Week 5 - part 1 :Variability
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Neuronal Dynamics: - experiments

Computational Neuroscience -2 Sources of Variability?

of Sinale Neurons - |s variability equal to noise?
! 5.3 Three definitions of Rate code
Week 5 — Variability and Noise: - Poisson Mode

- Detour: Poisson model, a modern approach
The question of the neural code 54 Stochastic spike arrival

- Membrane potential fluctuations

5.5. Stochastic spike firing

- subthreshold and superthreshold
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Neuronal Dynamics - 9.1. Variability
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Neuronal Dynamics - 9.1 Variability invivo

Spontaneous activity in vivo ~ Variability
- of membrane potential?

- of spike timing?

awake mouse, cortex, freely whisking,
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Detour: Receptive fields in V5/MT

Nature Reviews | Neuroscience

cells in visual cortex MT/V5
respond to motion stimull

@/




Neuronal Dynamics - 9.1 Variability invivo

15 repetitions of the same random dot motion pattern
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Neuronal Dynamics - 9.1 Variability invivo
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Kreiman, Koch,
and Fried (2005).
Nature, 435:1102-1107.



Neuronal Dynamics - 9.1 Variability invitro

4 repetitions of the same time-dependent stimulus,

brain slice




Neuronal Dynamics - 9.1 Variability

Fluctuations
-of membrane potential
-of spike times

fluctuations=noise?

relevance for coding?

source of fluctuations?

model of fluctuations?



Week 5 — part 2 : Sources of Variability
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J 5.1 Variability of spike trains
Neuronal Dynamics: - experiments

- _ ——
Computational Neuroscience | -2 Sources of Variability:
of Single Neurons - Is variability equal to noise?

5.3 Three definitions of Rate code
- Poisson Model

Week 5 - Variability and Noise: 5.4 Stochastic spike arrival

The question of the neural code - Membrane potential fluctuations

Wulfram Gerstner 5.5. Stochastic spike firing
- subthreshold and superthreshold
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Neuronal Dynamics - 9.2. Sources of Variability

- Intrinsic noise (lon channels)

-Finite number of channels
-Finite temperature




Review from 2.9 lon channels T

Steps:
Different number _Ca2+
of channels Ions/protel ns

TV Nat+ channel from rat heart (Patlak and Ortiz 1985)
e A traces from a patch containing several channels.
v . .
\/ 3pA Bottom: average gives current time course.

Oms B. Opening times of single channel events



Neuronal Dynamics - 9.2. Sources of Variability

- Intrinsic noise (lon channels)

-Finite number of channels
-Finite temperature

-Spike arrival from other neurons
S0 -Beyond control of experimentalist

Check Intrinisic noise by removing the network




Neuronal Dynamics - 9.2 Variability in vitro

neurons are fairly reliable
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REVIEW from 4.9: How good are integrate-and-fire models?

B  experiment
S R | 20mv
M| ™
o T_ w - /\M\/‘v\// WM
\ J /ﬂ 20MS

_ | o | Badel et al., 2008
Aims: - predict spike initiation times g1y possible, because

- predict subthreshold voltage  neurons are fairly reliable



Neuronal Dynamics - 9.2. Sources of Variability

- Intrinsic noise (lon channels)

-Finite temperature GO‘\\(\‘Q
5“\6\

-Spike arrival from other neurons
S0 -Beyond control of experimentalist

Check network noise by simulation!




Neuronal Dynamics - 9.2 Sources of Variability

The Brain: a highly connected system

Brain

High connectivity:
systematic, organized In local populations
but seemingly random

Distributed architecture

10
10 neurons

4 .
10 connections/neurons




Random firing 1n a population of LIF neurons
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Random firing In a populatlon of LIF neurons

*high rate

Population

- 50 000 neurons

- 20 percent inhibitory

- randomly connected
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Neuronal Dynamics - 9.2. Interspike interval distribution

- Variabllity of interspike intervals (1SI)
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Brunel,

J. Comput. Neurosc. 2000
Mayor and Gerstner,

Phys. Rev E. 2005

Vogels and Abbott,

J. Neuroscience, 2005



Neuronal Dynamics - 9.2. Sources of Variability

- Intrinsic noise (lon channels)




Neuronal Dynamics - Quiz 5.1.

