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5.1 Variability of spike trains

       - experiments

5.2 Sources of Variability? 
      - Is variability equal to noise?

5.3 Three definitions of Rate code
         - Poisson Model

         - Detour: Poisson model, a modern approach

5.4 Stochastic spike arrival
        - Membrane potential fluctuations

5.5. Stochastic spike firing 
         - subthreshold and superthreshold

Week 5 – part 1 :Variability



Neuronal Dynamics – 5.1. Variability
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Crochet et al., 2011

awake mouse, cortex, freely whisking, 

Spontaneous activity in vivo

Neuronal Dynamics – 5.1 Variability in vivo

Variability 

- of membrane potential? 

- of spike timing?



Detour: Receptive fields in V5/MT 

visual 

cortex

cells in visual cortex MT/V5

 respond to motion stimuli



Neuronal Dynamics – 5.1 Variability in vivo

adapted from Bair and Koch 1996; 

data from Newsome 1989

15 repetitions of the same random dot motion pattern
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Human Hippocampus 

Neuronal Dynamics – 5.1 Variability in vivo

Quiroga,  Reddy, 

Kreiman,  Koch, 

and Fried  (2005). 

Nature, 435:1102-1107.



Neuronal Dynamics – 5.1 Variability in vitro 

4 repetitions of the same time-dependent stimulus,

I(t)

brain slice



Neuronal Dynamics – 5.1 Variability

Fluctuations

-of membrane potential

-of spike times

fluctuations=noise?

model of fluctuations?

relevance for coding?

source of fluctuations?
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- Intrinsic noise (ion channels)

Na+

K+

-Finite number of channels

-Finite temperature

Neuronal Dynamics – 5.2. Sources of Variability



Na+ channel from rat heart (Patlak and Ortiz 1985)

A traces from a patch containing several channels. 

Bottom: average gives current time course.

B. Opening times of single channel events

Steps:

Different number

of channels
Ca2+

Na+

K+

Ions/proteins

Review from 2.5 Ion channels



- Intrinsic noise (ion channels)

Na+

K+

-Finite number of channels

-Finite temperature

-Network noise (background activity)

-Spike arrival from other neurons

-Beyond control of experimentalist

Check intrinisic noise by removing the network

Neuronal Dynamics – 5.2. Sources of Variability



Neuronal Dynamics – 5.2 Variability in vitro

Image adapted from

Mainen&Sejnowski 1995

I(t)

neurons are fairly reliable



REVIEW from  4.5: How good are integrate-and-fire models?

Aims: - predict spike initiation times

- predict subthreshold voltage

Badel et al., 2008

only possible, because

neurons are fairly reliable



- Intrinsic noise (ion channels)

Na+

K+

-Finite number of channels

-Finite temperature

-Network noise (background activity)

-Spike arrival from other neurons

-Beyond control of experimentalist

Check network noise by simulation!

Neuronal Dynamics – 5.2. Sources of Variability



The Brain: a highly connected system

Brain 

Distributed architecture
10

10    neurons

High connectivity:

systematic, organized in local populations

but seemingly random

4
10    connections/neurons

Neuronal Dynamics – 5.2 Sources of Variability



Population
- 50 000 neurons

- 20 percent inhibitory

- randomly connected

Random firing  in a population of LIF neurons
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Brunel, J. Comput. Neurosc. 2000

Mayor and Gerstner, Phys. Rev E. 2005

Vogels et al., 2005



Population
- 50 000 neurons

- 20 percent inhibitory

- randomly connected

Random firing  in a population of LIF neurons
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ISI distribution

100100 500t [ms]

ISI
u [mV]

100

0

100 200time [ms]50

- Variability of interspike intervals (ISI)

Variability of  spike trains:

broad ISI distribution

here in simulations, 

but  also in vivo

Brunel, 

J. Comput. Neurosc. 2000

Mayor and Gerstner,  

Phys. Rev E. 2005

Vogels and Abbott, 

J. Neuroscience, 2005

Neuronal Dynamics – 5.2. Interspike interval distribution



- Intrinsic noise (ion channels)

Na+

K+

-Network noise 

Neuronal Dynamics – 5.2. Sources of Variability



Neuronal Dynamics – Quiz 5.1.

