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1. Review of last week 5



Prototype

p1
Prototype

p2

interactions

Sum over all

prototypes






jiNij ppw = 1

1. Review of last week: Deterministic Hopfield model

- each prototype has black pixels

with probability 0.5

- prototypes are random patterns,

chosen once at the beginning



1. Review of last week: overlap / correlation

Overlap: similarity between

state S(t) and pattern

Correlation: overlap between

one pattern and another

Orthogonal patterns

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014),
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1. Review of last week: Deterministic Hopfield model

Input potential
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1. Hopfield model: memory retrieval (with overlaps)
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1. Hopfield model: memory retrieval (attractor model)
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1. Hopfield model: memory retrieval (attractor model)

Attractor networks:

dynamics moves network state

to a fixed point

Hopfield model:

for a small number of patterns,

states with overlap 1 

are fixed points

Aim for today:

generalize!



Quiz 1: overlap and attractor dynamics 

[ ] The overlap is maximal 

if the network state matches one of the patterns. 

[ ]  The overlap increases during memory retrieval.

[ ]  The mutual overlap of orthogonal patterns is one.

[ ]  In an attractor memory, the dynamics converges to a stable

fixed point.

[ ] In a perfect attractor memory network, the network state

moves towards one of the patterns.

[ ] In a Hopfield model with N random patterns stored in a 

network N neurons, the patterns are attractors.

[ ] In a Hopfield model with 200 random patterns stored in a 

network 1000 neurons, all fixed points have overlap one.
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2. Stochastic Hopfield model

Neurons may be noisy:

What does this mean for

attractor dynamics? 
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Interactions (1)

Dynamics (2)

( )Pr{ ( 1) 1| } [ ]i i i j ij jS t h g h g w S t + = + = =  

Random patterns

2. Stochastic Hopfield model
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2. Stochastic Hopfield model: firing probability

Pr{ ( 1) 1| }i iS t h+ = +

( )ig h
1

( ) ( )Pr{ ( 1) 1| } [ ]i i i j ij j iS t h g h g w S t g p m t 


  + = + = = =    

 )2tanh(15.0)( hhg i +=
for example:



Dynamics (2)

( )Pr{ ( 1) 1| } [ ]i i i j ij jS t h g h g w S t + = + = =  

( )Pr{ ( 1) 1| }i i iS t h g p m t 


 + = + =  

Assume that there is only overlap with pattern 17:

two groups of neurons: those that should be ‘on’ and ‘off’

2. Stochastic Hopfield model



Dynamics (2)

( )Pr{ ( 1) 1| } [ ]i i i j ij jS t h g h g w S t + = + = =  

( )Pr{ ( 1) 1| }i i iS t h g p m t 


 + = + =  

Assume that there is only overlap with pattern 17:

two groups of neurons: those that should be ‘on’ and ‘off’

( )17Pr{ ( 1) 1| }i iS t h h g m t+  + = + = =  

( )17Pr{ ( 1) 1| }i iS t h h g m t−  + = + = = − 
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2. Stochastic Hopfield model



Overlap (definition)

Suppose initial overlap with pattern 17 is 0.4;

Find equation for overlap at time (t+1),

given overlap at time (t).

Assume overlap with other patterns stays zero.

Hint: Use result from previous slide and consider 4 groups of neurons

- Those that should be ON and are ON

- Those that should be ON and are OFF

- Those that should be OFF and are ON

- Those that should be OFF and are OFF

2. Stochastic Hopfield model
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Overlap

2. Stochastic Hopfield model
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2. Stochastic Hopfield model: memory retrieval

( ) ( ) ( ) ( )17 17 17 17 172 ( 1) {1 } {1 }m t g m t g m t g m t g m t       + = − − − − + − −       
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overlap picture

Overlap: Neurons that should be ‘on’ Neurons that should be ‘off’



2. Stochastic Hopfield model = attractor model

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014),97.03 =m



2. Stochastic Hopfield model: memory retrieval

- Memory retrieval possible

with stochastic dynamics

- Fixed point at value with 

large overlap (e.g., 0.95)

- Need to check that overlap

of other patterns remains small

- Random patterns: nearly 

orthogonal but ‘noise’ term



Quiz 2: Stochastic networks and overlap equations

[ ]  The update of the overlap leads always to a fixed point with overlap m=1

[ ]  The update equation as derived here implicitly assumed 

orthogonal patterns because otherwise we would have to analyze 

overlaps  with several patterns in parallel

[ ]  The update equation as derived here requires a function 

 )2tanh(15.0)( hhg i +=
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3. Hopfield model = attractor model

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014),97.03 =m



3. Symmetric interactions: Energy picture

E If dynamics leads to downward movement:

Lyapunov function

97.03 =m 92.017 =m
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3. Symmetric interactions: Energy picture

jiij

ji

SSwE −=
,2

1 - Rewrite in terms of overlaps

- Random patterns vs. orthogonal patterns

- Random state vs. overlap state



E

3. Symmetric interactions: Energy/Lyapunov function

jiij

ji
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,2

1

Assume symmetric interaction,

Assume deterministic asynchronous update 

Claim: the energy

decreases, if neuron k changes

( 1) sgn[ ( )] sgn[ ( )]i i ij j

j

S t h t w S t+ = = 

J.J. Hopfield (1982) Neural networks and physical 

systems with emergent  collective computational abilities. 