A- Spike timing In vitro and In vivo

[ ] Reliability of spike timing can be assessed by repeating several times the
same stimulus

[ ] Spike timing In vitro is more reliable under injection of constant current than
with fluctuating current

[ ] Spike timing In vitro Is less reliable under injection of constant current than with
fluctuating current

[ ] Spike timing In vitro is more reliable than spike timing in vivo

[ ] Nothing Is known about spike timing in humans in vivo

B — Interspike Interval Distribution (I1SI)

[ ] An Isolated deterministic leaky integrate-and-fire neuron driven by a constant
current can have a broad ISI

[ ] A deterministic leaky integrate-and-fire neuron embedded into a randomly
connected network of integrate-and-fire neurons can have a broad |S|

[ ] An isolated deterministic Hodgkin-Huxley model as in week 2 driven by a
constant current can have a broad IS|




Week 5 - part 3a :Three definitions of rate code
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The question of the neural code - Membrane potential fluctuations
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Neuronal Dynamics - 9.3. Three definitions of Rate Godes

3 definitions
-Temporal averaging

- Averaging across repetitions

- Population averaging (‘spatial’ averaging)



Neuronal Dynamics - 9.3. Rate codes: spike count

Variability of spike timing
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Neuronal Dynamics - 95.3. Spike count: FANO factor
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Neuronal Dynamics - 9.3. Three definitions of Rate Godes

3 definitions
| -Temporal averaging (spike count) Problem: slow!!!

ISI distribution (regularity of spike train)
Fano factor (repeatability across repetitions)

- Averaging across repetitions

- Population averaging (‘spatial’ averaging)



Neuronal Dynamics - 3.3. Three definitions of Rate Codes

3 definitions
\ -Temporal averaging

Problem: slow!!!

- Averaging across repetitions

- Population averaging
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Averaging across repetitions

single neuron/many trials: ot |
average across trials ' '

K repetitions | | |
n(t;t + At) .

K At

Stim(t PSTH(t

K=50 trials

PSTH(t) =




Neuronal Dynamics - 3.3. Three definitions of Rate Codes

3 definitions
\ -Temporal averaging

\l - Averaging across repetitions

Problem: not useful
for animal!!!

- Population averaging
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Neuronal Dynamics - 3.3. Rate codes: population activity

population activity - rate defined by population average

population
A postsynaptic

m
. neuron

||
S I

population

A(t) — N(t;t + At)

NATL




Neuronal Dynamics - 9.3. Three definitions of Rate codes

Three averaging methods

-over time
Too slow

for animalt!!

- over repetitions

Not possible
for animal!!!
- over population (space)

‘natural’



Neuronal Dynamics - Quiz 5.2.

Rate codes. Suppose that in some brain area we have a group of 500 neurons. All neurons
have identical parameters and they all receive the same input. Input Is given by sensory

stimulation and passes through 2 preliminary neuronal processing steps before it arrives at
our group of 500 neurons. Within the group, neurons are not connected to each other.
Imagine the brain as a model network containing 100 000 nonlinear integrate-and-fire
neurons, so that we know exactly how each neuron functions. -

Experimentalist A makes a measurement in a single trial on all 500 neurons using a multi- ,:'
electrode array, during a period of sensory stimulation. |

Experimentalist B picks an arbitrary single neuron and repeats the same sensory stimulation
500 times (with long pauses in between, say one per day).

Experimentalist C repeats the same sensory stimulation 500 times (1 per day), but every
day he picks a random neuron (amongst the 500 neurons).

All three determine the time-dependent firing rate.

'] Aand B and C are expected to find the same result.

'] A and B are expected to find the same result, but that of C is expected to be different.
] B and C are expected to find the same result, but that of A is expected to be different.

:: None of the above three options is correct.