B – Interspike Interval Distribution (ISI)

[ ] An isolated deterministic  leaky integrate-and-fire neuron driven by a constant 

current can have  a broad ISI

[ ] A deterministic leaky integrate-and-fire neuron  embedded into a randomly 

connected network of integrate-and-fire neurons can have a broad ISI

[ ] An isolated deterministic  Hodgkin-Huxley model as in week 2  driven by a 

constant current can have  a broad ISI

A- Spike timing in vitro and in vivo

[ ] Reliability of spike timing can be assessed by repeating several times the 

same stimulus

[ ] Spike timing in vitro is more reliable under injection of constant current than 

with fluctuating current

[ ] Spike timing in vitro is less reliable under injection of constant current than with 

fluctuating current

[ ] Spike timing in vitro is more reliable than spike timing in vivo

[ ] Nothing is known about spike timing in humans in vivo
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Week 5 – part 3a :Three definitions of rate code



Neuronal Dynamics – 5.3. Three definitions of Rate Codes

3 definitions
-Temporal averaging

- Averaging across repetitions

- Population averaging (‘spatial’ averaging)



Variability of  spike timing

stim
T=1s

trial 1

Neuronal Dynamics – 5.3. Rate codes: spike count

Brain 

rate as a (normalized) spike count:

( )
spn

t
T

 =

single neuron/single trial:

temporal average



ISI distribution

100100 500t [ms]

ISI
u [mV]

100

0

100 200time [ms]50

Variability of interspike intervals (ISI)

Neuronal Dynamics – 5.3. Rate codes: spike count

( )
spn

t
T

 =

single neuron/single trial:

temporal average

measure regularity



stim
T

trial 1

trial 2

trial K

Neuronal Dynamics – 5.3. Spike count: FANO factor

Brain 

1 5spn =
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4sp
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Fano factor
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Neuronal Dynamics – 5.3. Three definitions of Rate Codes

3 definitions
-Temporal averaging (spike count)

ISI distribution (regularity of spike train)

Fano factor     (repeatability across repetitions)

- Averaging across repetitions

- Population averaging (‘spatial’ averaging)

Problem: slow!!!



Neuronal Dynamics – 5.3. Three definitions of Rate Codes

3 definitions
-Temporal averaging

- Averaging across repetitions

- Population averaging 

Problem: slow!!!



Variability of  spike timing

stim

trial 1

trial 2

trial K

Neuronal Dynamics – 5.3. Rate codes: PSTH

Brain 
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tttn
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Averaging across repetitions

K repetitions

PSTH(t)

K=50 trials

Stim(t)

Neuronal Dynamics – 5.3. Rate codes: PSTH

single neuron/many trials:

average across trials



Neuronal Dynamics – 5.3. Three definitions of Rate Codes

3 definitions
-Temporal averaging

- Averaging across repetitions

- Population averaging 

Problem: not useful 

for animal!!!



population of neurons

with similar properties

stim

neuron 1

neuron 2

Neuron  K

Neuronal Dynamics – 5.3. Rate codes: population activity

Brain 



population activity - rate defined by population average

t
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Neuronal Dynamics – 5.3. Rate codes: population activity

‘natural’



Neuronal Dynamics – 5.3. Three definitions of Rate codes

Three averaging methods

-over time

- over repetitions

- over population (space)

Not possible 

for animal!!!

Too slow 

for animal!!!

‘natural’



Neuronal Dynamics – Quiz 5.2.
Rate codes. Suppose that in some brain area we have a group of 500 neurons. All neurons 

have identical parameters and they all receive the same input. Input is given by sensory 

stimulation and passes through 2 preliminary neuronal processing steps before it arrives at 

our group of 500 neurons. Within the group, neurons are not connected to each other.  

Imagine the brain as a  model network containing 100 000 nonlinear integrate-and-fire 

neurons, so that we know exactly how each neuron functions.

