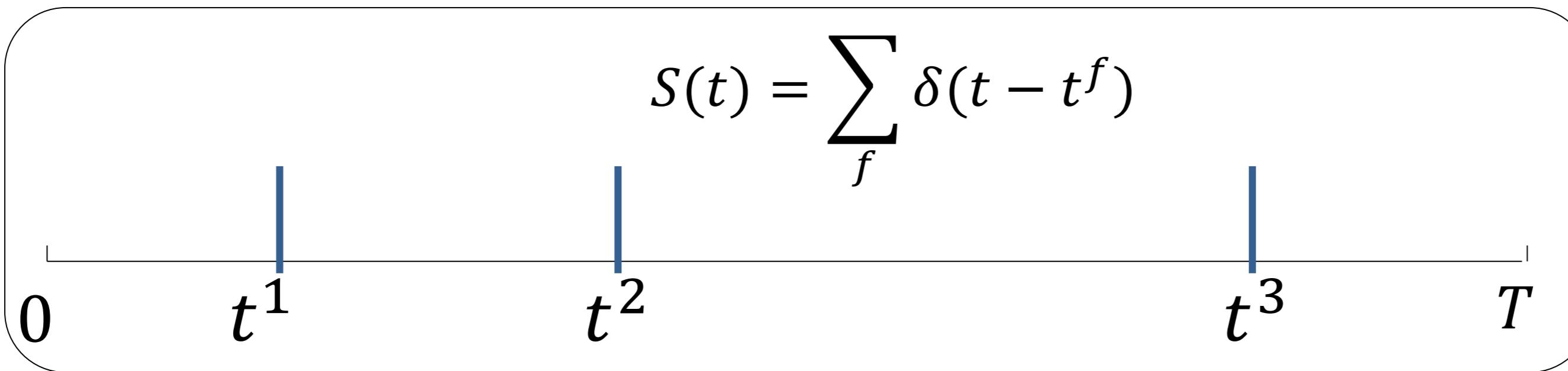
Week 6 – Noise models: Escape noise

Wulfram Gerstner

EPFL, Lausanne, Switzerland

- ✓ 6.1 Escape noise
 - stochastic intensity and point process
- ✓ 6.2 Interspike interval distribution
 - Time-dependend renewal process
 - Firing probability in discrete time
- 6.3 Likelihood of a spike train**
 - generative model
- 6.4 Comparison of noise models
 - escape noise vs. diffusive noise
- 6.5. Rate code vs. Temporal Code
 - timing codes
 - stochastic resonance

Neuronal Dynamics – 6.3. Likelihood of a spike train



Measured spike train with spike times t^1, t^2, \dots, t^N

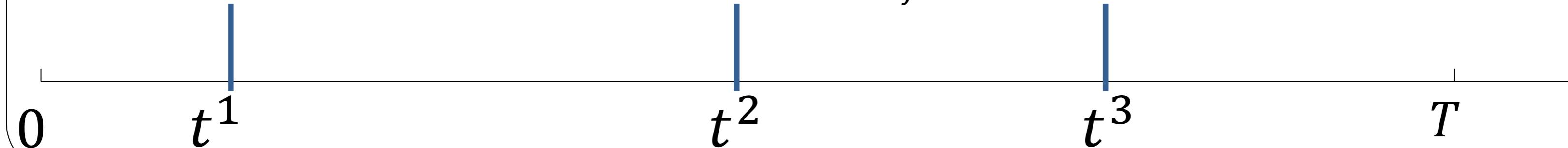
Explanation now:

Likelihood L that this spike train could have been generated by model?

$$L(t^1, \dots, t^N) = \exp\left(-\int_0^{t^1} \rho(t') dt'\right) \rho(t^1) \cdot \exp\left(-\int_{t^1}^{t^2} \rho(t') dt'\right) \dots$$

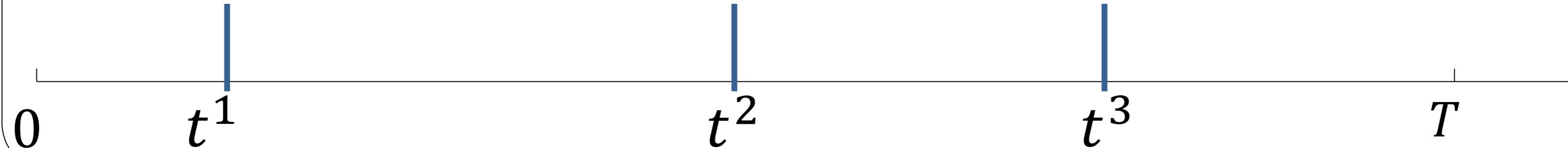
Neuronal Dynamics – 6.3. Likelihood of a spike train

$$S(t) = \sum_f \delta(t - t^f)$$



Neuronal Dynamics – 6.3. Likelihood in discrete time

$$n(t_k) = 1 \text{ if } t_k < t^f \leq t_{k+1}$$



Prob. to fire in $t_k < t \leq t_{k+1}$

$$P_{t_k}^\Delta$$

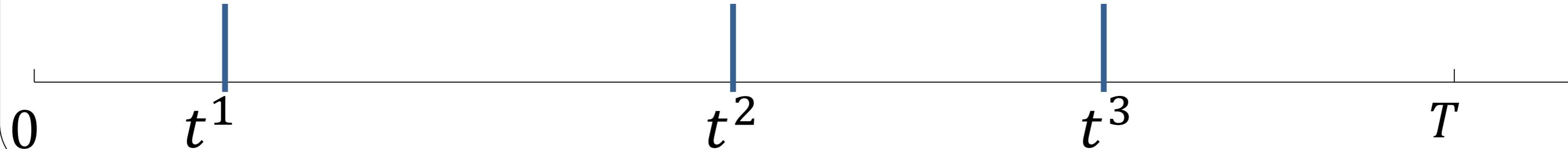
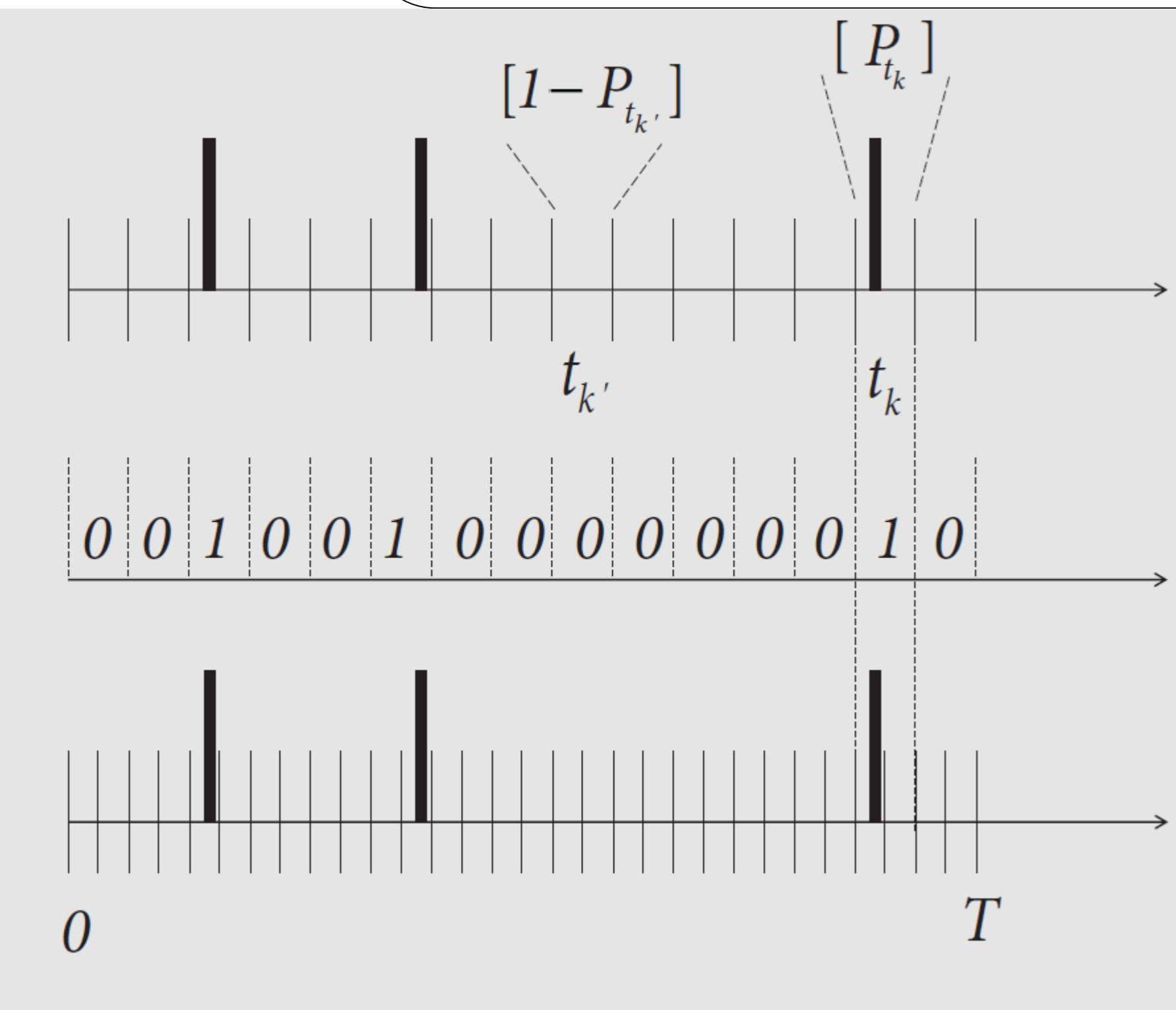
Prob. to be silent in $t_k < t \leq t_{k+1}$

$$S^\Delta$$

how about $\Delta \rightarrow 0$??

Neuronal Dynamics – 6.3. Likelihood in discrete time

$$n(t_k) = 1 \text{ if } t_k < t^f \leq t_{k+1}$$



$$P_{t_k}^\Delta$$

$$\Delta \rightarrow 0$$

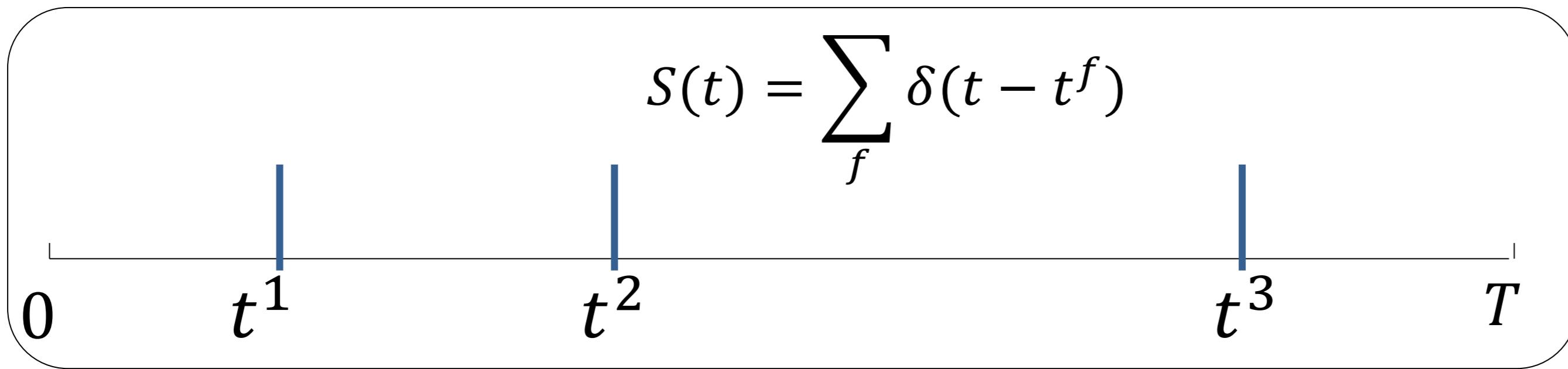
Neuronal Dynamics – 6.3. Likelihood of a spike train

$$S(t) = \sum_f \delta(t - t^f)$$

$$L(t^1, \dots, t^N) = \exp\left(- \int_0^{t^1} \rho(t') dt'\right) \rho(t^1) \cdot \exp\left(- \int_{t^1}^{t^2} \rho(t') dt'\right) \rho(t^2) \dots \exp\left(- \int_{t^N}^T \rho(t') dt'\right)$$

$$L(t^1, \dots, t^N) = \exp\left(- \int_0^T \rho(t') dt'\right) \prod_f \rho(t^f)$$

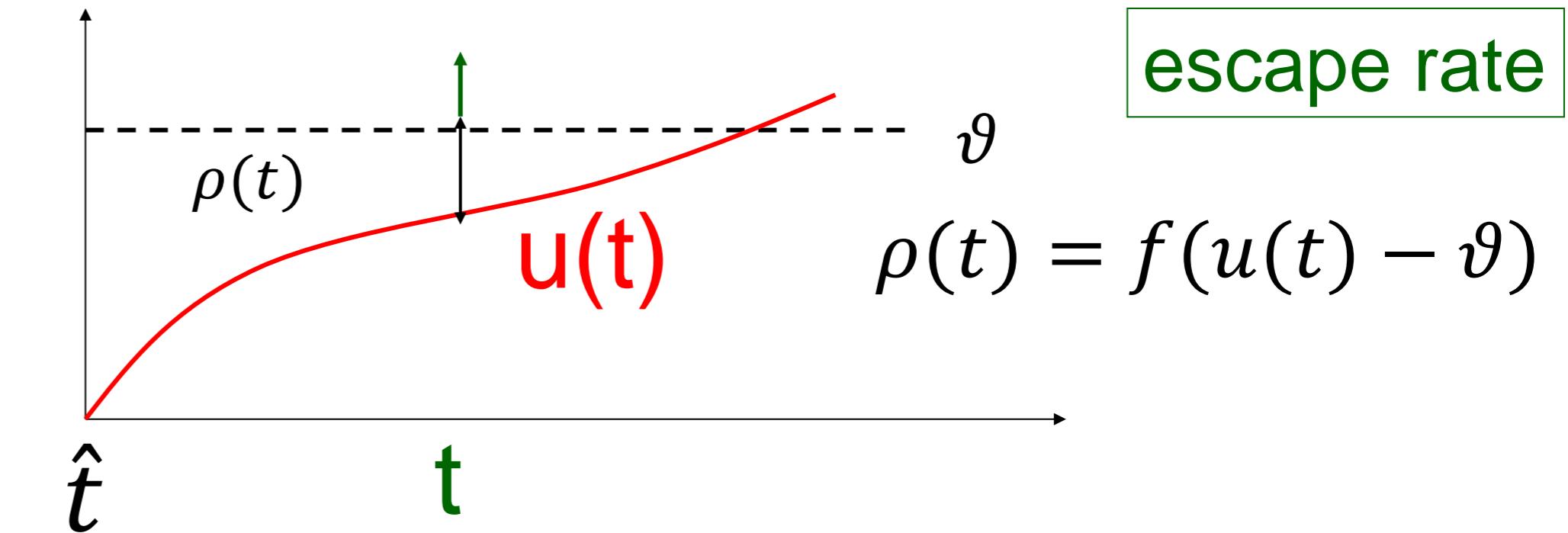
Neuronal Dynamics – 6.3. Log-likelihood of a spike train



$$L(t^1, \dots, t^N) = \exp\left(-\int_0^T \rho(t') dt'\right) \prod_f \rho(t^f)$$

$$\log L(t^1, \dots, t^N) = -\int_0^T \rho(t') dt' + \sum_f \log \rho(t^f)$$

Neuronal Dynamics – 6.3. generative model of a spike train



generative model of spike train

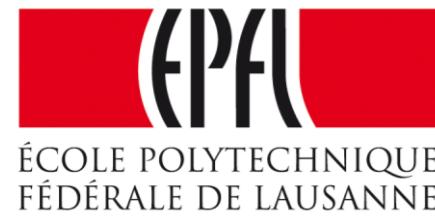
- generates spikes stochastically
- calculated likelihood that an **observed** experimental spike train **could have been generated**

$$\log L(t^1, \dots, t^N) = - \int_0^T \rho(t') dt' + \sum_f \log \rho(t^f)$$

Neuronal Dynamics – Quiz 6.2. Tick all correct answers

- [] A leaky integrate-and-fire model with escape noise can be interpreted as a generative model of a spike train
- [] For a leaky integrate-and-fire model with escape noise we can (numerically) calculate the likelihood that observed experimental data could have been generated by the model
- [] Suppose we inject a time-dependent current into a real neuron and observe the resulting spike train. We then inject the same time-dependent current into a nonlinear integrate-and-fire model with exponential escape noise with parameter θ . For each choice of θ we can then calculate the likelihood that the model could have generated the observed spike train.