Week 5 - part 3b :Poisson Model
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Neuronal Dynamics — 5.3h. Inhomoyeneous Poisson Process
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Neuronal Dynamics - 93.3h. Poisson Model
Homogeneous Poisson model: constant rate

Math detour:
Poisson model

AL

Probability of finding a spike P. = p, At

Pure rate code = stochastic spiking > Poisson mode|



Neuronal Dynamics - 9.3h. Poisson Model

Probability of firing:
P. = p, At

EAtE

Take At—>0



Neuronal Dynamics —2.3h. Interval distribution

?
Probabllity of firing: o

‘@
F = P Al — ﬁ

(i) Continuous time (ii) Discrete time steps

prob to ‘survive’

At -0



Neuronal Dynamics — 5.3h. Inhomoyeneous Poisson Process
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Probability of firing P. = p(t) At
{
Survivor function  S(t |f) = exp(- j p(t")dt)
f
Interval distribution



Neuronal Dynamics — 5.3h. Inhomoyeneous Poisson Process
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Neuronal Dynamics — 5.3h. Inhomoyeneous Poisson Process

Probabillity of firing
P = p(t) At

Survivor function
t

S(t1f)=exp(-| p(t)dt)
Interval distritt)utict)n
P(t1) = pl)exp(-] p(t)dt)

{



Neuronal Dynamics - Quiz 5.3.

‘A Homogeneous Poisson Process:

1A spike train Is generated by a homogeneous Poisson
‘process with rate 25Hz with time steps of 0.1ms.

I[ | The most likely interspike interval Is 25ms.

:[ | The most likely interspike interval i1s 40 ms.

I[ | The most likely interspike interval i1s 0.1ms

'[1 We can't say.

:B Inhomogeneous Poisson Process:

'A spike train Is generated by an inhomogeneous
.Pmsson process with a rate that oscillates periodically
'(sme wave) between 0 and 50Hz (mean 25Hz). A first
|sp|ke has been fired at a time when the rate was at its
‘maximum. Time steps are 0.1ms.

I[ ] The most likely interspike interval Is 25ms.

:[ ] The most likely interspike interval is 40 ms.

1[ ] The most likely Iinterspike interval is 0.1ms.

'[1 We can't say.



: EPFL
PoIsSson Processes:

Wulfram Gerstner
EPFL, Lausanne, Switzerland

Reading:
[1] A.W. Lewis, G.S. Shedler (1979), Simulation of nonhomogeneous Poisson processes by thinning,
Naval Res. Logist. Q. 26: 403-413.

[2] V. Schmutz (2022), Mean-field limit of age and leaky memory dependent Hawkes processes.

Stochastic Process. Appl., 149:39-59
https://doi.org/10.1016/|.spa.2022.03.006

3] N. Fournier and E. Locherbach (2016), On a toy model of interacting neurons. Annals Inst. H.

Poincare, 52: 1844-1876
DOI: 10.1214/15-AIHP701

[4] J. Chevallier, Mean-field limit of generalized Hawkes processes (2017), Stochastic Process. Appl.,
127:3870--3912. http://dx.doi.org/10.1016/).spa.2017.02.012


https://doi.org/10.1016/j.spa.2022.03.006
https://www.sciencedirect.com/journal/stochastic-processes-and-their-applications

Poisson Process [PP): 2 constructive procedures

classic procedure

Probabllity of generating an
event

e = P Al
time step At -0

Inhomogeneous PP
Pr. =p(t)At

call random number
every time step

p“

_______________________________________________________________________________________________________________________________

_______________________________________________________________________________________________________________________________

Probabllity of generating event:
uniform In 2 dimensions:

E(number of events | area) = area

- call random number twice per event



Example: P,
Inhomogeneous Poisson Process

rate (stochastic intensity):

p(t) = f(h(®))

(i) create events in total area L

(1) visualize p(t) Probability of generating event:
(i) project ‘events uniform in 2 dimensions:

below line’ to t-axis E(number of events | area) = area

(iv) read-off event times |- choose number of events | total area
[(v) you may discretize] |- call random number twice per event



From 2 dimensions to spike trains s(¢) and counts N (¢)

boints in time yield: o
(1) a pulse train
S (t) = 2 5(t—t))
7

(1) a counting process
L

Ny (6) = fo 5. (¢ dt y

Expectation at time t: 15!
C

(N(t)) = E,[N;] = f o(tNdt 2" 1| |

0

(S@) =Ex [Sk(@®)] =p@) ond | 11 0 4




Realization can be generated before the start of the simulation
Realization = points In 2 dimension:
area of 2-dim surface = expected number of events