Experimentalist A makes a measurement in a single trial on all 500 neurons using a multi-

electrode array, during a period of sensory stimulation. 

Experimentalist B picks an arbitrary single neuron and repeats the same sensory stimulation 

500 times (with long pauses in between, say one per day).

Experimentalist C repeats the same sensory stimulation 500 times (1 per day), but every 

day he picks a random neuron (amongst the 500 neurons).

All three determine the time-dependent firing rate.

[ ] A and B and C are expected to find the same result.

[ ] A and B are expected to find the same result, but that of C is expected to be  different.

[ ] B and C are expected to find the same result, but that of A is expected to be  different.

[ ] None of the above three options is correct.



5.1 Variability of spike trains

       - experiments

5.2 Sources of Variability? 
      - Is variability equal to noise?

5.3 Three definitions of Rate code
         - Poisson Model

5.4 Stochastic spike arrival
        - Membrane potential fluctuations

5.5. Stochastic spike firing 
         - subthreshold and superthreshold

Week 5 – part 3b :Poisson Model
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Pure rate code = stochastic spiking → Poisson model
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Neuronal Dynamics – 5.3b. Inhomogeneous Poisson Process



Homogeneous Poisson model: constant rate

Pure rate code = stochastic spiking → Poisson model

Math detour:

  Poisson model

t

0FP t= Probability of finding a spike

Neuronal Dynamics – 5.3b. Poisson Model



t

0FP t= 

Probability of firing:

Neuronal Dynamics – 5.3b. Poisson Model

Take 0t →



t
0FP t= 

Probability of firing:

Neuronal Dynamics – 5.3b. Interval distribution

0t →

?

(i) Continuous time (ii) Discrete time steps

prob to ‘survive’



rate changes

t

( )FP t t= Probability of firing

Neuronal Dynamics – 5.3b. Inhomogeneous Poisson Process
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inhomogeneous Poisson model consistent with rate coding
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Neuronal Dynamics – 5.3b. Inhomogeneous Poisson Process



( )FP t t= 
Probability of firing

Neuronal Dynamics – 5.3b. Inhomogeneous Poisson Process

ˆ

ˆ( | ) exp( ( ') ')
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S t t t dt= −
Interval distribution

Survivor function
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Neuronal Dynamics – Quiz 5.3.
A Homogeneous Poisson Process:

A spike train is generated by a homogeneous Poisson 

process with rate 25Hz with time steps of 0.1ms.

[ ] The most likely interspike interval is 25ms.

[ ] The most likely interspike interval is 40 ms.

[ ] The most likely interspike interval is 0.1ms

[ ] We can’t say.

B Inhomogeneous Poisson Process:

A spike train is generated by an inhomogeneous 

Poisson process with a rate that oscillates periodically 

(sine wave) between 0 and 50Hz (mean 25Hz). A first 

spike has been fired at a time when the rate was at its 

maximum.  Time steps are 0.1ms.

[ ] The most likely interspike interval is 25ms.

[ ] The most likely interspike interval is 40 ms.

[ ] The most likely interspike interval is 0.1ms.

[ ] We can’t say.



Wulfram Gerstner

EPFL, Lausanne, Switzerland

Poisson Processes:

A modern approach

Reading: 
[1] A.W. Lewis, G.S. Shedler (1979), Simulation of nonhomogeneous Poisson processes by thinning, 

Naval Res. Logist. Q. 26: 403–413.

[2] V. Schmutz (2022), Mean-field limit of age and leaky memory dependent Hawkes processes. 

Stochastic Process. Appl., 149:39-59 

https://doi.org/10.1016/j.spa.2022.03.006 

[3] N. Fournier and E. Löcherbach (2016), On a toy model of interacting neurons. Annals Inst. H. 