Week 6 – part 4 : Comparison of noise models



Neuronal Dynamics: Computational Neuroscience of Single Neurons

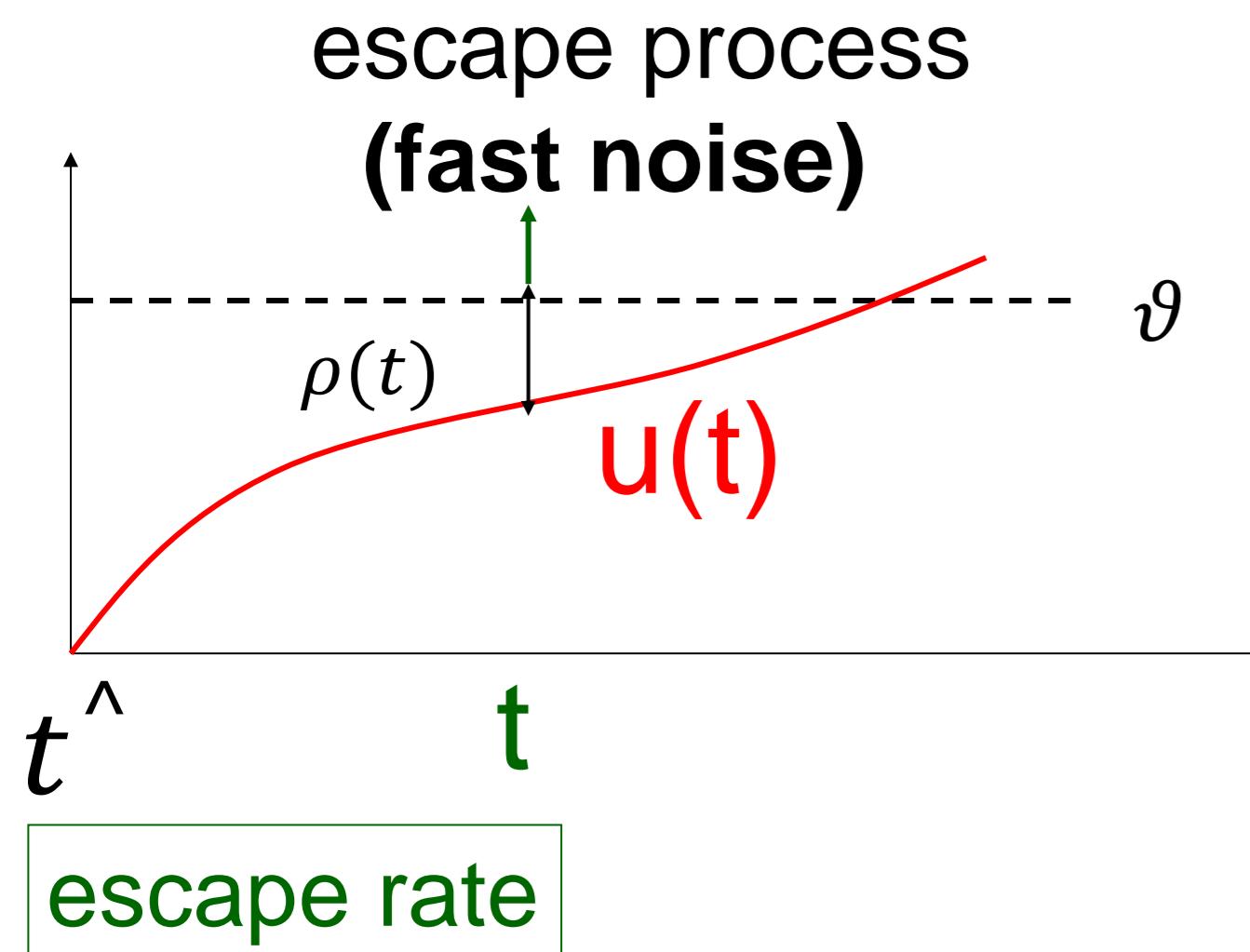
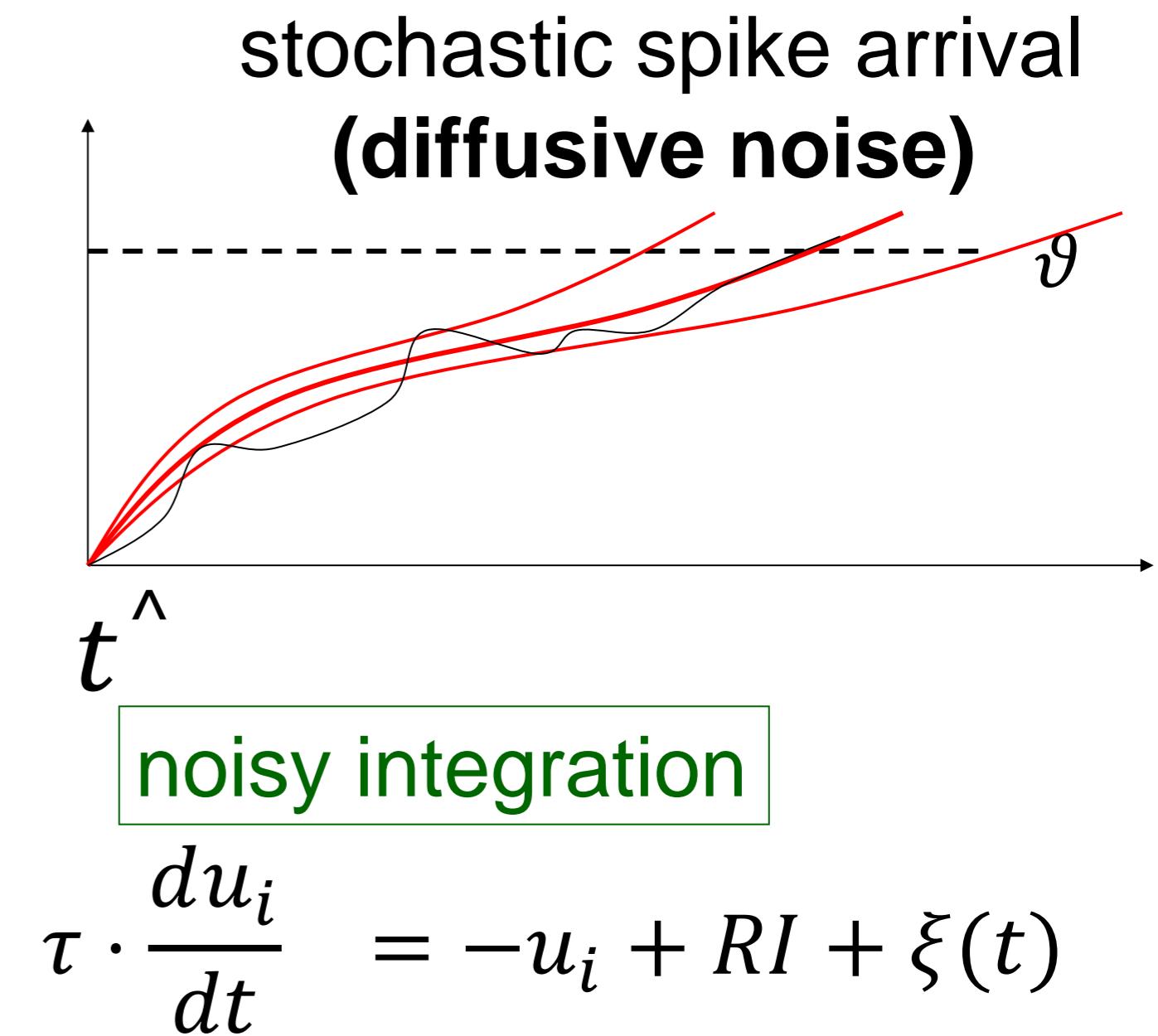
Week 6 – Noise models: Escape noise

Wulfram Gerstner

EPFL, Lausanne, Switzerland

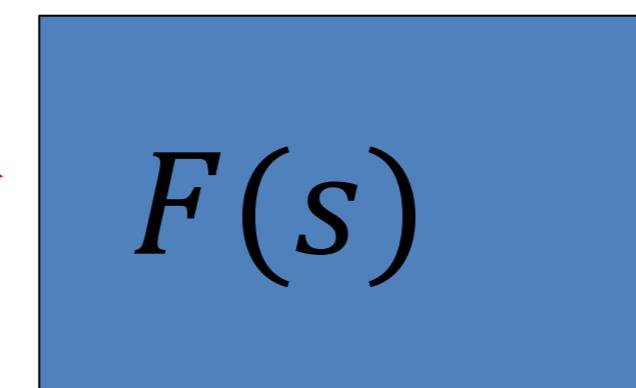
- ✓ 6.1 Escape noise
 - stochastic intensity and point process
- ✓ 6.2 Interspike interval distribution
 - Time-dependend renewal process
 - Firing probability in discrete time
- ✓ 6.3 Likelihood of a spike train
 - generative model
- 6.4 Comparison of noise models
 - escape noise vs. diffusive noise
- 6.5. Rate code vs. Temporal Code
 - timing codes
 - stochastic resonance

Neuronal Dynamics – 6.4. Comparison of Noise Models



Poisson spike arrival: Mean and autocorrelation of filtered signal

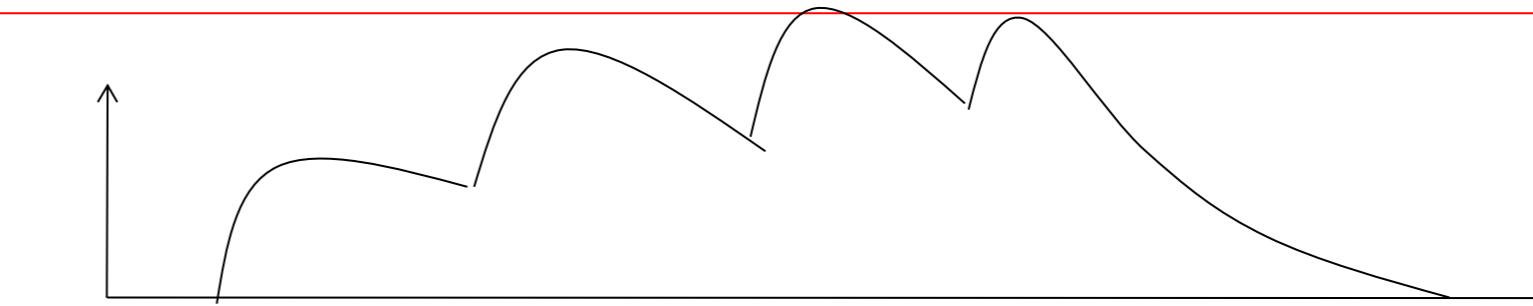
$$S(t) = \sum_f \delta(t - t^f)$$



Assumption:
stochastic spiking
rate $\nu(t)$

Filter

mean



$$x(t) = \int F(s)S(t - s)ds$$

$$\langle x(t) \rangle = \int F(s)\langle S(t - s) \rangle ds$$

$$\langle x(t) \rangle = \int F(s)\langle \nu(t - s) \rangle ds$$

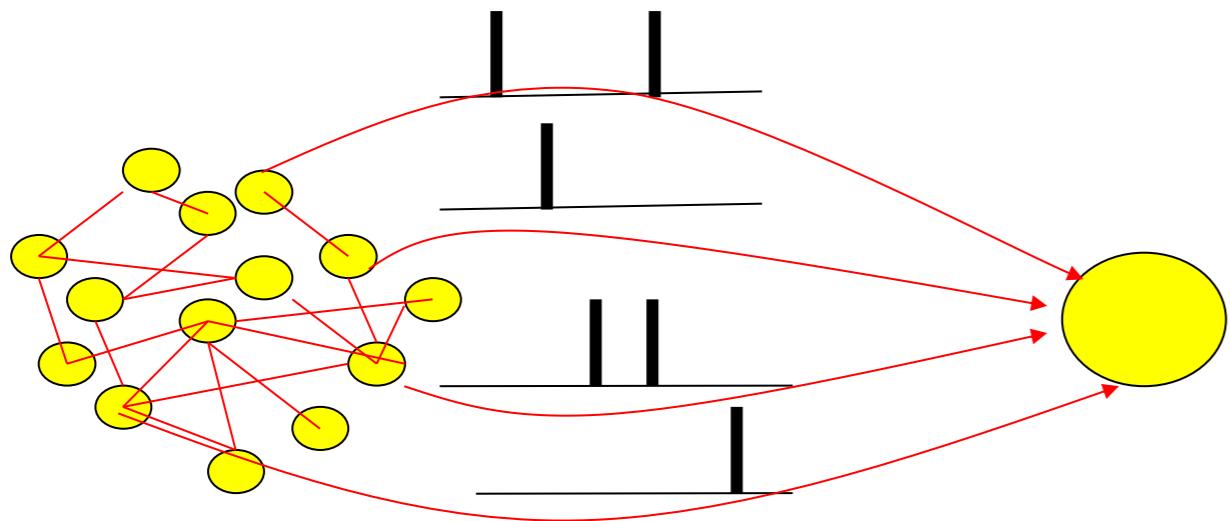
Autocorrelation of output

$$\langle x(t)x(t') \rangle = \left\langle \int F(s)S(t - s)ds \int F(s')S(t' - s')ds' \right\rangle$$

$$\langle x(t)x(t') \rangle = \int F(s)F(s')\langle S(t - s)S(t' - s') \rangle dsds'$$

Autocorrelation of input

Diffusive noise (stochastic spike arrival)



Stochastic spike arrival:
excitation, total rate R_e
inhibition, total rate R_i
Synaptic current pulses

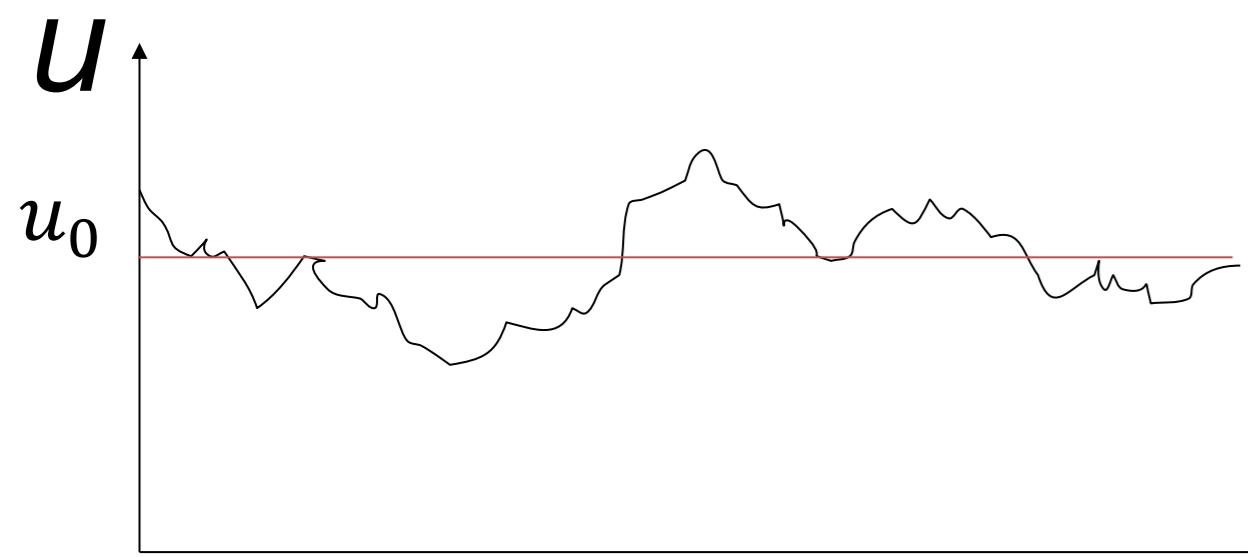
$$\tau \frac{d}{dt} u = -(u - u_{rest}) + \sum_{k,f} \frac{q_e}{C} \delta(t - t_k^f) - \sum_{k',f'} \frac{q_i}{C} \delta(t - t_{k'}^{f'})$$