Advantage:

no need to know the time-dependent intensity p(t) beforehand

-> could depend on what happens in other parts of an

Interacting network

Number of actual events in interval [to, t1] generated by
this realization = ‘points below the curve p(t)’

t1 rp(t)
E[events in |ty tl]] = f f dz dt
to O

N particular o oy = Eis@] = p(o) = <z 5(¢ - tf>>
f



: EPFL
PoIsSson Processes:

Interested In using this method?
Please cite for applications in the neurosciences

[1] V. Schmutz (2022), Mean-field limit of age and leaky memory dependent Hawkes

processes.

Stochastic Processes and their Applications, 149:39-59
https://doi.org/10.1016/j.spa.2022.03.006

[2] N Fournier and E. Locherbach (2016), On a toy model of interacting neurons.
Annals Inst. H. Poincare, 52: 1844-1876
DOI: 10.1214/15-AIHP701

The classical reference for the 2-dimensional approach Is

[3] A.W. Lewis, G.S. Shedler (1979),
Simulation of nonhomogeneous Poisson processes by thinning,
Naval Res. Logist. Q. 26: 403-413.


https://doi.org/10.1016/j.spa.2022.03.006
https://www.sciencedirect.com/journal/stochastic-processes-and-their-applications

Week 5 - part 4 :Stochastic spike arrival
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Neuronal Dynamics - 9.4 Variability invivo

Spontaneous activity In vivo

Variability

of membrane potential?
awake mouse, freely whisking,
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Random firing In a populatlon of LIF neurons

*high rate

Population

- 50 000 neurons

- 20 percent inhibitory

- randomly connected
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Neuronal Dynamics — 5.4 Membrane potential fluctuations

from neuron’s point
of view:
stochastic spike arrival

Pull out one neuron
‘Network noise’

A\
‘A‘Q‘Q "‘ ‘ ‘ b\)\\O(\
o g:‘;. | - O(\\(\




Neuronal Dynamics - 5.4. Stochastic Spike Arrival

math detour Total spike train of K presynaptic neurons
now!
ow N I - H

— i i i i i i —

At

spike train

| Probability of spike arrival:

= SO = P. =Kp, At
Take At = 0 expectation

K

S(t)=> > S(t-t,)

k=1



Neuronal Dynamics - 92.4. Fluctuation of iInput current

math detour Total spike train of K presynaptic neurons
now!

— i i i i i i —

a | |
Cvas=Cua | /' At




Neuronal Dynamics - 9.4. Fluctuation of current/potential

Passive membrane

)
r —Uu=-( _urest)

+R 1Mt
" (t)

- Fluctuating potential

Synaptic current pulses of shape «

RIV' ()= ) wy ) at-t/)
K

f

EPSC
o )
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. e ﬁB\Juz
W R4 (t) _ IO n fluct (t)
It \
lu /MJVAVWMWMWM 0 Q

Fluctuating input current



Neuronal Dynamics - 5.4. Calculating the mean

- THT )

Isyn ZWkZJdtat t —tk X(t):ZJ'dt'f(t_tl)é‘(tu_tkf)
mean: assume Poisson process g(\((\e‘\\\
25"
10 =(17"(1) = Zwkjdtat t\/\)se‘\O‘ o <x(t)>=jdt'f(t—t')<z 5(t'—tkf)>
o f
o™ (x(0) = [dt ft-t) p(t)
? :%Zklwkjdt'a(t—t') Vi .

rate of Inhomogeneous
Poisson process



Neuronal Dynamics - 9.4. Fluctuation of current/potential

fluctuating input current

I(t) 0\A

lu /M’% AL MVWM T Q

fluctuating potential



Neuronal Dynamics — Assignment/homework

S g — S T | T O O

P26 M T T A A R A A T
‘ : | : : ! ! ! i i | | | .

G{‘"’ 1 /' At

G«ng

u(t) :Zjdt'f(t—t')é(t'—tkf)

f

A leaky Integrate-and-fire neuron receives stochastic spike
arrival, described as a homogeneous PoisSson process.