Poincare, 52: 1844-1876 

DOI: 10.1214/15-AIHP701

[4] J. Chevallier, Mean-field limit of generalized Hawkes processes (2017), Stochastic Process. Appl., 

127:3870--3912. http://dx.doi.org/10.1016/j.spa.2017.02.012

Elsevier

https://doi.org/10.1016/j.spa.2022.03.006
https://www.sciencedirect.com/journal/stochastic-processes-and-their-applications


call random number

every time step

t

0FP t= 

Probability of generating an 

event

Poisson Process (PP): 2 constructive procedures

time step Δ 𝑡 → 0

t

𝜌

Probability of generating event:

uniform in 2 dimensions:

E(number of events | area) = area

Δ𝜌
Δ𝑡

- choose number of events | total area 

- call random number twice per event

t

classic procedure

𝑃𝐹 = 𝜌 𝑡 Δ 𝑡
Inhomogeneous PP



Efficient constructive procedure

t

𝜌

Probability of generating event:

uniform in 2 dimensions:

E(number of events | area) = area

- choose number of events | total area 

- call random number twice per event

Example:

inhomogeneous Poisson Process

𝜌(𝑡) = 𝑓(ℎ 𝑡 )

rate (stochastic intensity): 
𝜌(𝑡)

Δ𝑡
(i) create events in total area

(ii) visualize 𝜌 𝑡
(iii) project  ‘events

below line’ to t-axis

(iv) read-off event times

[(v) you may discretize]



From 2 dimensions to  spike trains 𝑆 𝑡 and counts  𝑁 𝑡

t

𝜌

𝑆(𝑡) = 𝐸𝑘 [𝑆𝑘 𝑡 ] = 𝜌(𝑡)

Expectation at time t:
t

t

𝜌(𝑡)

1st

2nd

t2nd

points in time yield:

(i) a pulse train

(ii) a counting process

𝑆𝑘 𝑡 = ෍

𝑓

𝛿(𝑡 − 𝑡𝑘
𝑓
)

𝑁(𝑡) = 𝐸𝑘[𝑁𝑘] = න
0

𝑡

𝜌 𝑡′ 𝑑𝑡′ 

𝑁𝑘 𝑡 = න
0

𝑡

𝑆𝑘 𝑡′ 𝑑𝑡′



Poisson process: a modern view

- Realization can be generated before the start of the simulation

- Realization = points in 2 dimension:  

area of 2-dim surface = expected number of events

- Advantage:

no need to know the time-dependent intensity (t) beforehand

→ could depend on what happens in other parts of an 

interacting network         

- Number of actual events in interval [t0, t1] generated by

this realization = ‘points below the curve (t)’

- in particular

𝐸 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡0, 𝑡1 = න
𝑡0

𝑡1

න
0

𝜌(𝑡)

𝑑𝑧 𝑑𝑡

𝑆(𝑡) : = 𝐸[𝑆 𝑡 ] = 𝜌 𝑡 = ෍

𝑓

𝛿(𝑡 − 𝑡𝑓)



Poisson Processes:

A modern approach

[1] V. Schmutz (2022), Mean-field limit of age and leaky memory dependent Hawkes 

processes. 

Stochastic Processes and their Applications, 149:39-59 

https://doi.org/10.1016/j.spa.2022.03.006 

[2] N Fournier and E. Löcherbach (2016), On a toy model of interacting neurons. 

Annals Inst. H. Poincare, 52: 1844-1876 

DOI: 10.1214/15-AIHP701

Elsevier

Interested in using this method?  

Please cite for applications in the neurosciences

The classical reference for the 2-dimensional approach is 
[3] A.W. Lewis, G.S. Shedler (1979),

Simulation of nonhomogeneous Poisson processes by thinning, 

Naval Res. Logist. Q. 26: 403–413.

https://doi.org/10.1016/j.spa.2022.03.006
https://www.sciencedirect.com/journal/stochastic-processes-and-their-applications
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Crochet et al., 2011

awake mouse, freely whisking, 

Spontaneous activity in vivo

Neuronal Dynamics – 5.4 Variability in vivo

Variability 

of membrane potential? 