EPSC

IPSC

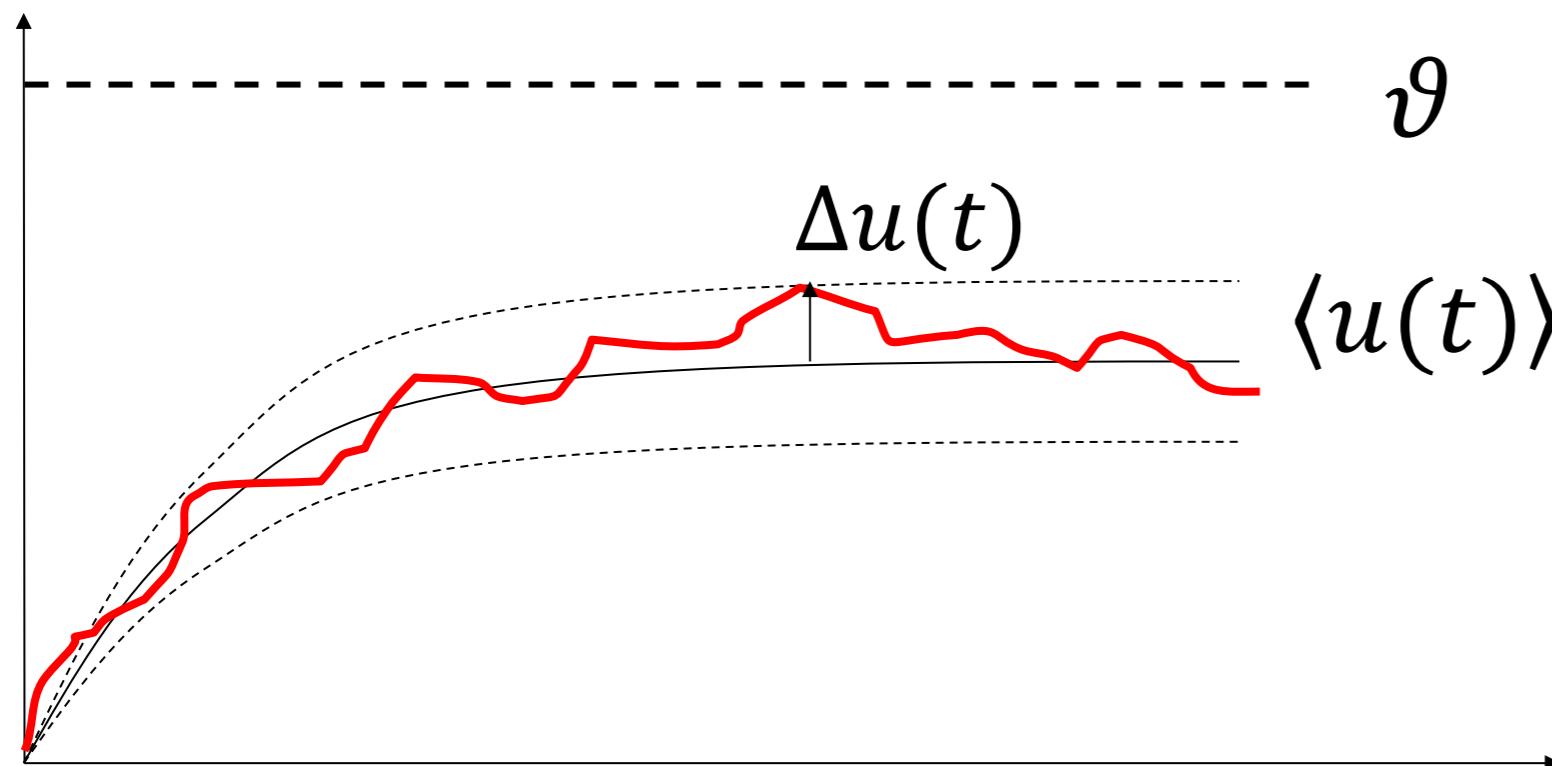
$$\tau \frac{d}{dt} u = -(u - u_{rest}) + RI(t) + \xi(t)$$

Blackboard



Langevin equation,
Ornstein Uhlenbeck process

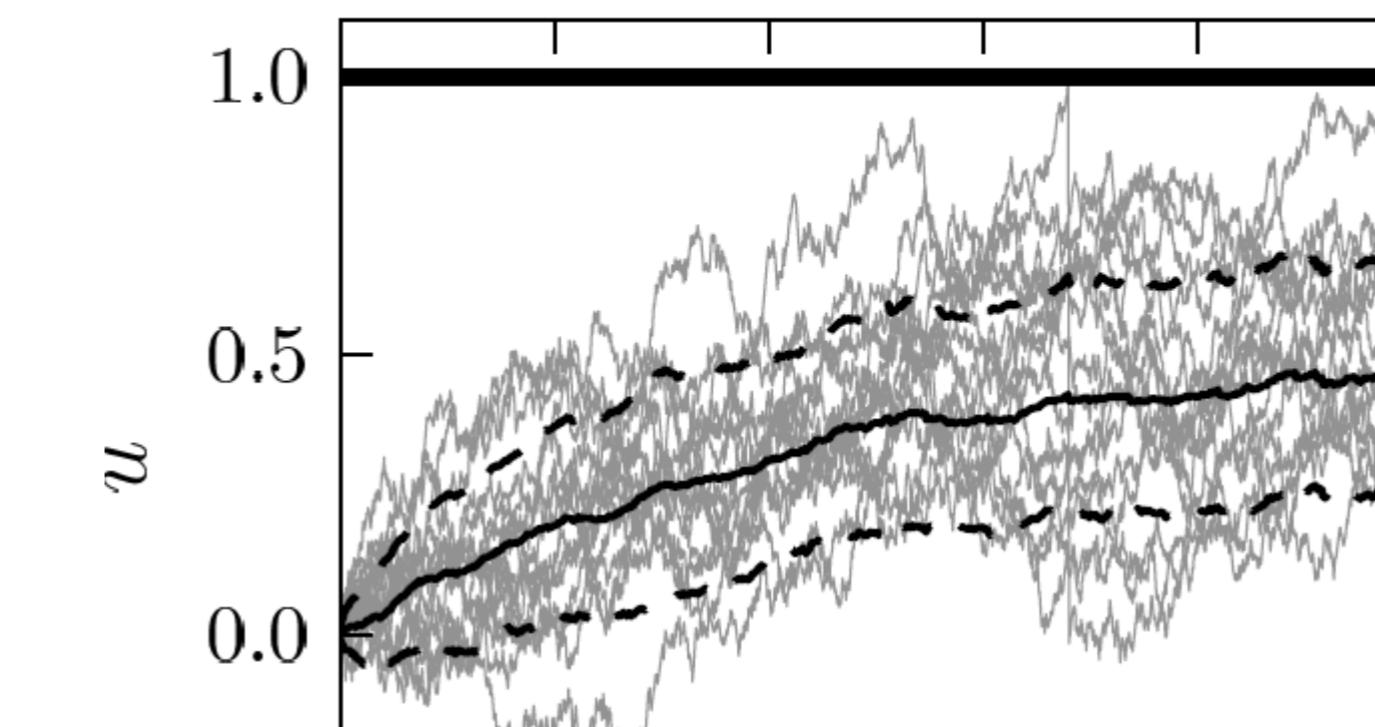
Diffusive noise (stochastic spike arrival)



$$\langle \Delta u(t) \Delta u(t) \rangle = \langle u(t) u(t) \rangle - \langle u(t) \rangle^2 =$$

$$\langle \Delta u(t') \Delta u(t) \rangle = \langle u(t) u(t') \rangle - \langle u(t) \rangle \langle u(t') \rangle =$$

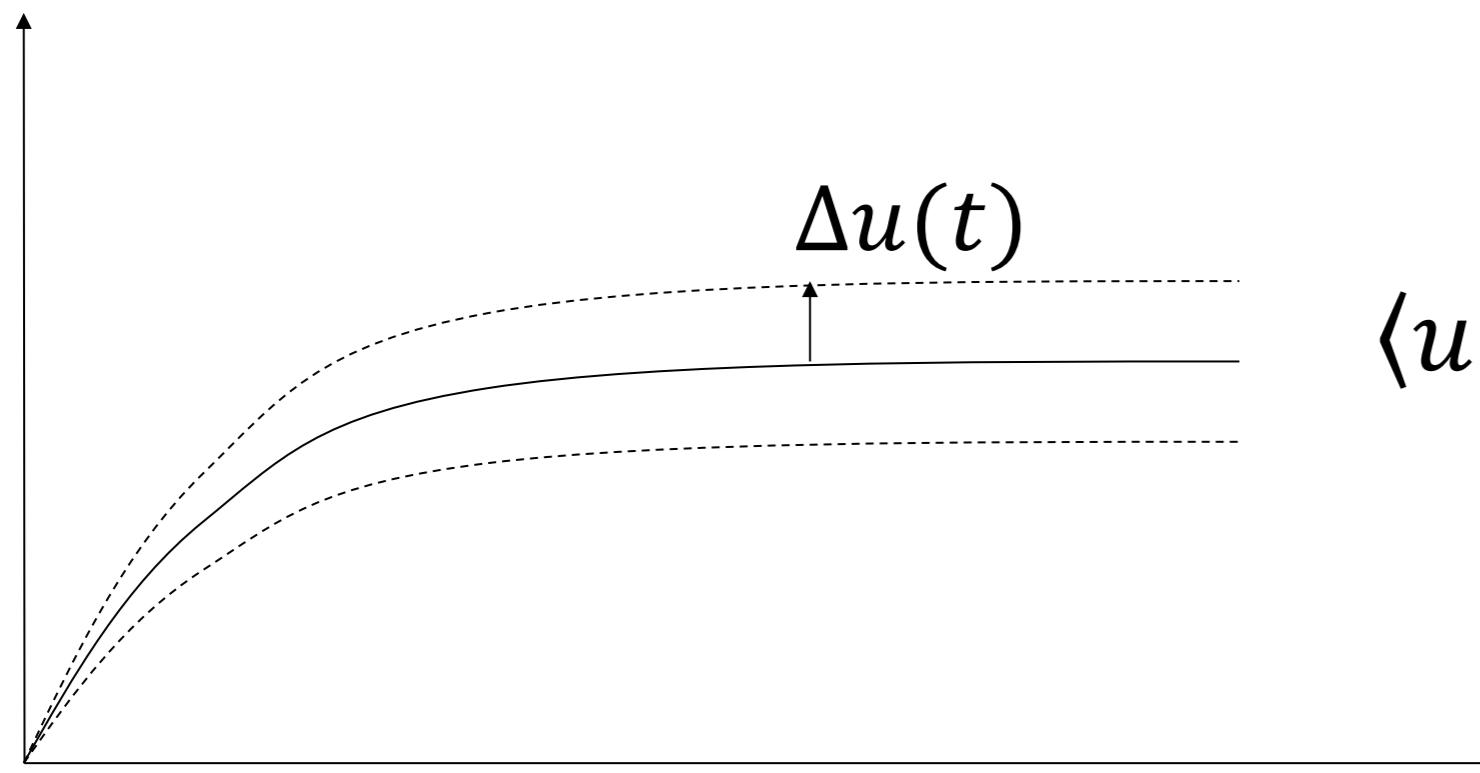
$$\tau \frac{d}{dt} u = -(u - u_{rest}) + RI(t) + \xi(t)$$



Math argument:

- no threshold
- trajectory starts at known value

Diffusive noise (stochastic spike arrival)

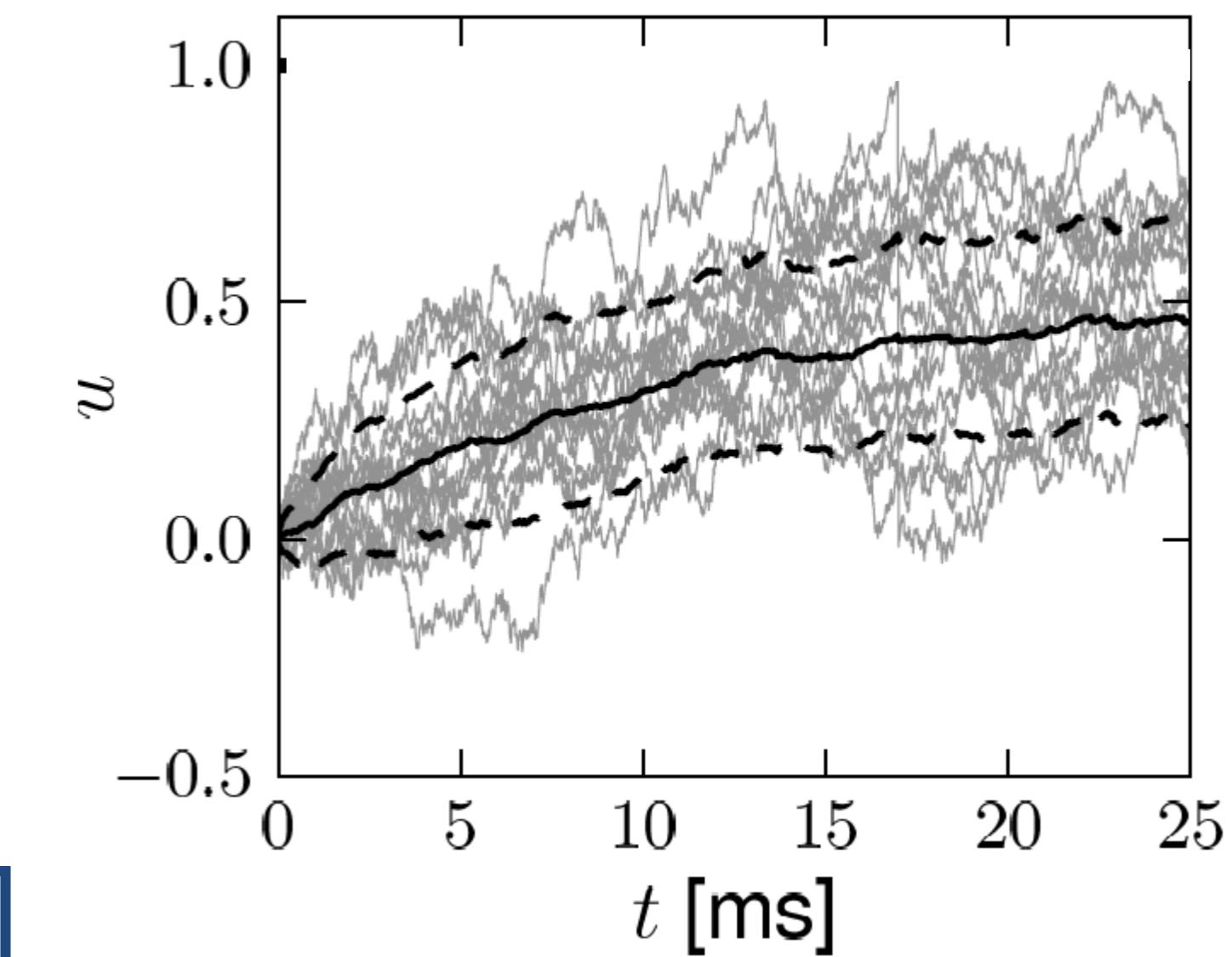


$$\langle u(t) \rangle = u_0(t)$$

$$\langle \Delta u(t) \Delta u(t) \rangle = \langle u(t) u(t) \rangle - \langle u(t) \rangle^2 =$$

$$\langle \Delta u(t') \Delta u(t) \rangle = \langle u(t) u(t') \rangle - \langle u(t) \rangle \langle u(t') \rangle =$$