Calculate the mean membrane potential. To do so, use the
above formula.




Week 5 - part 4b : Membrane potential fluctuations
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Week 5 - part 4b : Membrane potential fluctuations

B
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- subthreshold and superthreshold



Neuronal Dynamics - 9.4 Variability invivo

Spontaneous activity In vivo

Variability

of membrane potential?
awake mouse, freely whisking,

0 —

—20 - —

40 | -

| W |'rl'| A A " 'II hlu W

— 60 .."_‘1' xﬂu.wwﬁw“ﬂ.,ﬂ“l\;r %Wﬁﬂ:-—* W '.h,,-‘“"ﬂ'u-*""...r..-u'ﬂ | I*.uf L"L.....m,j Ml'lﬂ ﬂ-\,; f_,.v‘*w._..w,ﬂ...-.j' 4

() 1 2 3 4 5
t[s]

Crochet et al., 2011




Neuronal Dynamics -

2@ 1
G o M=
& "‘Q\“\- J_I _—
“!6 ©

Passive membrane

7 %u =—(U-Ugq) +RIP(t)

- Fluctuating potential

J.40. Fluctuations of potential

Synaptic current pulses of shape «
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K

f

EPSC
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Fluctuating input current




(Au(t)Au(t)) = (ut)u(t)) - (u(t))” =

Input: step + fluctuations



Neuronal Dynamics - 5.4h. Calculating autocorrelations
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Autocorrelation At T ”
(X({)X()) = X(t) = Zf: [dtft-t)o-t))
= [dt f(t-t)S(t)
Mean: (x(B) = [dt" F(E-t)(S(t)
(x(V) = [dsf(s) o
(x(O)x()) = [dt" [dt"f ¢t F(E-t") (SIS (")) rate of ho/mogeneous

Poisson process



Neuronal Dynamics - o.4h. Autocorrelation of Poisson

math detour
now RN

Probabllity of spike
INn step n AND step k

spike train
Probabllity of spike In time step:
Pe = Po Al

Autocorrelation (continuous time)
(SM)S(t)=pyo(t-t)+[p,



Neuronal Dynamics - 9.4b. Fluctuation of potential

. .‘Q i
for a passive membra_\ne, we ‘__-g;:é‘g ol
can analytically predict the o
amplitude of membrane Passive membrane
potential fluctuations u®) =Y w Y et'-t)
K f

= Yw [dt'z(t-t)S ()
Leaky integrate-and-fire fluctuating potential
In subthreshold regime (Au(t)Au(D)) =<[U(t)]2>—<u(t)>2



Neuronal Dynamics - 9.4b. Fluctuation of potential

Stochastic spike arrival: o .
for a passive membrane, we 1;‘»'*}’ [T
can analytically predict the |
amplitude of membrane Passive merrl1bfrane
potential fluctuations u(t) = Zk:WkZ e(t=1)
= Yw [dt'e(t-t)S ()
K
Leaky integrate-and-fire fluctuating potential

in subthreshold regime (Au®)Au®) = (u®F )~ (u(®)’



Neuronal Dynamics - 9.4b. Fluctuation of potential
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S 1
o= T
é(j’\“ﬂ | | I

A

L O
®

Passive membrane
u(t)=> w ) elt'-t))
k f

= Y, jdt'g(t—t')sk(t')
Fluctuations of potential
(IAu®F) =([u®)F ) (u())



Neuronal Dynamics - Quiz 5.4

A linear (=passive) membrane has a potential given by

u(t) = [dt'f (t-t)5t-t,) +2 O/\Q

Suppose the neuronal dynamics are given by

d

r &u:_(u_urest) +qz 5(t_tf)
f

| ] the filter f Is exponential with time constant 7
| ] the constant a Is equal to the time constant 7

[ ] the constant a Is equal to u_

| ] the amplitue of the filter fIs g

[ ] the amplitue of the filter fis u_




Week 5 — part 5 : Stochastic spike firing in integrate-and-fire models
I L

ECOLE POLYTECHNIQUE
EEEEEEEEEEEEEEEEE

JJ 9.1 Variability of spike trains
- experiments
\l 5.2 Sources of Variability?