Population
- 50 000 neurons

- 20 percent inhibitory

- randomly connected

Random firing  in a population of LIF neurons
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Neuronal Dynamics – 5.4 Membrane potential fluctuations

‘Network noise’ 

Pull out one neuron

from neuron’s point

of view:

stochastic spike arrival



0FP K t= 

Probability of spike arrival:

Neuronal Dynamics – 5.4. Stochastic Spike Arrival

Take 0t →

t

Total spike train of K presynaptic neurons

spike train

1

( ) ( )
K

f

k

k f

S t t t
=

= −

expectation

Pull out one neuron

math detour

now!



Neuronal Dynamics – 5.4. Fluctuation of input current

t

Total spike train of K presynaptic neuronsmath detour

now!



I

0I

)()(   −=

k

f
k

f

k
syn ttwtRI 

EPSC

Synaptic current pulses of shape 

)(tIR

)()( tIRuuu
dt

d syn
rest +−−=

Passive membrane

)()( 0 tIItI fluctsyn +=

Neuronal Dynamics – 5.4. Fluctuation of current/potential

→ Fluctuating potential I(t)

 

Fluctuating input current



Neuronal Dynamics – 5.4. Calculating the mean

)()(   −=
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k
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mean: assume Poisson process
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( ) ' ( ') ( ' )f

k

f

x t dt f t t t t= − −

( ) ' ( ') ( ' )f

k

f

x t dt f t t t t= − −

rate of inhomogeneous

Poisson process

( ) ' ( ') ( ')x t dt f t t t= −



Neuronal Dynamics – 5.4. Fluctuation of current/potential

I(t)

 

fluctuating input current

fluctuating potential



Neuronal Dynamics – Assignment/homework

t

( ) ' ( ') ( ' )f

k

f

u t dt f t t t t= − −

A leaky integrate-and-fire neuron receives stochastic spike 

arrival, described as a homogeneous Poisson process.

Calculate the mean membrane potential. To do so, use the 

above formula. 
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5.1 Variability of spike trains

       - experiments

5.2 Sources of Variability? 
      - Is variability equal to noise?

5.3 Three definitions of Rate code
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Crochet et al., 2011

awake mouse, freely whisking, 

Spontaneous activity in vivo

Neuronal Dynamics – 5.4 Variability in vivo

Variability 

of membrane potential? 



I

0I

)()(   −=

k

f
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f

k
syn ttwtRI 

EPSC

Synaptic current pulses of shape 

)(tIR

)()( tIRuuu
dt

d syn
rest +−−=

Passive membrane

)()( 0 tIItI fluctsyn +=

Neuronal Dynamics – 5.4b. Fluctuations of potential

→ Fluctuating potential I(t)

 

Fluctuating input current



=−=
2

)()()()()( tututututu

)(tu

)(tu

Neuronal Dynamics – 5.4b. Fluctuations of potential

Input: step + fluctuations



Neuronal Dynamics – 5.4b. Calculating autocorrelations

t

( ) ' ( ') ( ' )

' ( ') ( ')

f

k

f

x t dt f t t t t

dt f t t S t

= − −

= −





( ) ' ( ') ( ')x t dt f t t S t= −

rate of homogeneous

Poisson process

0( ) ( )x t ds f s = 

Autocorrelation

( ) ( ')x t x t =

ˆ ˆ( ) ( ) ' " ( ') ( ") ( ') ( ")x t x t dt dt f t t f t t S t S t= − − 

Mean:



0FP t= 

Probability of spike in time step:

Neuronal Dynamics – 5.4b. Autocorrelation of Poisson

t

spike train

math detour

now!