$$\tau \frac{d}{dt} u = -(u - u_{rest}) + RI(t) + \xi(t)$$



Math argument

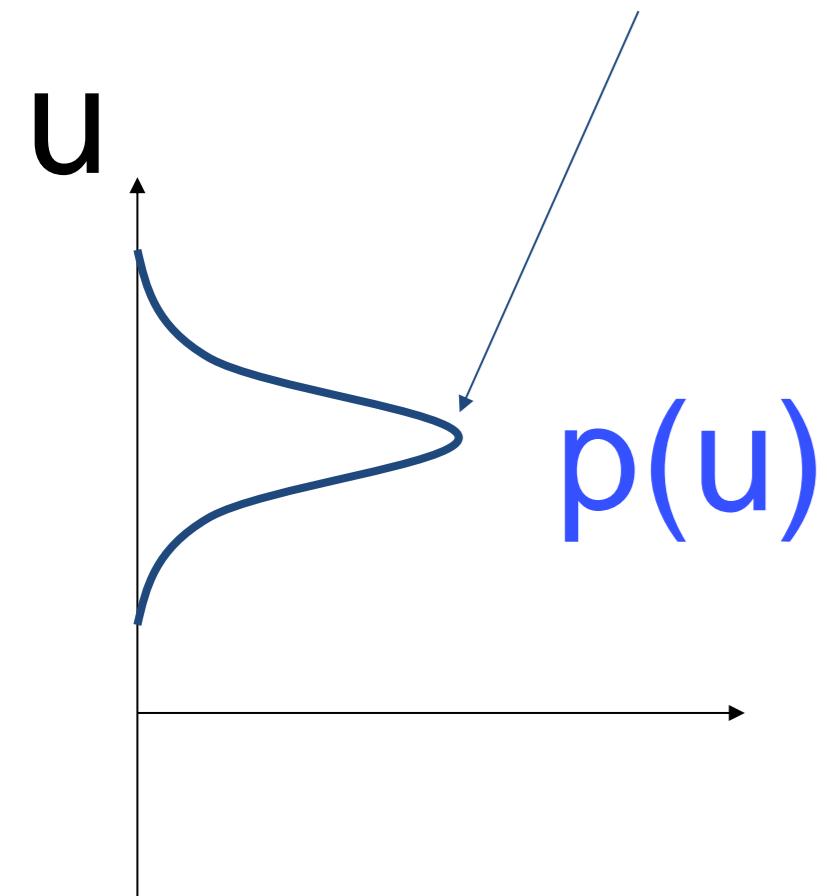
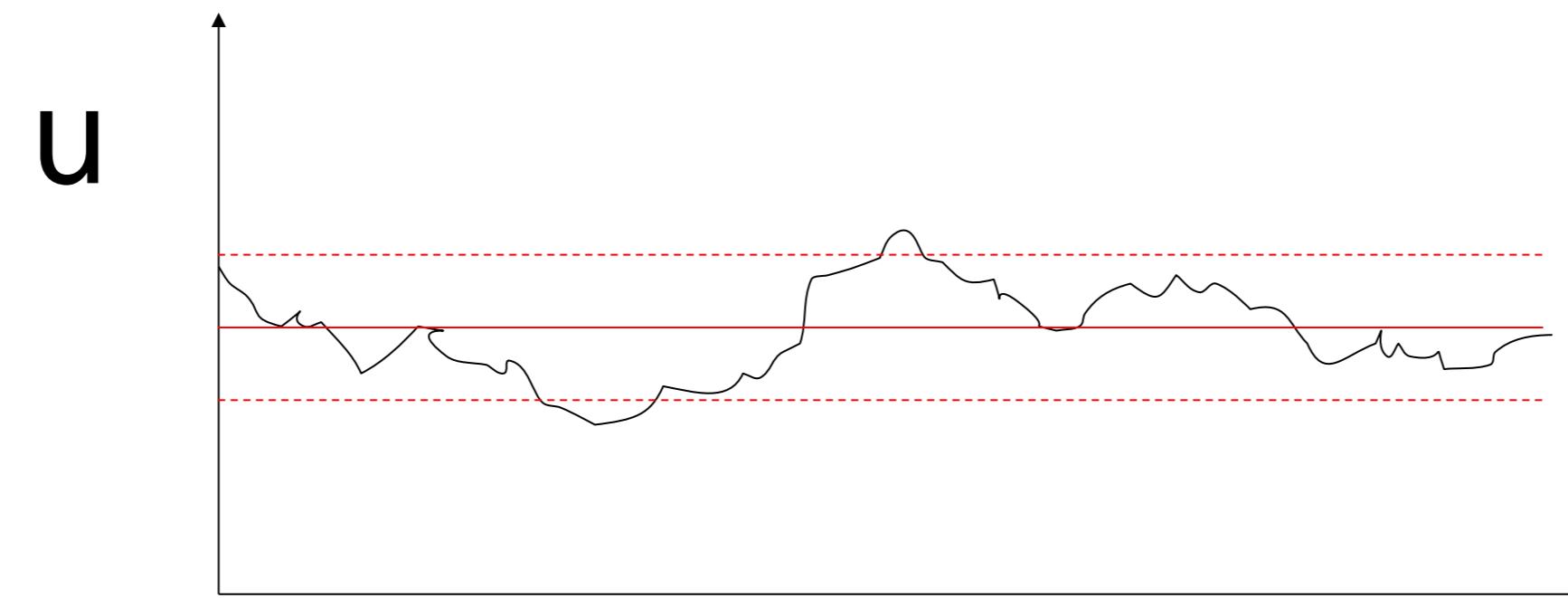
$$p(u, t) = \frac{1}{\sqrt{2\pi \langle \Delta u^2(t) \rangle}} \exp \left\{ -\frac{[u(t|\hat{t}) - u_0(t)]^2}{2 \langle \Delta u^2(t) \rangle} \right\}$$

$$\langle [\Delta u(t)]^2 \rangle = \sigma_u^2 [1 - \exp(-2t/\tau)]$$

Neuronal Dynamics – 6.4. Diffusive noise/stoch. arrival

A) No threshold, stationary input

Membrane potential density: Gaussian



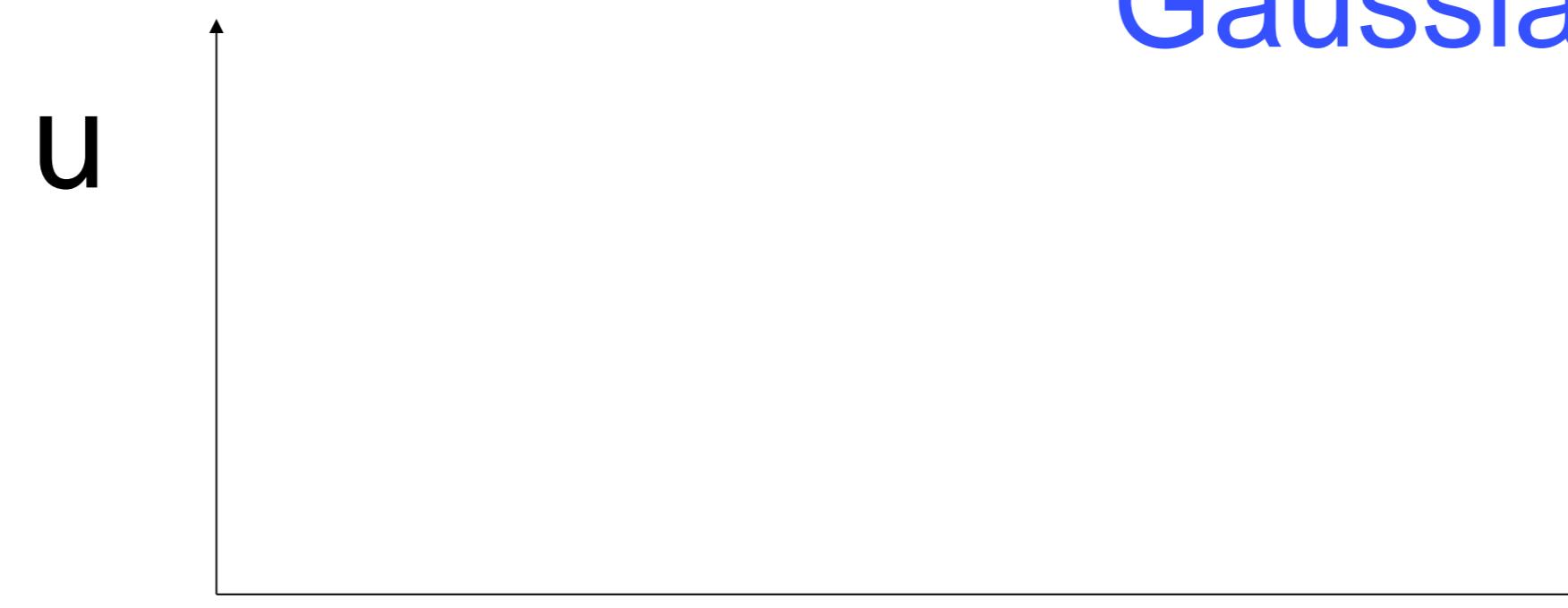
constant input rates
no threshold

noisy integration

$$\tau \cdot \frac{du_i}{dt} = -u_i + RI + \xi(t)$$

Neuronal Dynamics – 6.4. Diffusive noise/stoch. arrival

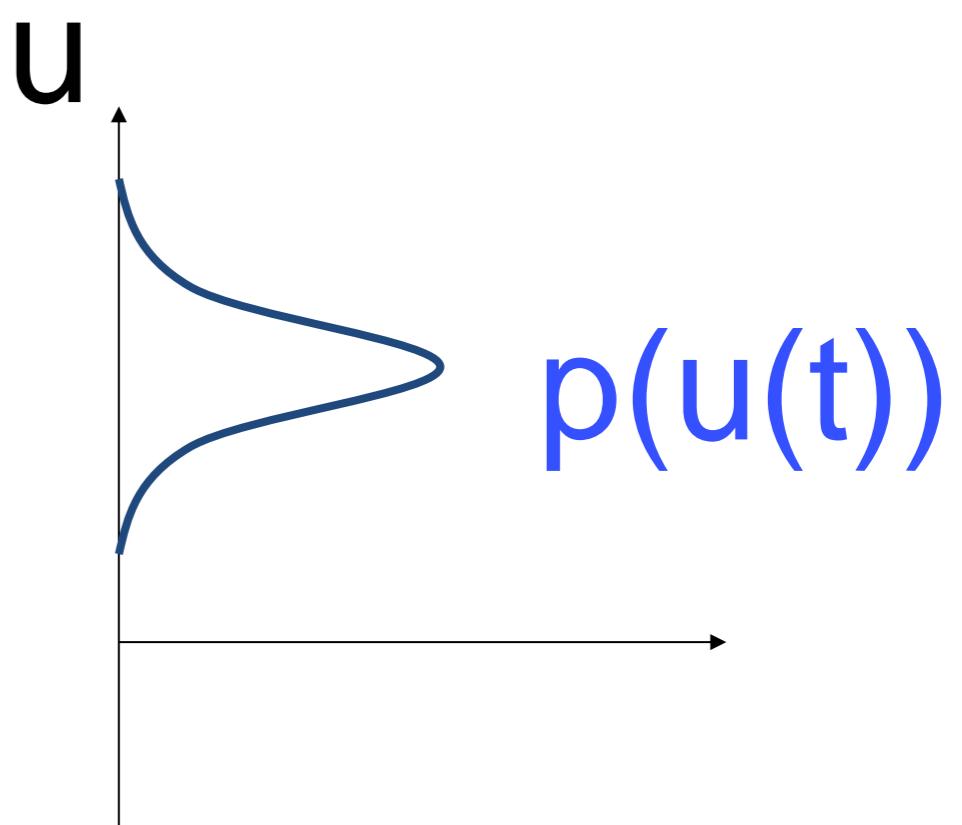
B) No threshold, oscillatory input



noisy integration

$$\tau \cdot \frac{du_i}{dt} = -u_i + RI + \xi(t)$$

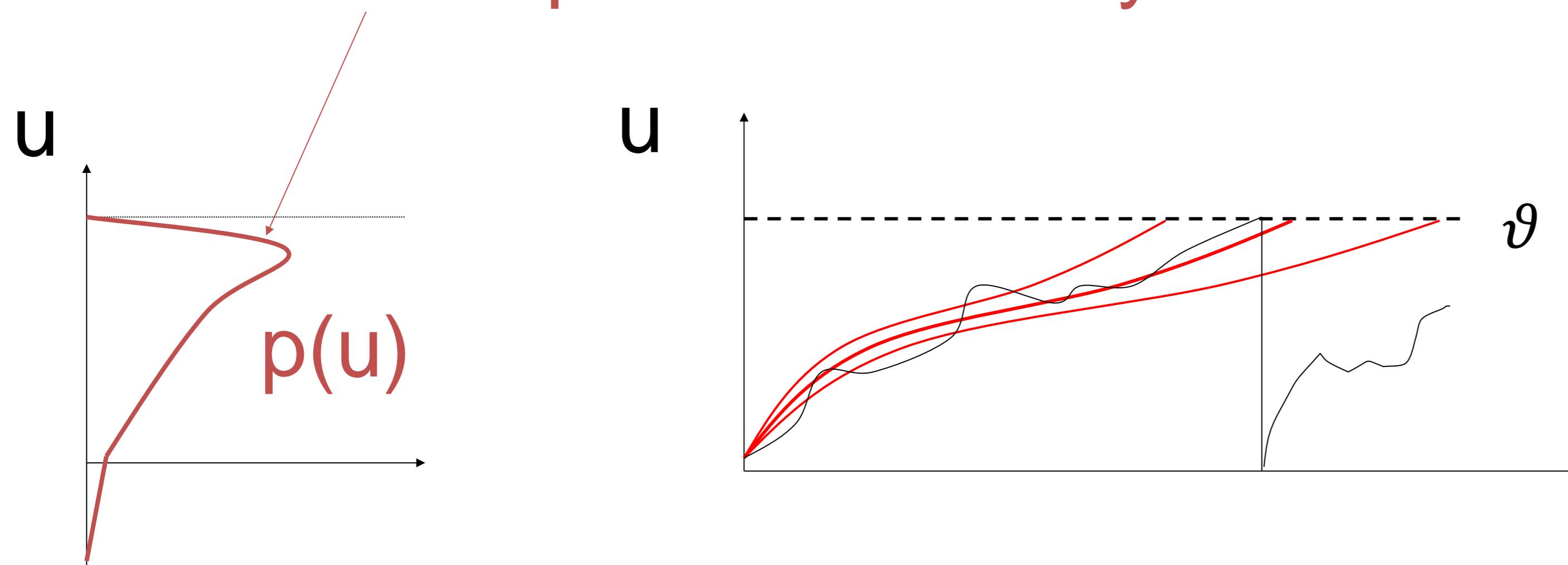
Membrane potential density:
Gaussian at time t



Neuronal Dynamics – 6.4. Diffusive noise/stoch. arrival

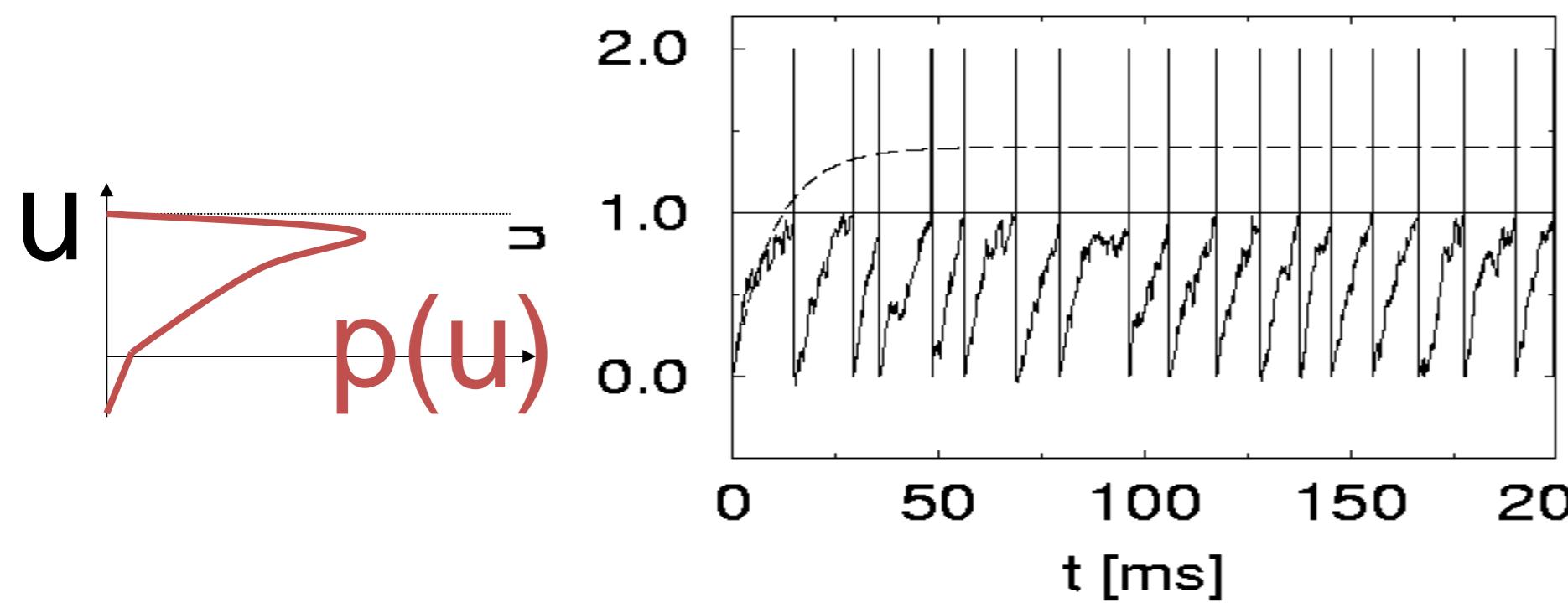
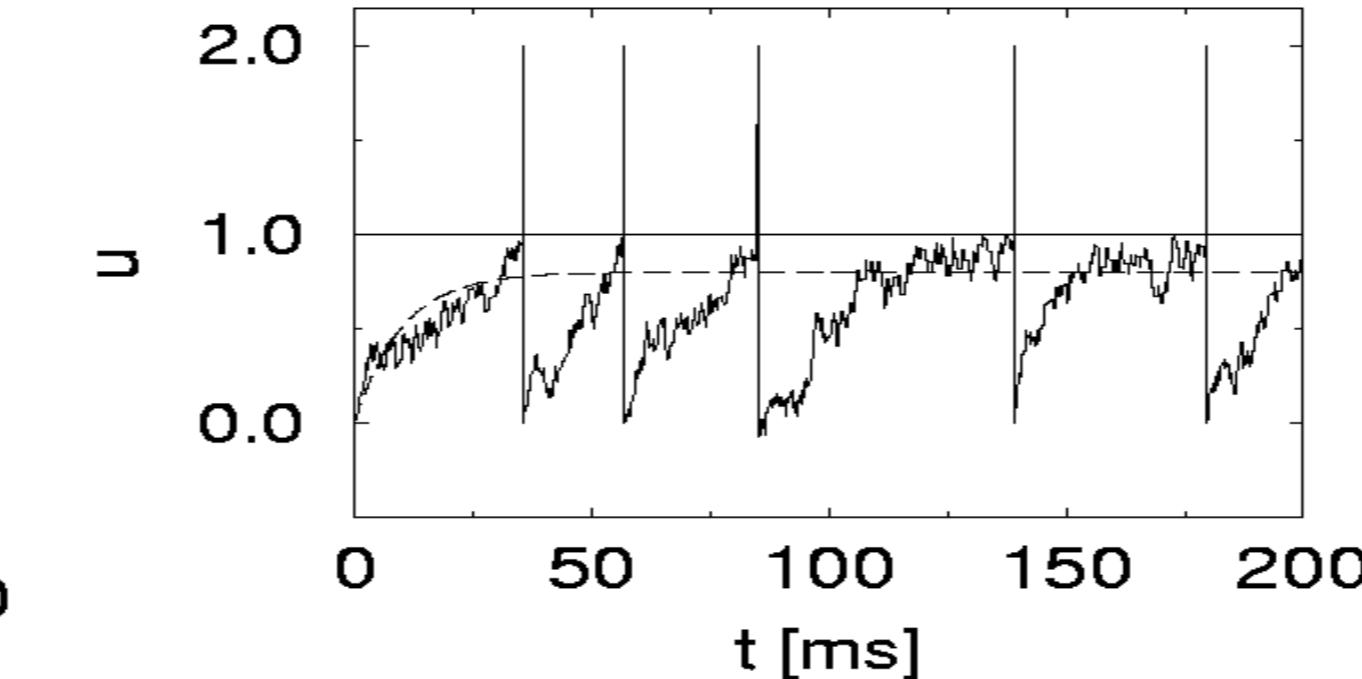
C) With threshold, reset/ stationary input