Proc. Natl. Acad. Sci. USA 79, pp. 2554–2558



3. Symmetric interactions: Energy/Lyapunov function

jiij

ji

SSwE −=
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1 Assume symmetric interaction,

Assume deterministic asynchronous update 

Claim: 

energy  decreases, if neuron k changes

( 1) sgn[ ( )] sgn[ ( )]i i ij j

j

S t h t w S t+ = = 



3. Energy picture

energy picture historically important:

- capacity calculations

energy picture is a side-track:

- it needs symmetric interactions

energy picture is very general:

- it shows that it should be possible

to learn other patterns than

mean-zero random patterns

D.J. Amit, H. Gutfreund and H. Sompolinsky (1987) 
Information storage in neural networks with low levels of activity. 

Phys. Rev. A 35, pp. 2293–2303. 

J.J. Hopfield (1982) Neural networks and physical 

systems with emergent  collective computational abilities. 

Proc. Natl. Acad. Sci. USA 79, pp. 2554–2558



3. Energy picture

Hopfield model

special case

biology

attractor energy

(asymmetric interactions)



Quiz 3: Energy picture and Lyapunov function 

Let                                  be the energy of the Hopfield model

and                                                          the dynamics. 

[ ]  The energy picture requires random patterns with prob = 0.5 

[ ]  The energy picture requires symmetric weights

[ ]  It follows from the energy picture of the Hopfield model that the  

only fixed points are those where the overlap is exactly one

[ ] In each step, the value of a Lyapunov function decreases or stays constant

[ ] Under deterministic dynamics the above energy is a Lyapunov function
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4. Attractor memory in realistic networks

‘attractor model’: 

memory retrieval = flow to fixed point



Memory in realistic networks
-Mean activity of patterns?

-Asymmetric connections?

-Better neuron model?

-Separation of excitation/inhibition?

-Low probability of connections?

-Neural data?

4. attractor memory in realistic networks
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Random patterns +/-1 with zero mean →

50 percent of neurons should be active in each pattern

4. attractor memory with ‘balanced’ activity patterns



1 2       … Ni …

=1

=2

=3

Random patterns +/-1 with low activity (prob{black}=a<0.5) →

e.g., 10 percent of neurons should be active in each pattern

Mean activity of pattern
Some constant

4. attractor memory with ‘low’ activity patterns
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(so far: b=a=0.5)

b=0 or b=a



Random patterns +/-1 with low activity  →

e.g.10 percent of neurons should be active in each pattern

4. attractor memory with ‘low’ activity patterns

Introduce overlap

Introduce dynamics 

))(( abcw jiij −−=  



 }1,0{i

)()()( tSactm jj

j

−=   

b=0 or b=1



4. attractor memory with ‘low’ activity patterns

)]([ˆ)1( tmFtm  =+

- attractor dynamics possible:

- no need for symmetric weights

- capacity calculations possible
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5. attractor memory with spiking neurons

}1,0{)(1)( →= ttS ii 

- rewrite binary state variable:

- use low firing probability (in time)

- use low activity (across neurons)

)()( tSwth jij

j

i =

Total input to neuron i



5. attractor memory with spiking neurons

}1,0{)(1)( →= ttS ii 

- rewrite binary state variable:

)()( tSwth jij

j
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Total input to neuron i



5. attractor memory with spiking neurons

Separation of excitation/ inhibition

- rewrite weights:

)()( tSwth jij

j

i =

Total input to neuron i
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Inh1

Inh2

theta

Exc

Inh1

Inh2
Hebb-rule: 

Active together

5. Separation of excitation and inhibition
Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014)

))(( 
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Spike raster

Overlap with patterns 1 … 6 (total 90 patterns stored, a=0.1)

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014)

5. attractor memory with 8000 spiking neurons



Memory with spiking neurons
-Low activity of patterns?

-Separation of excitation and inhibition?

-Modeling with integrate-and-fire?

-Asymmetric weights 

-Low connection probability

-Neural data?

All possible

5. attractor memory with spiking neurons



Sidney 

opera
Sidney 

opera

Sidney 

opera

Human Hippocampus

Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., and Fried, I. (2005). 

Invariant visual representation by single neurons in the human brain. 

Nature, 435:1102-1107.

5. memory data (review from week 5)



Delayed Matching to Sample Task

1ssample match

1ssample match

Animal experiments

5. memory data: delayed match to sample



20

1ssample match

[Hz]

Miyashita, Y. (1988). Neuronal correlate of visual associative long-term 

memory in the primate temporal cortex. Nature, 335:817-820.

5. memory data: delayed match-to-sample



match

20

[Hz]

sample

0 1650ms

0

Rainer and Miller (2002). Timecourse of object-related neural activity in the primate

prefrontal cortex during a short-term memory task. Europ. J. Neurosci., 15:1244-1254.

5. memory data: delayed match-to-sample



Memory in realistic networks
-Mean activity of patterns?

-Asymmetric connections?

-Better neuron model?

-Separation of excitation/inhibition?

-Low probability of connections?

Attractor Memory model

- Abstract concept!

- Influential!

- General!

- Neural data?

5. attractor memory in realistic networks
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capacity in neural networks with low activity level. 

Europhys. Lett. 6, pp. 101–105.
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Recommended textbook:



The end

Reading for this week:

NEURONAL DYNAMICS

- Ch. 17.2.5 - 17.4

Cambridge Univ. Press

Documentation:

http://neuronaldynamics.epfl.ch/

Online html version available
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