Probability of spike

in  step n AND step k

2

0 0( ) ( ') ( ') [ ]S t S t t t  = − +

Autocorrelation (continuous time)



Neuronal Dynamics – 5.4b. Fluctuation of potential

fluctuating potential
22( ) ( ) [ ( )] ( )u t u t u t u t  = −

Passive membrane
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= −
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for a passive membrane, we 

can analytically  predict the 

amplitude of membrane 

potential fluctuations

Leaky integrate-and-fire

in subthreshold regime



Neuronal Dynamics – 5.4b. Fluctuation of potential

fluctuating potential
22( ) ( ) [ ( )] ( )u t u t u t u t  = −

Passive membrane
( ) ( ' )
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k f
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u t w t t

w dt t t S t





= −

= −

 

 

for a passive membrane, we 

can analytically  predict the 

amplitude of membrane 

potential fluctuations

Leaky integrate-and-fire

in subthreshold regime

Stochastic spike arrival:



Neuronal Dynamics – 5.4b. Fluctuation of potential

Fluctuations of potential
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Neuronal Dynamics – Quiz 5.4

( ) ' ( ') ( ' )f

k

f

u t dt f t t t t a= − − +

( ) ( )f

rest

f

d
u u u q t t

dt
 = − − + −

A linear (=passive) membrane has a potential given by

Suppose the neuronal dynamics  are given by

[ ] the filter f is exponential with time constant 

[ ] the constant a is equal to the  time constant 

[ ] the constant a is equal to  
restu

[ ] the amplitue of the filter f is q

[ ] the amplitue of the filter f is 
restu



Neuronal Dynamics:
Computational Neuroscience

of Single Neurons

Week 5 – Variability and Noise:

The question of the neural code

Wulfram Gerstner

EPFL, Lausanne, Switzerland

5.1 Variability of spike trains

       - experiments

5.2 Sources of Variability? 
      - Is variability equal to noise?

5.3 Three definitions of Rate code
         - Poisson Model

5.4 Stochastic spike arrival
        - Membrane potential fluctuations

5.5. Stochastic spike firing 
         - subthreshold and superthreshold

Week 5 – part 5 : Stochastic spike firing in integrate-and-fire models
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d
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dt
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Passive membrane

)()( 0 tIItI fluctsyn +=

Neuronal Dynamics – review: Fluctuations of potential

→ Fluctuating potential

I(t)

 

Fluctuating input current
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effective noise current

u(t)

Neuronal Dynamics – 5.5. Stochastic leaky integrate-and-fire

( ) ( ) rIF u t THEN u t u= +  =

noisy input/

diffusive noise/

stochastic spike

arrival

LIF



stochastic spike arrival in I&F – interspike intervals

I
0I

ISI distribution



LIF with Diffusive noise (stochastic spike arrival)

Superthreshold vs. Subthreshold regime



u(t)

Neuronal Dynamics – 5.5. Stochastic leaky integrate-and-fire

noisy input/ diffusive noise/

stochastic spike arrival

subthreshold regime:
- firing driven by fluctuations

- broad ISI distribution

- in vivo like



Neuronal Dynamics week 5– References and Suggested Reading

Reading: W. Gerstner, W.M. Kistler, R. Naud and L. Paninski,

Neuronal Dynamics: from single neurons to networks and  models of cognition. Ch. 7,8:  Cambridge, 2014

OR W. Gerstner and W. M. Kistler, Spiking Neuron Models, Chapter 5, Cambridge, 2002

-Rieke, F., Warland, D., de Ruyter van Steveninck, R., and Bialek, W. (1996). Spikes - Exploring the neural code.  MIT Press.

-Faisal, A., Selen, L., and Wolpert, D. (2008). Noise in the nervous system. Nat. Rev. Neurosci., 9:202

-Gabbiani, F. and Koch, C. (1998). Principles of spike train analysis. In Koch, C. and Segev, I., editors,

Methods in Neuronal Modeling, chapter 9, pages 312-360. MIT press, 2nd edition.

-Softky, W. and Koch, C. (1993). The highly irregular firing pattern of cortical cells is inconsistent with temporal integration of random 

epsps.  J . Neurosci., 13:334-350. 

-Stein, R. B. (1967). Some models of neuronal variability. Biophys. J., 7:37-68. 

-Siegert, A. (1951). On the first passage time probability problem. Phys. Rev., 81:617{623.

-Konig, P., et al.  (1996). Integrator or coincidence detector? the role of the cortical neuron revisited. Trends Neurosci, 19(4):130-137. 
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