Membrane potential density

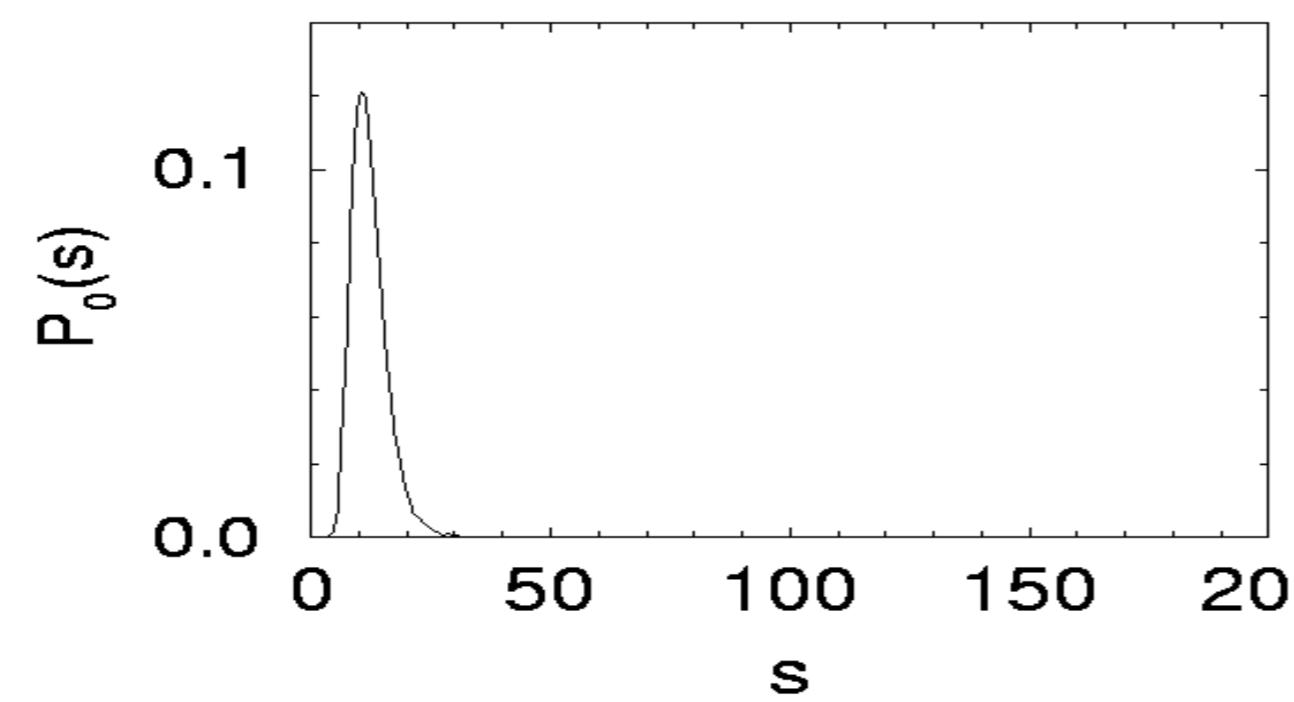
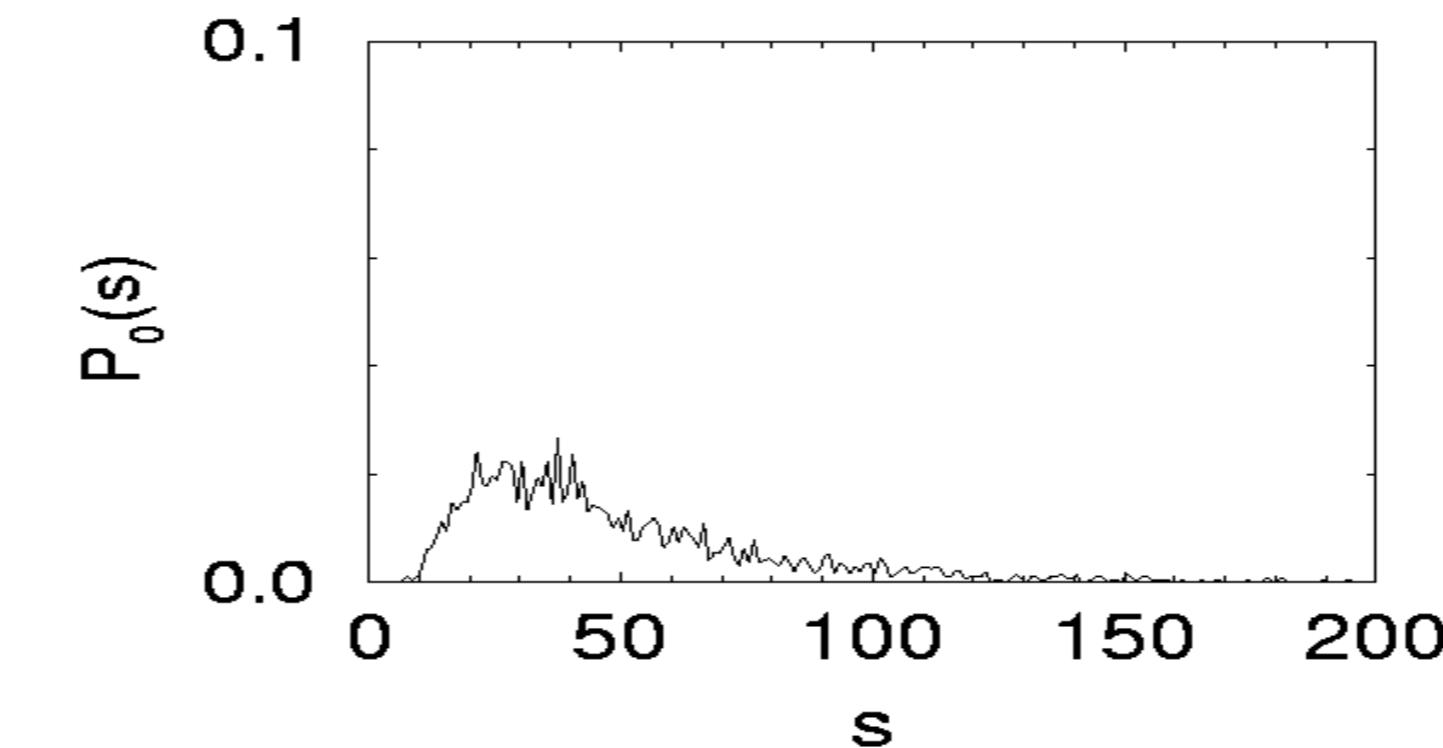


Neuronal Dynamics – 6.4. Diffusive noise/stoch. arrival

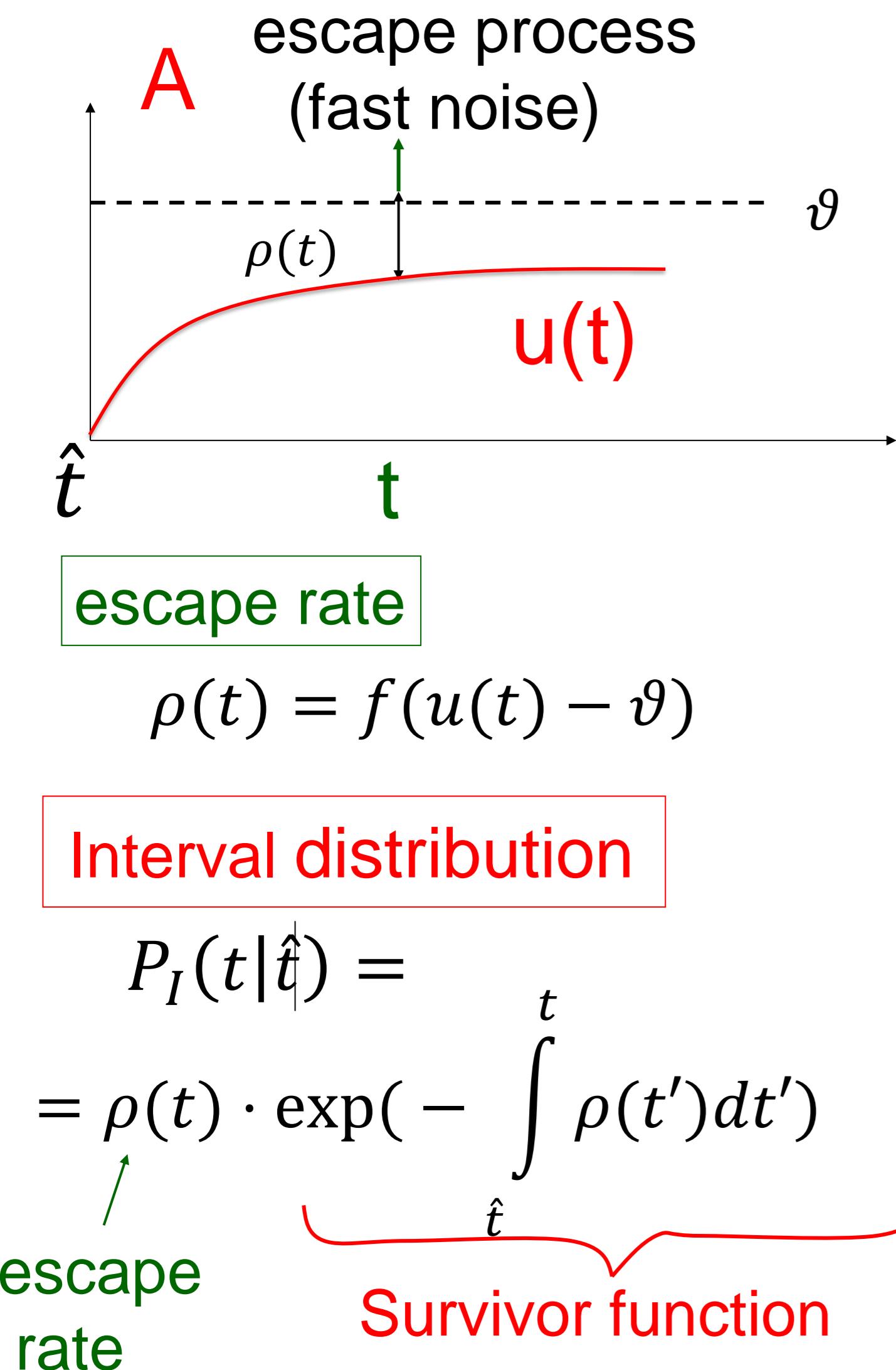
Superthreshold vs. Subthreshold regime



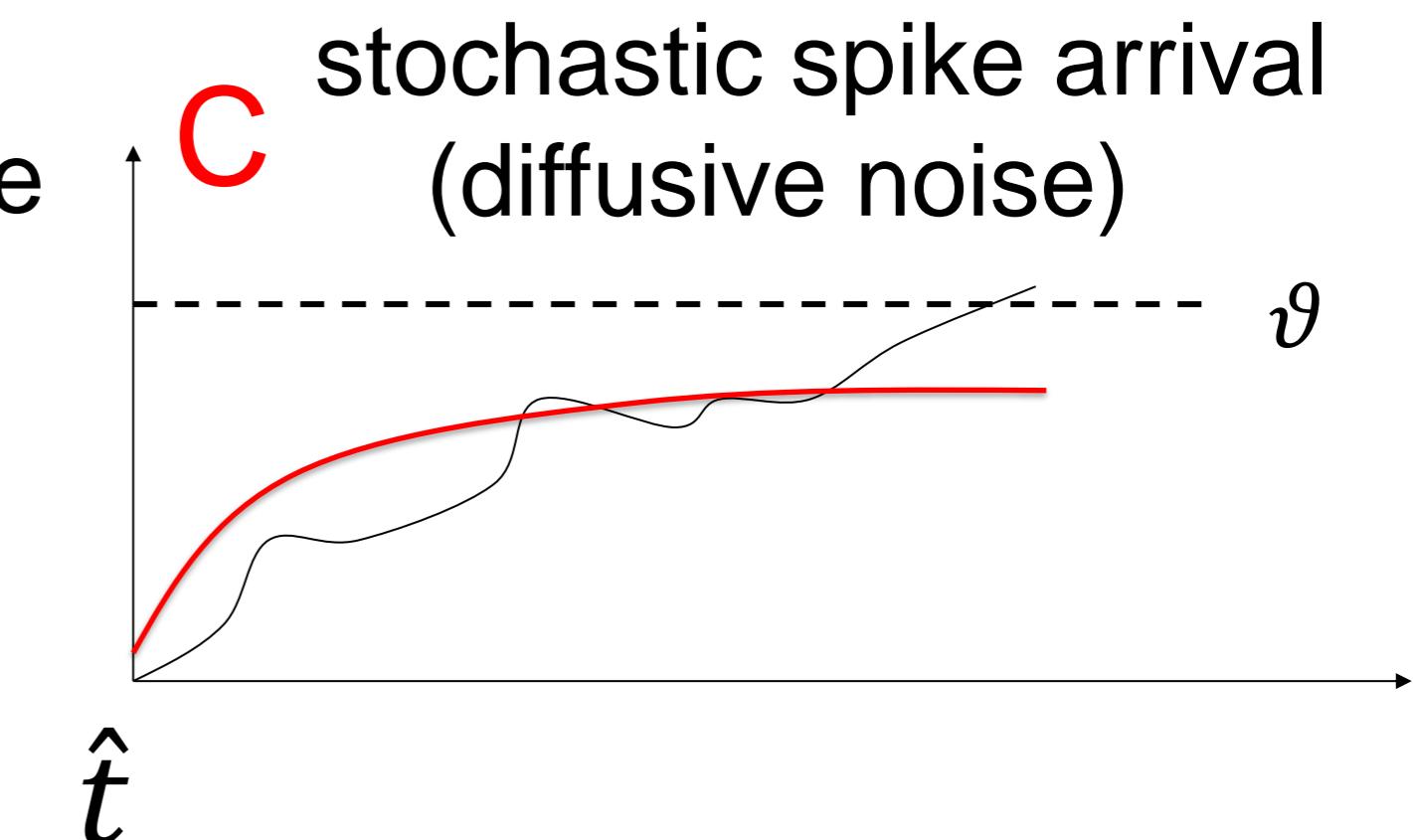
Nearly Gaussian
subthreshold distr.