- Is variability equal to noise?

\l5.3 Three definitions of Rate code

- Poisson Model

Week 5 - Variability and Noise: \J5.4 Stochastic spike arrival

The question of the neural code - Membrane potential fluctuations
Wulfram Gerstner 5.5. Stochastic spike firing
EPEL | ausanne. Switzerland - subthreshold and superthreshold

Neuronal Dynamics:




Neuronal Dynamics - review: Fluctuations of potential
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‘ L | R
::!:\::‘5": I /'
O
Passive membrane 3 (t)
] | \Mvwﬂ\\ N

—U=-(Uu-u +R It
FU=mu) RIE

- Fluctuating potential

N

[T

AVAVWMWIAW/W T Q

Fluctuating input current

Isyn (t) _ IO Iy fluct (t)



Neuronal Dynamics — 5.5. Stochastic leaky integrate-and-fire

effective noise current

| I
| \mvwﬂ\x &&\O
u(t)
LIF T %u:—(u—urest) + R 1(t)
\ noisy input/
1) =l + e diffusive noise/

stochastic spike
IF u(t)=9 THEN u(t+A) =u, arrival




stochastic spike arrival In 1&F — interspike Intervals

2.0 +
IA < v | ¢ |
ly w\/«/\\f“\w O - 1.0 MWMWWM
| 0.0 ¢+ ]
O 50 100 150 200
t [ms]
o1 —mmmm———————
|SI distribution
0.0 Mﬂ

O 50 100 150 200
S



LIF with Diffusive noise (stochastic spike arrival)

Superthreshold vs. Subthreshold regime

" TR " AT

0.1
o ' 1 o’ !
oo 44— — o b 0.0 M

0 50 100 150 200 * 0 50 100 150 200
S




Neuronal Dynamics — 5.5. Stochastic leaky integrate-and-fire

noisy Input/ diffusive noise/
stochastic spike arrival

subthreshold regime:

- firing driven by fluctuations
- broad ISI distribution
- In VIVO like



Neuronal Dynamics week 9- References and Suggested Reading

Reading: W. Gerstner, W.M. Kistler, R. Naud and L. Paninski,
Neuronal Dynamics: from single neurons to networks and models of cognition. Ch. 7,8: Cambridge, 2014
OR W. Gerstner and W. M. Kistler, Spiking Neuron Models, Chapter 5, Cambridge, 2002

-Rieke, F., Warland, D., de Ruyter van Steveninck, R., and Bialek, W. (1996). Spikes - Exploring the neural code. MIT Press.

-Faisal, A., Selen, L., and Wolpert, D. (2008). Noise in the nervous system. Nat. Rev. Neurosci., 9:202

-Gabbiani, F. and Koch, C. (1998). Principles of spike train analysis. In Koch, C. and Segeyv, |., editors,

Methods in Neuronal Modeling, chapter 9, pages 312-360. MIT press, 2nd edition.

-Softky, W. and Koch, C. (1993). The highly irregular firing pattern of cortical cells is inconsistent with temporal integration of random
epsps. J . Neurosci., 13:334-350.

-Stein, R. B. (1967). Some models of neuronal variability. Biophys. J., 7:37-68.

-Siegert, A. (1951). On the first passage time probability problem. Phys. Rev., 81:617{623.

-Konig, P., et al. (1996). Integrator or coincidence detector? the role of the cortical neuron revisited. Trends Neurosci, 19(4):130-137.




	Slide 1: Neuronal Dynamics: Computational Neuroscience of Single Neurons
	Slide 2: Neuronal Dynamics – 5.1. Variability
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Neuronal Dynamics: Computational Neuroscience of Single Neurons
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: REVIEW from  4.5:  How good are integrate-and-fire models?
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Neuronal Dynamics: Computational Neuroscience of Single Neurons
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: Neuronal Dynamics: Computational Neuroscience of Single Neurons
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61: Neuronal Dynamics: Computational Neuroscience of Single Neurons
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72: Neuronal Dynamics: Computational Neuroscience of Single Neurons
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78: Neuronal Dynamics week 5– References and Suggested Reading