11.4. Comparison of Noise Models



$P_I(t|\hat{t})$: first passage time problem



$t - \hat{t}$
Stationary input:
-Mean ISI

$$\tau \cdot \frac{du_i}{dt} = -u_i + RI + \xi(t)$$

$$\langle s \rangle = \tau_m \sqrt{\pi} \int_{\frac{u_r - h_0}{\sigma}}^{\frac{\vartheta - h_0}{\sigma}} du \exp(u^2) [1 + \text{erf}(u)]$$

-Mean firing rate

$$f = \frac{1}{\langle s \rangle}$$

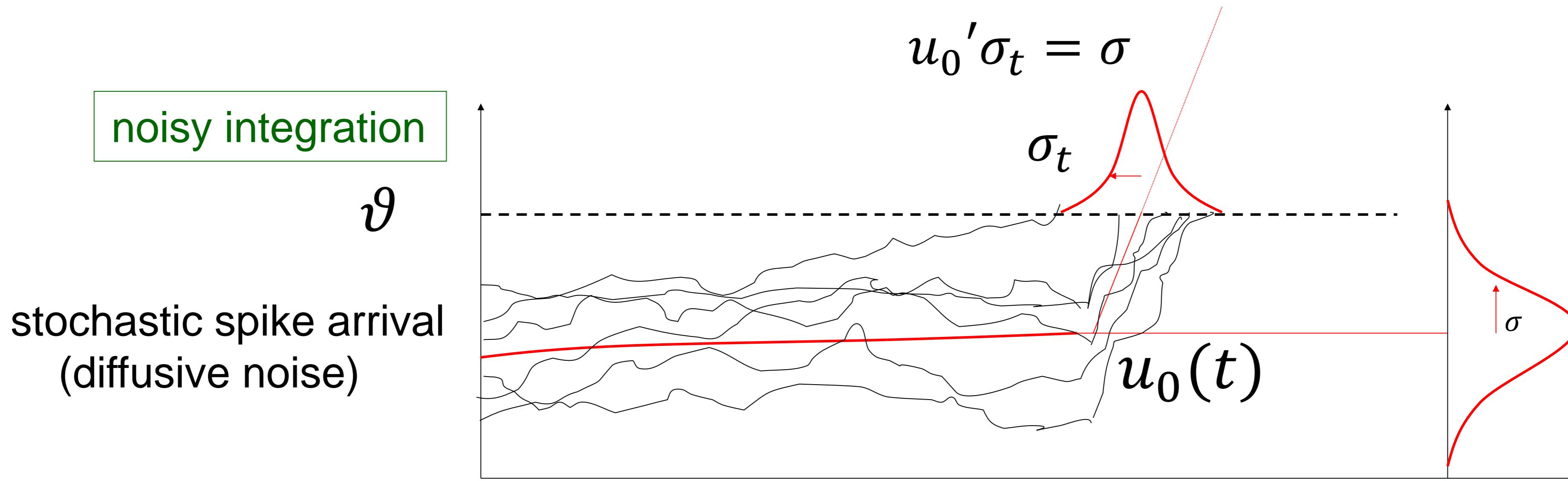
noise

white (fast noise)

synapse (slow noise)

(Brunel et al., 2001)

Noise models: from diffusive noise to escape rates



escape rate

$$\rho(t) = f(u_0(t), u'_0(t)) \propto \frac{\exp\left(-\frac{(u_0(t) - \vartheta)^2}{2\sigma^2}\right)}{\text{erf}((u_0(t) - \vartheta)/\sigma)} \left[\frac{c_1}{\tau} + \frac{c_2 [u'_0(t)]_+}{\sigma} \right]$$

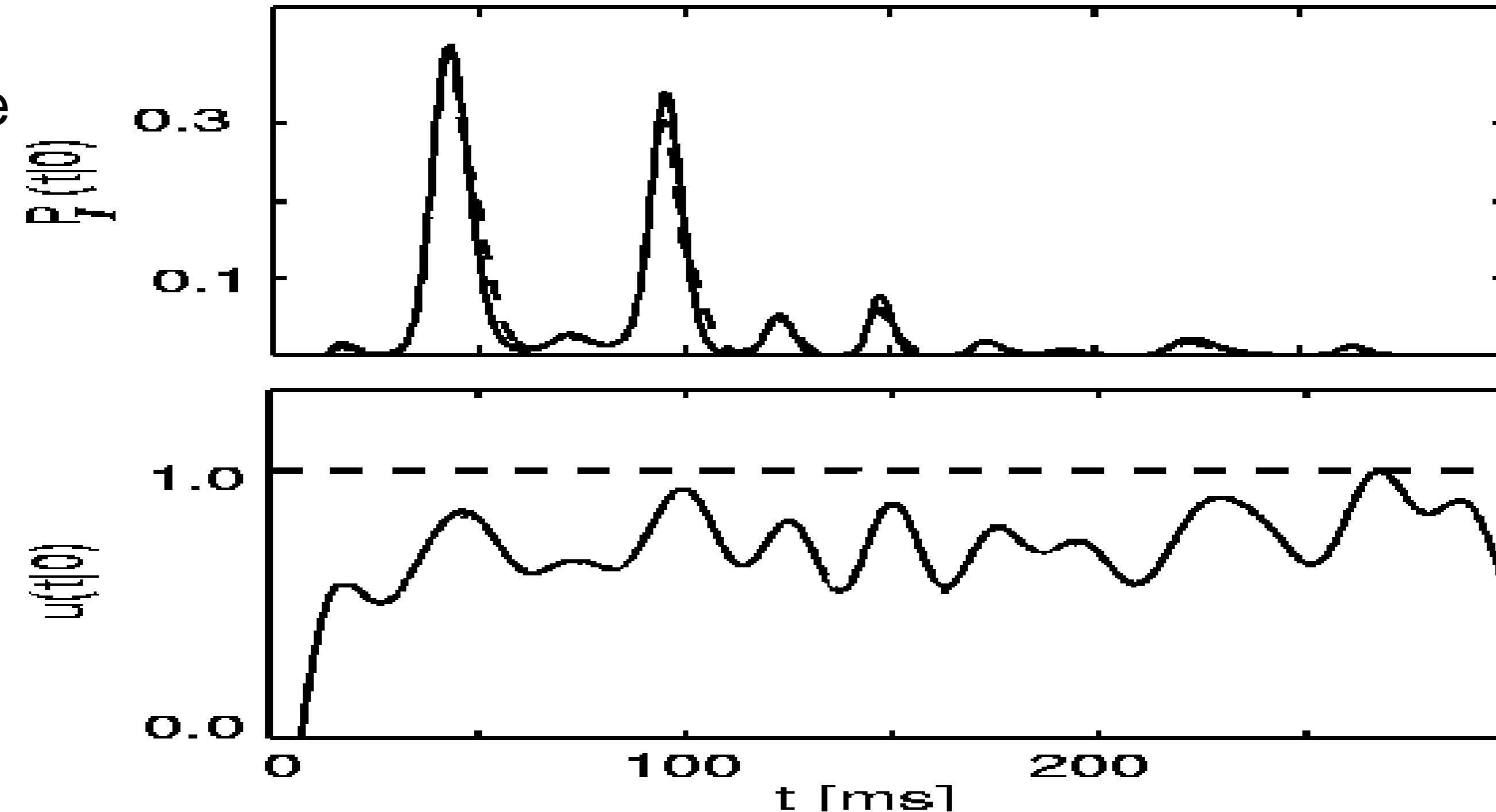
Comparison: diffusive noise vs. escape rates

Probability of first spike

diffusive
escape

subthreshold
potential

escape rate



$$\rho(t) = f(u_0(t), u'_0(t)) \propto \exp\left(-\frac{(u_0(t) - \vartheta)^2}{2\sigma^2}\right) \left[\frac{c_1}{\tau} + \frac{c_2[u'_0(t)]_+}{\sigma}\right]$$

Neuronal Dynamics – 6.4. Comparison of Noise Models

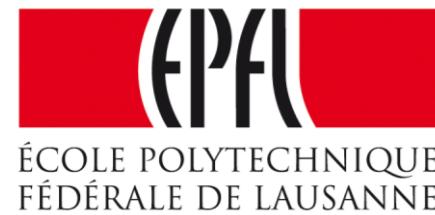
Diffusive noise

- represents stochastic spike arrival
- easy to simulate
- hard to calculate

Escape noise

- represents internal noise
- easy to simulate
- easy to calculate
- approximates diffusive noise
- basis of modern model fitting methods

Week 6 – part 5 : Rate Codes versus Temporal Codes



Neuronal Dynamics: Computational Neuroscience of Single Neurons

Week 6 – Noise models: Escape noise

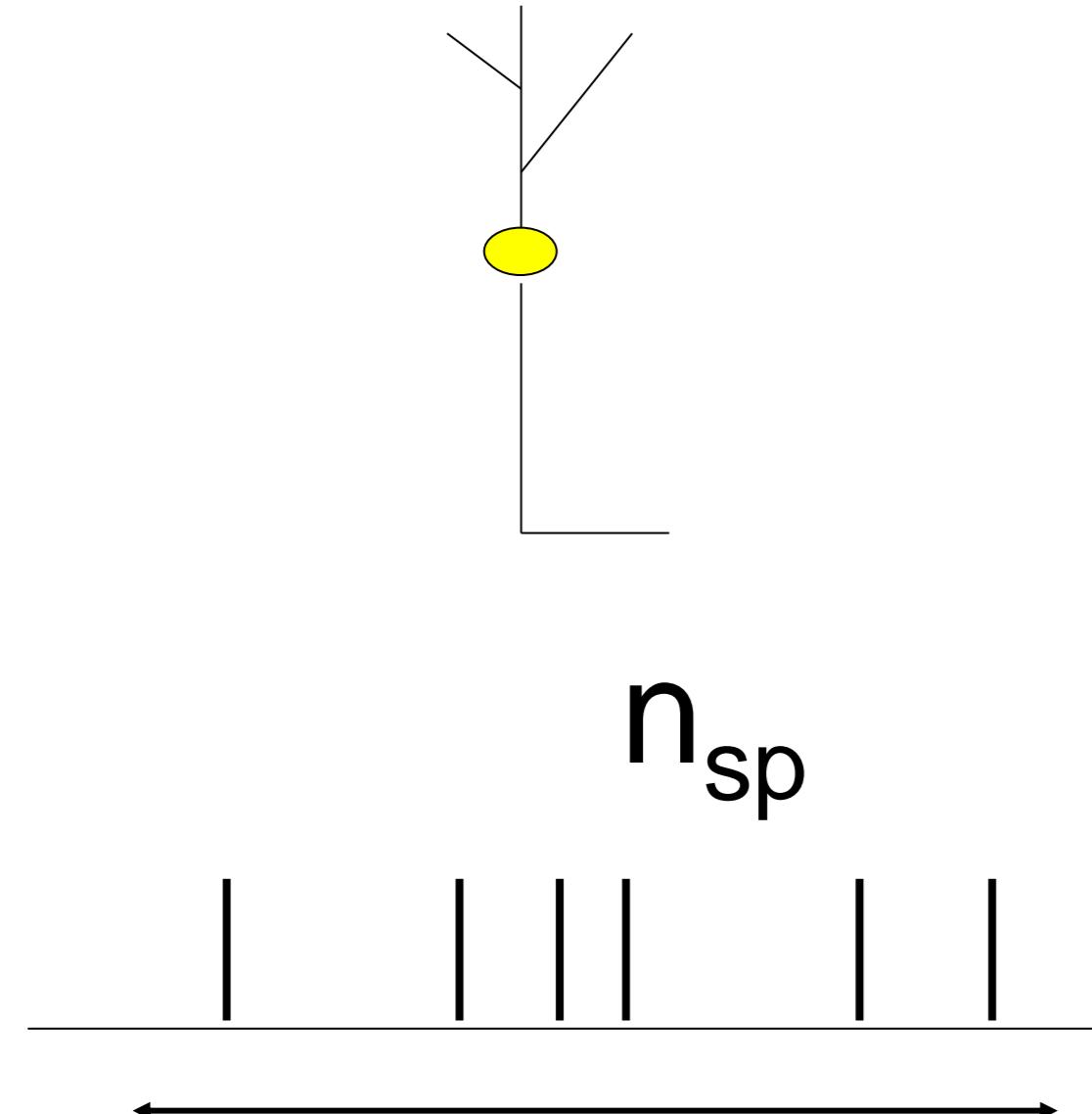
Wulfram Gerstner

EPFL, Lausanne, Switzerland

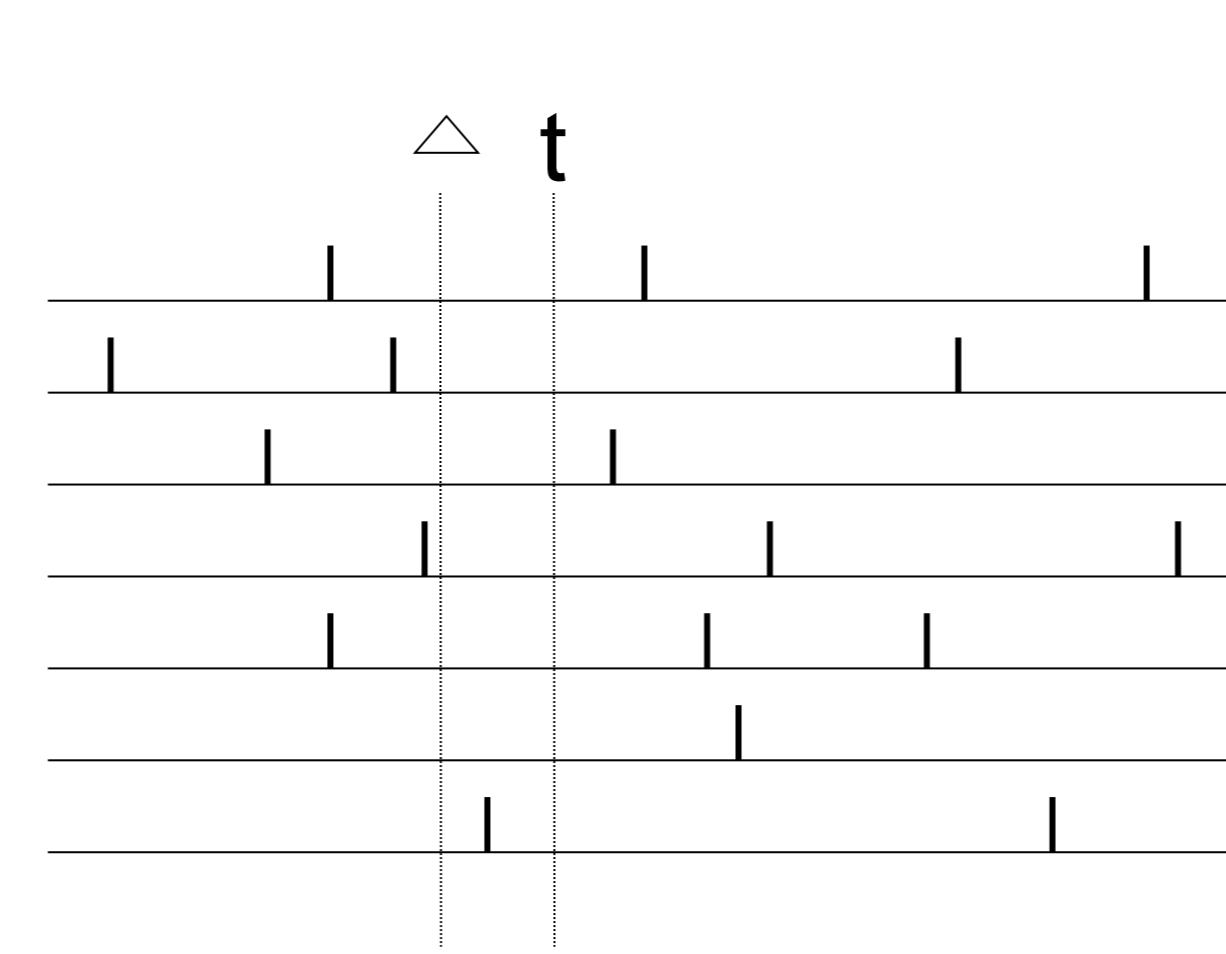
- ✓ 6.1 Escape noise
 - stochastic intensity and point process
- ✓ 6.2 Interspike interval distribution
 - Time-dependend renewal process
 - Firing probability in discrete time
- ✓ 6.3 Likelihood of a spike train
 - generative model
- ✓ 6.4 Comparison of noise models
 - escape noise vs. diffusive noise
- 6.5. Rate code vs. Temporal Code
 - timing codes
 - stochastic resonance

Neuronal Dynamics – 6.5 Rate codes versus temporal codes

3 rate codes

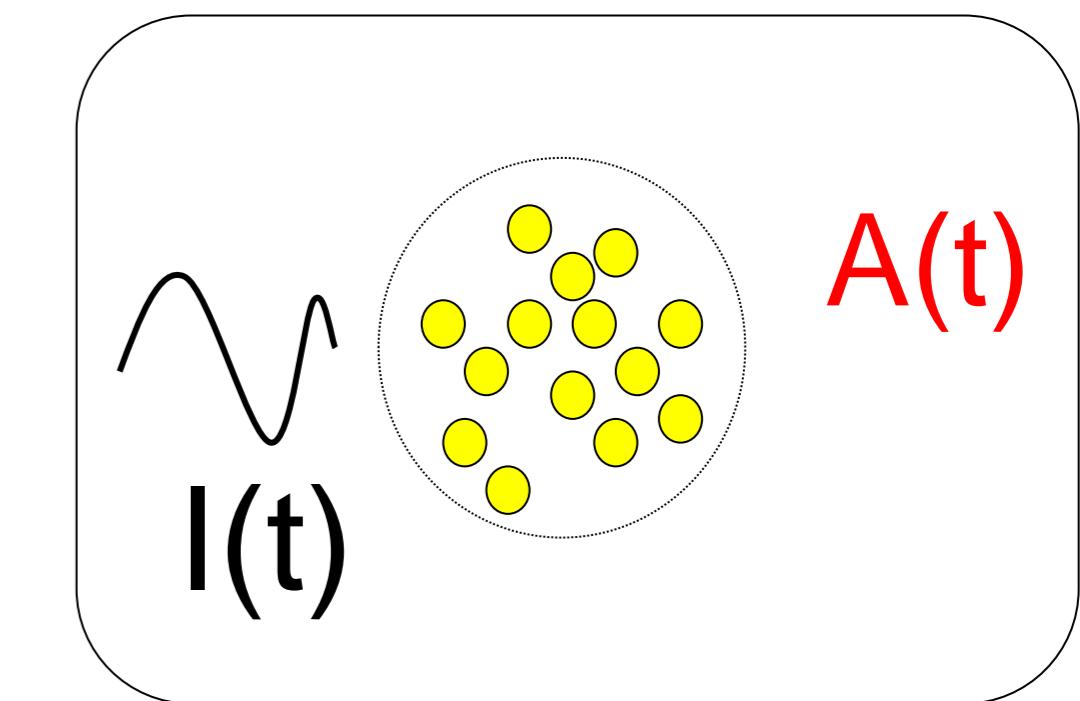


Temporal averaging



$$PSTH(t) = \frac{n(t; t + \Delta t)}{K\Delta t}$$

Trial averaging

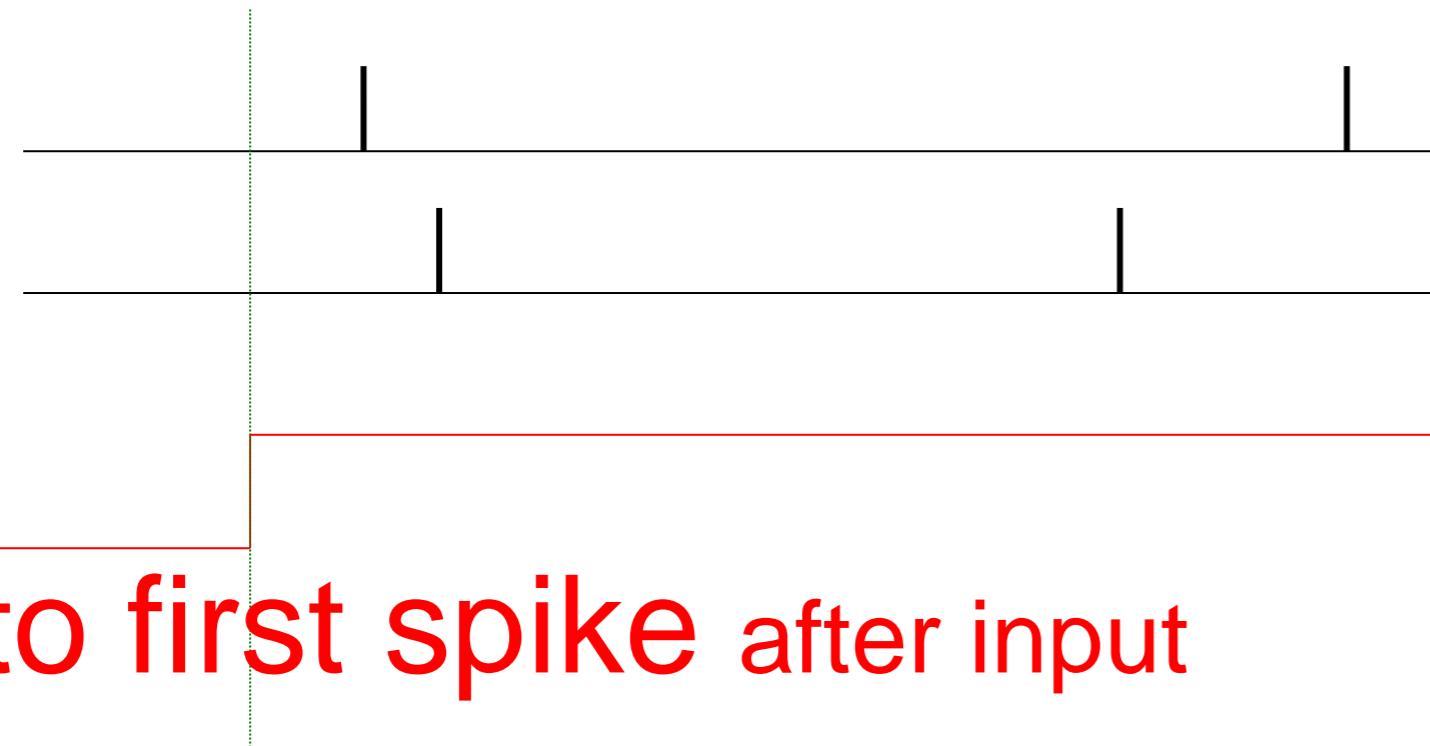
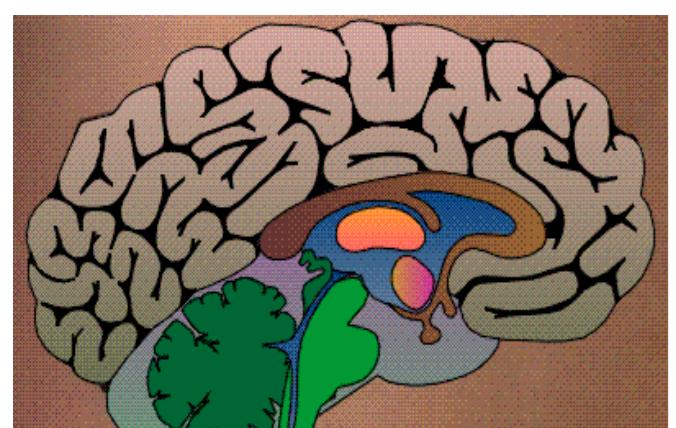


$$A(t) = \frac{n(t; t + \Delta t)}{N\Delta t}$$

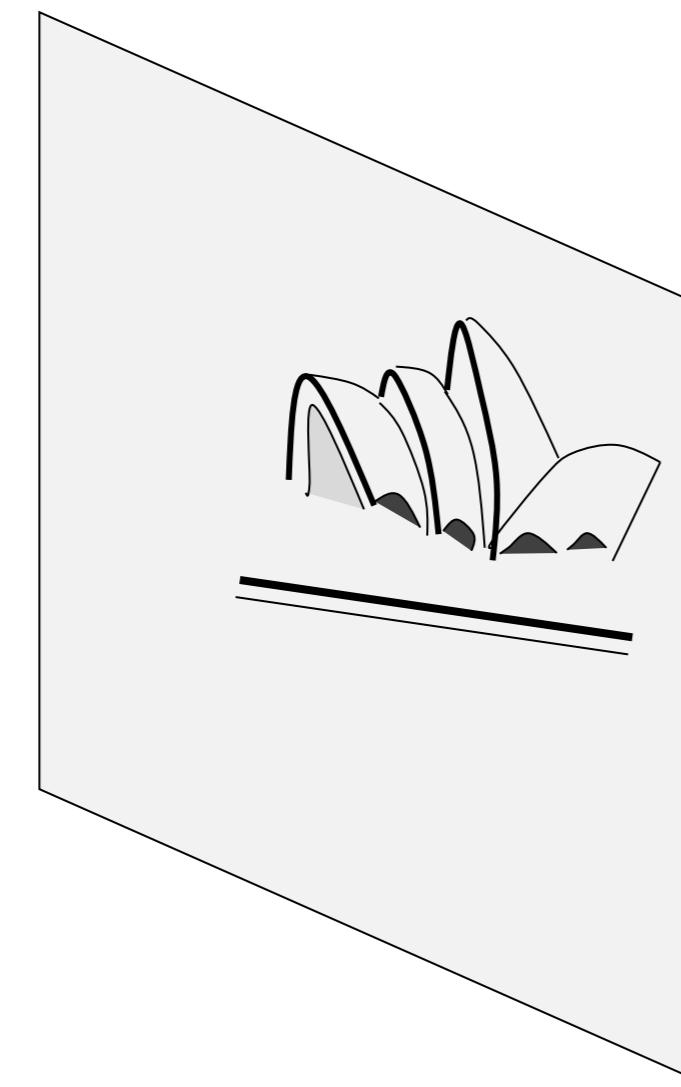
population
averaging

Neuronal Dynamics – 6.5. Temporal codes

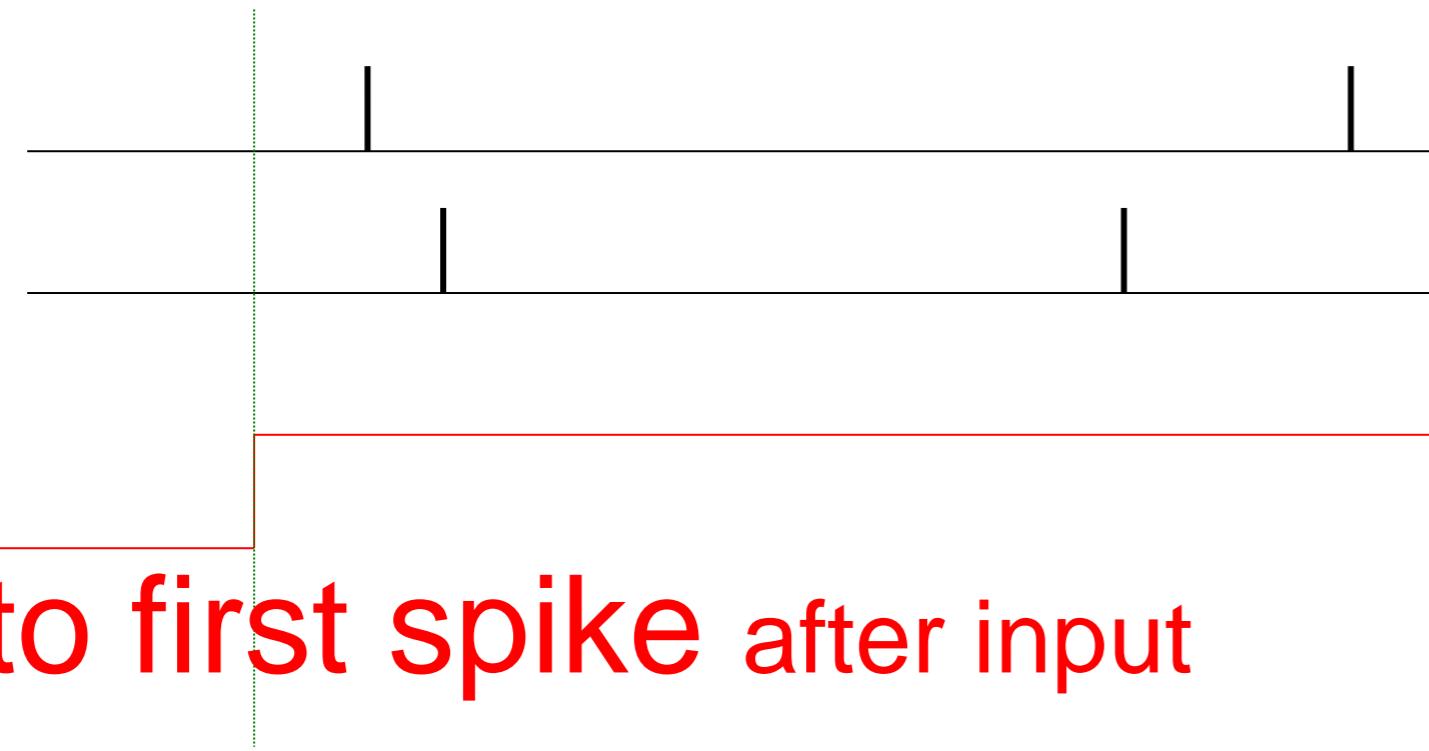
The problem of neural coding: **temporal codes**



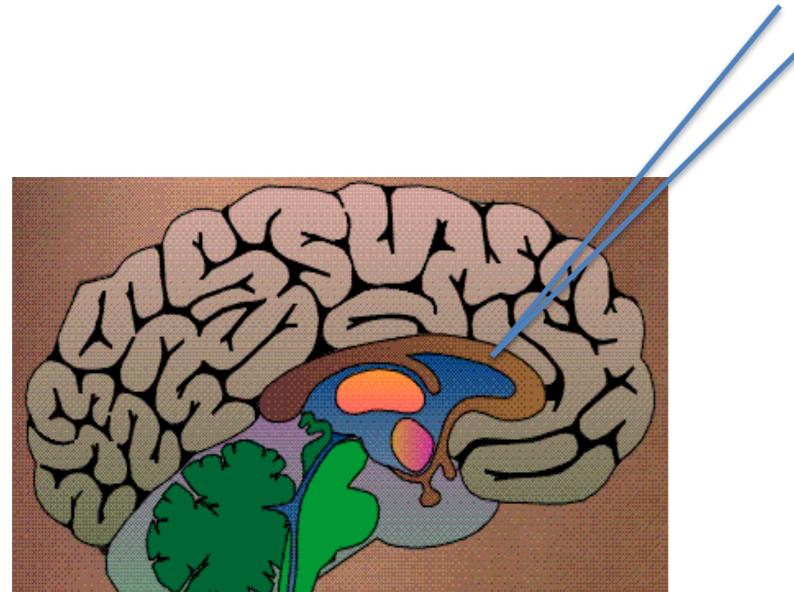
Brain



Neuronal Dynamics – 6.5. Temporal codes

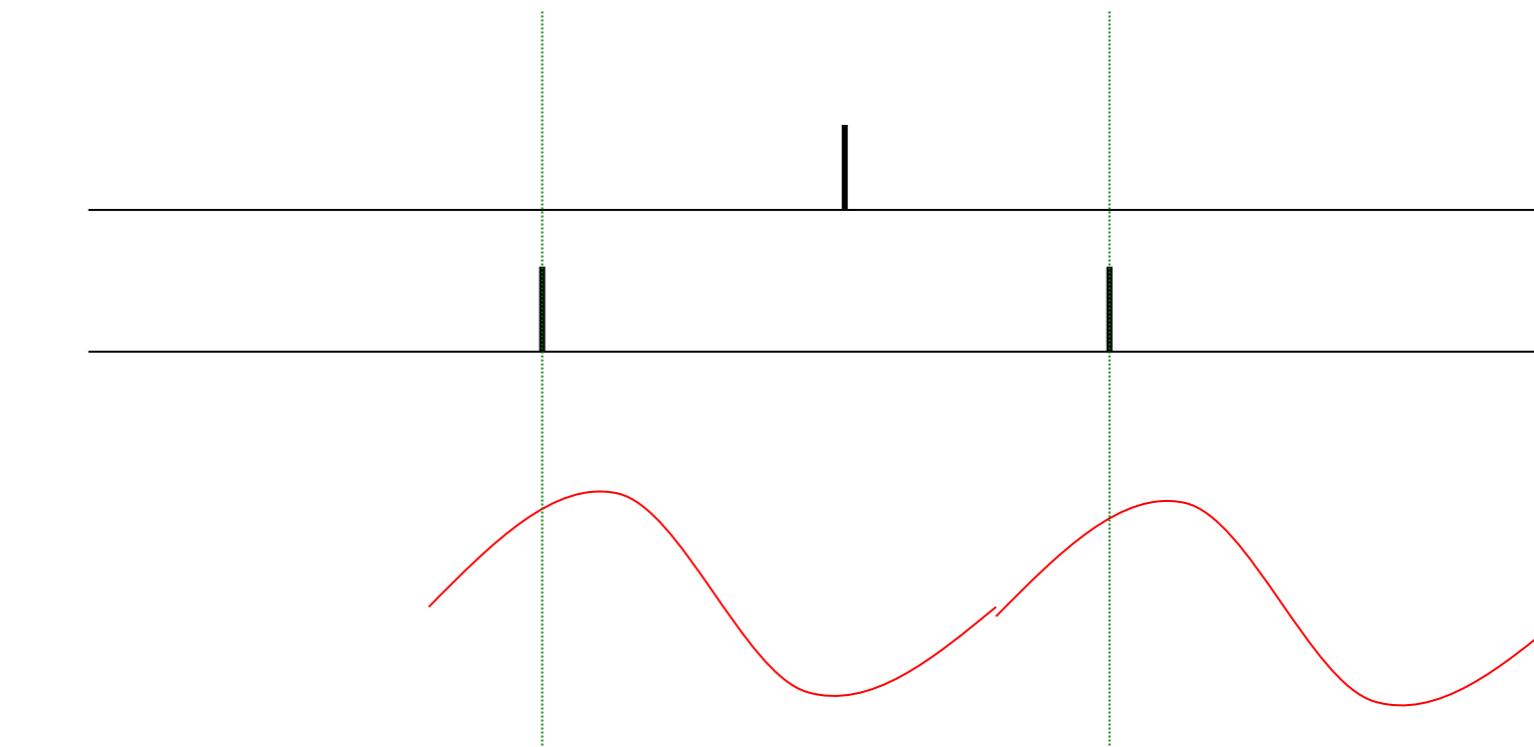


Time to first spike after input



Brain

Spike timing codes:
-time-to-first spike
-phase code



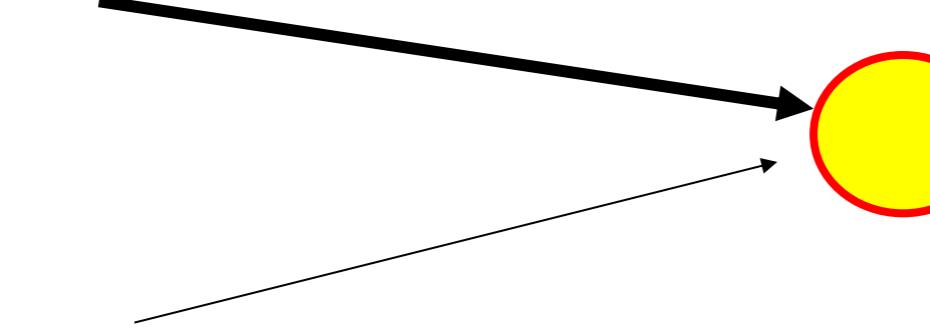
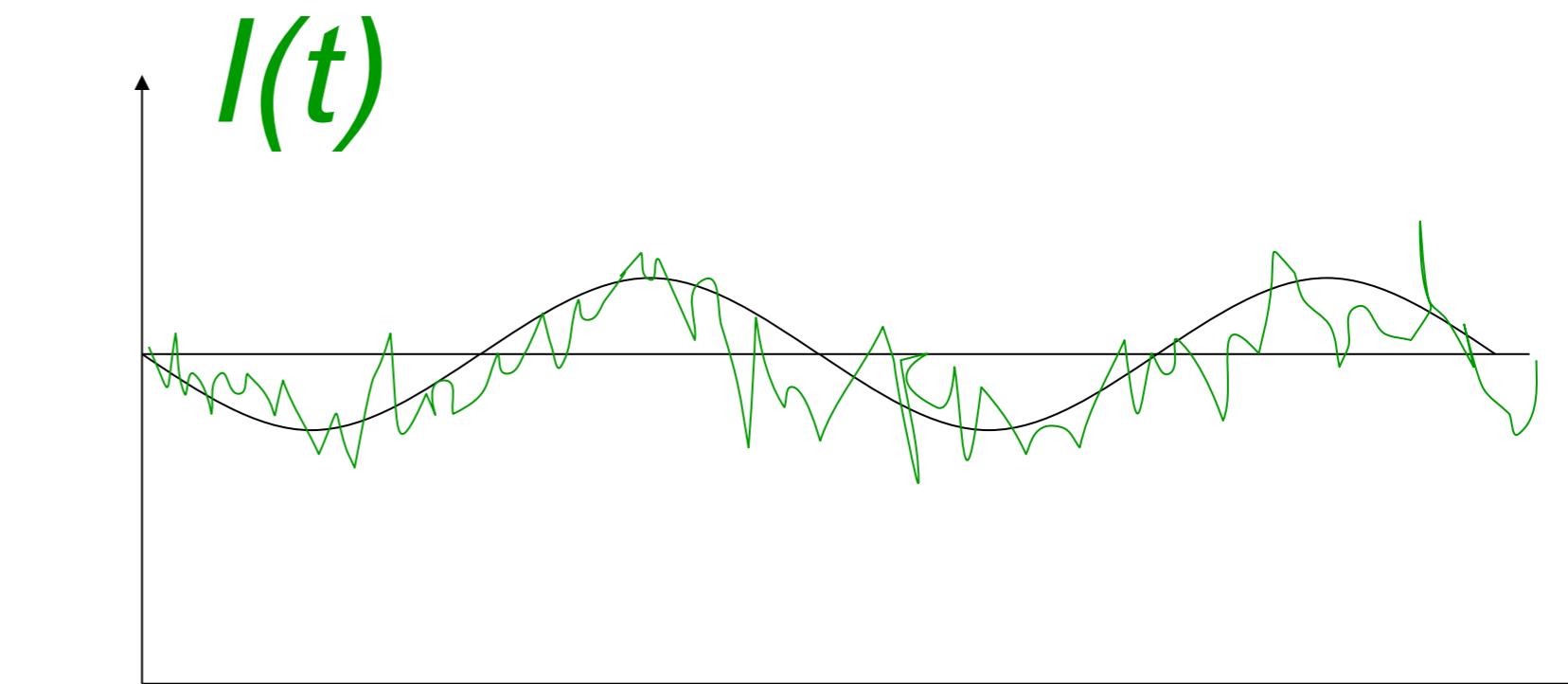
Phase with respect to oscillation

Neuronal Dynamics – 6.5. Stochastic Resonance

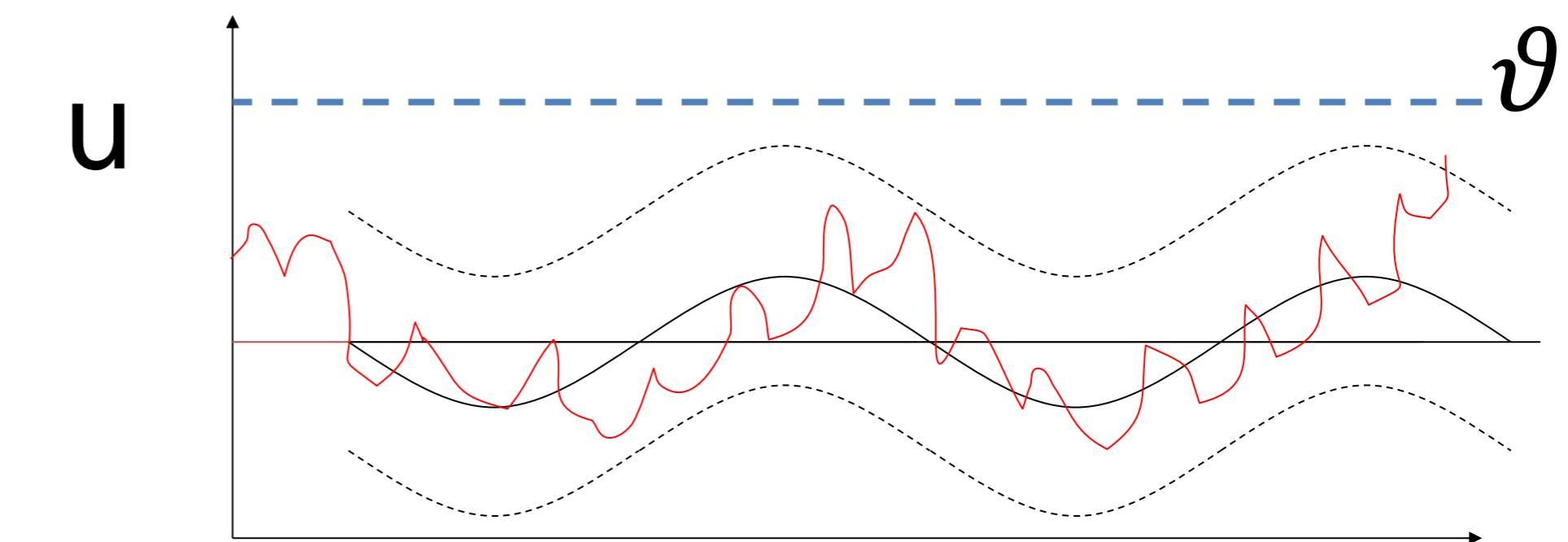
Stochastic Resonance: changing the noise level

$$I(t) = I_0 \cos(\omega t)$$

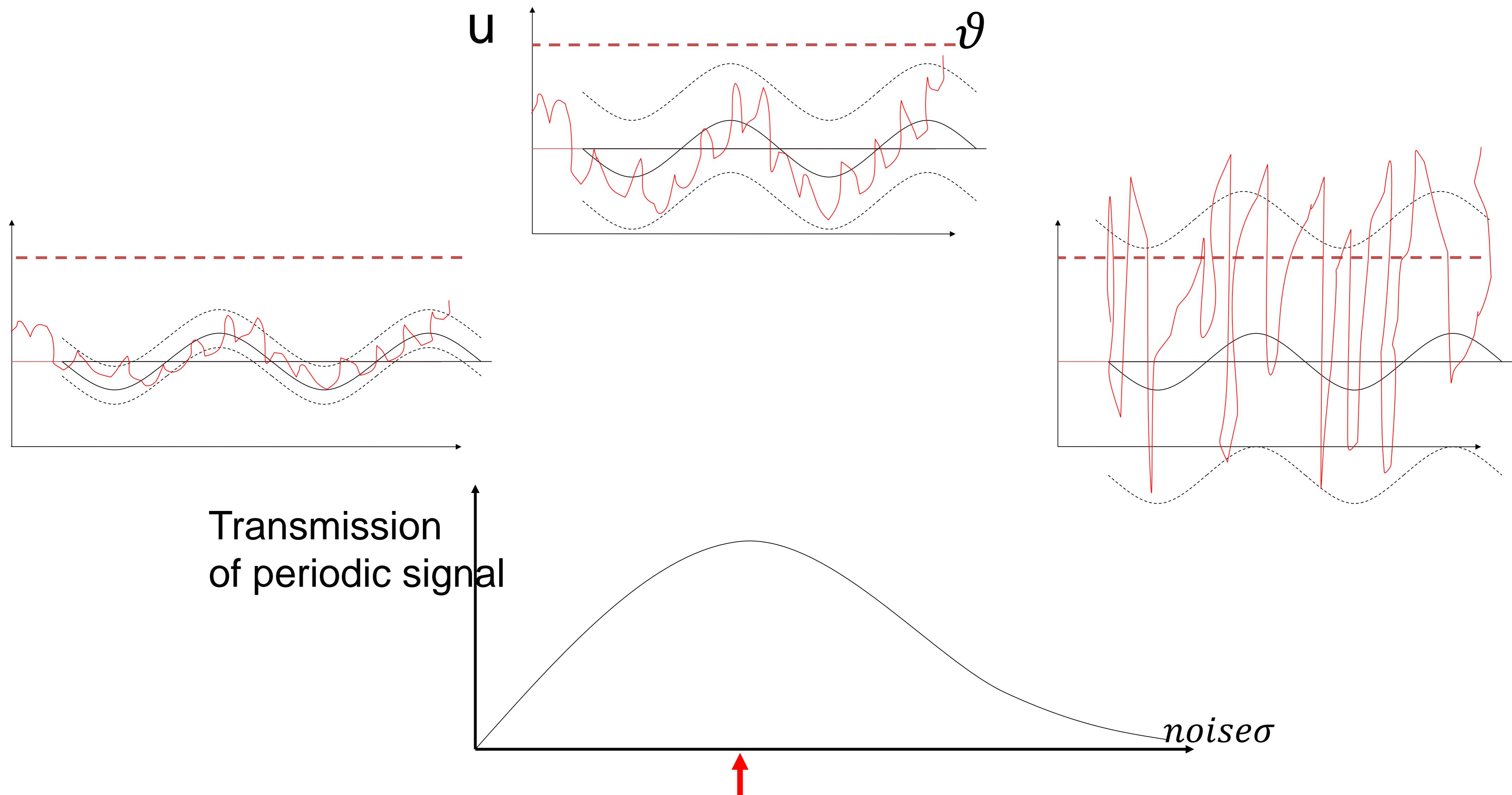
$$I^{noise}(t) = \sigma \xi(t)$$



Sinusoidal input
+ noise
+ threshold



Neuronal Dynamics – 6.5. Stochastic Resonance



Neuronal Dynamics – 6.5 Rate codes versus temporal codes

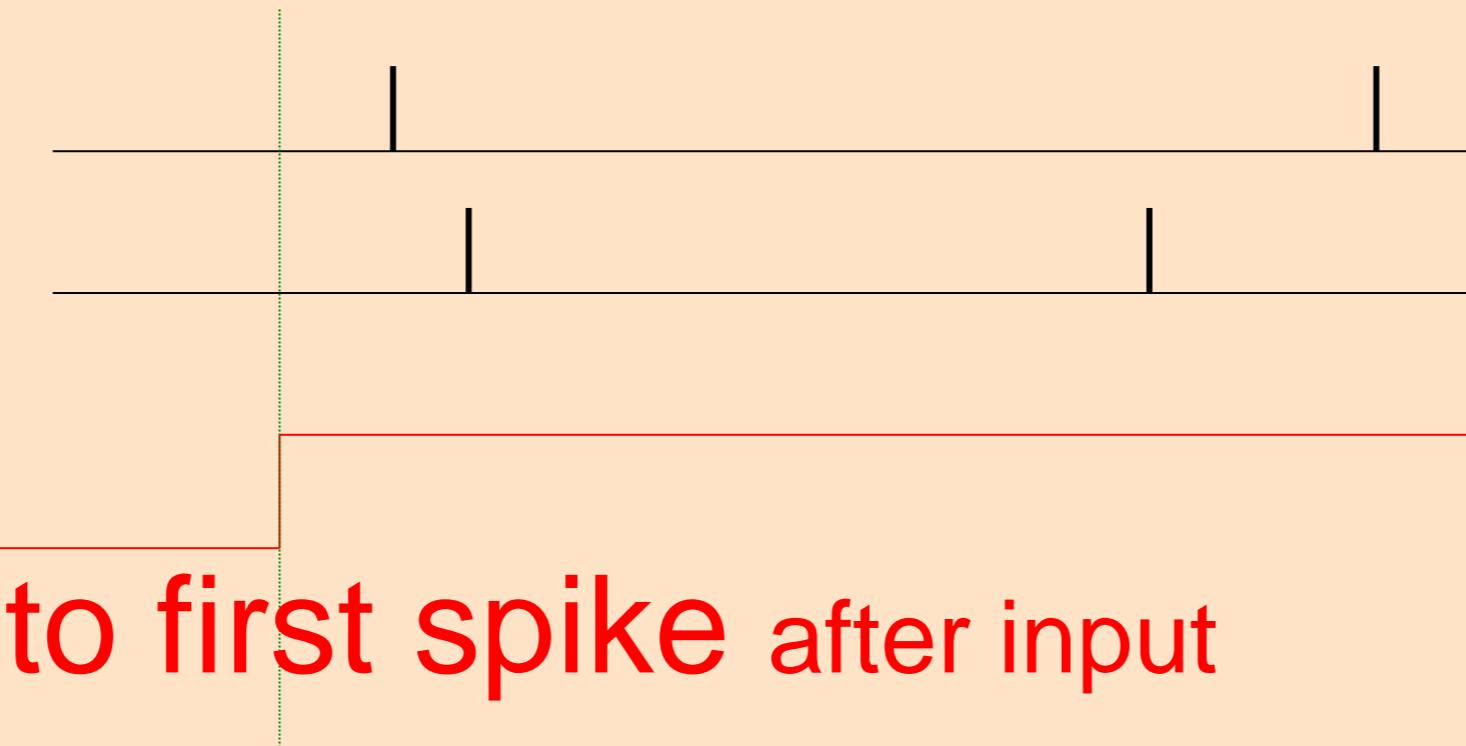
- Rate codes

- population rate

- Temporal Codes

- time-to-first spike
 - phase of spike
 - stochastic resonance

Neuronal Dynamics – Homework assignment



With deterministic model

With Poisson model

With noisy IF (escape noise)