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Neuronal Dynamics — 4.4. Hopf hifurcation
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Neuronal Dynamics — 4.4. Hopf hifurcation: //-curve
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Neuronal Dynamics — 4.4. Typel and Il Neuron Models
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Neuronal Dynamics — 4.4. Type | and Il Neuron Models
T
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Saddle-node bifurcation
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type | Model — constant input
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Morris-Lecar, type | Model — constant mput
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type | Model — constant input
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Type | and type Il models
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Neuronal Dynamics — 4.4h Threshold in 2dim. Neuron Models

. neuron
pulse Iinput - ~
(1) %/\
- /
Delayed spike Reduced amplitude




Neuronal Dynamics — 4.4 Bifurcations, simplifications

Bifurcations in neural modeling,
Type I/l neuron models,
Canonical simplified models

Nancy Koppell,
Bart Ermentrout,
John Rinzel,
Eugene Izhikevich
and many others
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Neuronal Dynamics — 4.4h Pulse input
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4.4h Type | model: Threshold for Puise input
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4.4h Type | model: Delayed spike initation for Puise Input
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Neuronal Dynamics — 4.4h Threshold in 2dim. Neuron Models
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FitzHugh-Nagumo Model: Hopf bifurcation
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FitzHugh-Nagumo Model - pulse input
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FitzHugh-Nagumo Model - pulse input threshold?

stimulus
du |
T = F (u,w) + RI (1) W
dt
dw
= G(Uu,w

Separation of time scales
pulse Input 7w >>7,
(t)

Stable fixed point




4.4h HtzHugh-Nagumo model: Threshold for Puise Input
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4.4h Detour: Separation fo time scales in 2dim models
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4.4h HtzHugh-Nagumo model: Threshold for Puise Input
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Neuronal Dynamics — 4.4h Threshold in 2dim. Neuron Models
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Neuronal Dynamics - 4.4 Literature

Reading: W. Gerstner, W.M. Kistler, R. Naud and L. Paninski,

Neuronal Dynamics: from single neurons to networks and

models of cognition. Chapter 4: Introduction. Cambridge Univ. Press, 2014

OR W. Gerstner and W.M. Kistler, Spiking Neuron Models, Ch.3. Cambridge 2002

OR J. Rinzel and G.B. Ermentrout, (1989). Analysis of neuronal excitability and oscillations.
In Koch, C. Segev, |., editors, Methods in neuronal modeling. MIT Press, Cambridge, MA.

Selected references.

-Ermentrout, G. B. (1996). Type | membranes, phase resetting curves, and synchrony.
Neural Computation, 8(5):979-1001.

-Fourcaud-Trocme, N., Hansel, D., van Vreeswik, C., and Brunel, N. (2003). How spike
generation mechanisms determine the neuronal response to fluctuating input.

J. Neuroscience, 23:11628-11640.

-Badel, L., Lefort, S., Berger, T., Petersen, C., Gerstner, W., and Richardson, M. (2008).
Biological Cybernetics, 99(4-5):361-370.

- E.M. Izhikevich, Dynamical Systems in Neuroscience, MIT Press (2007)



A. Threshold in a 2-dimensional neuron model with saddle-node bifurcation
| ] The voltage threshold for repetitive firing Is always the same

as the voltage threshold for pulse input.
[ ] In the regime below the saddle-node bifurcation, the voltage threshold for repetitive
firing Is given by the stable manifold of the saddle.
[ ] In the regime below the saddle-node bifurcation, the voltage threshold for repetitive
firing Is given by the middle branch of the u-nulicline.
[ ] In the regime below the saddle-node bifurcation, the voltage threshold for action
potential firing Iin response to a short pulse input Is given by the middle branch of the u-
nullcline.
[ ] In the regime below the saddle-node bifurcation, the voltage threshold for action
potential firing in response to a short pulse input is given by the stable manifold of the
saddle point.
B. Threshold in a 2-dimensional neuron model with subcritical Hopf bifurcation
| in the regime below the Dbifurcation, the voltage threshold for action potential firing In
response to a short pulse input Is given by the stable manifold of the saddle point.
| ] In the regime below the bifurcation, a voltage threshold for action potential firing In
response to a short pulse input exists only iIf 7, >>7,
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Neuronal Dynamics — 4.5. Further reduction to 1dimension

2-dimensional equation
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Neuronal Dynamics — 4.2 sparse activity in vive

Spontaneous activity in vivo
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-Spikes are rare events Crochet et al., 2011

-membrane potential fluctuates around ‘rest’

Aims of Modeling: - predict spike Initation times
- predict subthreshold voltage




Neuronal Dynamics — 4.5. Further reduction to 1dimension
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Neuronal Dynamics — 4.2. Further reduction to 1dimension
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Neuronal Dynamics - 4.5. Nonlinear Integrate-and-Fire Model

50 I | I
—-80 —70 —60 =50

u [MmV]
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Neuronal Dynamics - 4.5. Nonlinear Integrate-and-Fire Model
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Neuronal Dynamics — 4.5. Exponential Integrate-and-Fire Model

Exponential integrate-and-fire model (EIF)
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Neuronal Dynamics - 4.0 sparse activity Invivo

Spontaneous activity in vivo
awake mouse, cortex, freely whisking,
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-Spikes are rare events Crochet et al., 2011

-membrane potential fluctuates around ‘rest’

Aims of Modeling: - predict spike Initation times
- predict subthreshold voltage




Neuronal Dynamics - 4.9.How good are integrate-and-fire models:?
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Badel et al., 2008

Add adaptation and
refractoriness (week 7)

Aims: - predict spike Initation times
- predict subthreshold voltage



Neuronal Dynamics — 4.5. Exponential Integrate-and-Fire Model

Direct derivation from Hodgkin-Huxley

du
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Neuronal Dynamics — 4.5. Nonlinear Integrate-and-Fire Model

NI 2-dimensional equation
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aration of time scales
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Neuronal Dynamics — 4.5. Nonlinear Integrate-and-Fire Model

2-dimensional equation

T(;—l: = F(u,w) + RI (1)

dw
—=0G(u,w
7, —-=GUwW)

Separation of time scales

-W IS constant (If not firing)

YW+ RI()

dt \

Linear plus exponential




Neuronal Dynamics - Quiz4.5.

A. Exponential integrate-and-fire model.

The model can be derived

[ ] from a 2-dimensional model, assuming that the auxiliary variable w is constant.
[ ] from the HH model, assuming that the gating variables h and n are constant.

[ ] from the HH model, assuming that the gating variables m is constant.

[ ] from the HH model, assuming that the gating variables m Is instantaneous.

B. Reset.

[ ] In a 2-dimensional model, the auxiliary variable w Is necessary to implement a
reset of the voltage after a spike

[ ] In a nonlinear integrate-and-fire model, the auxiliary variable w is necessary to

Implement a reset of the voltage after a spike

[ ] In a nonlinear integrate-and-fire model, a reset of the voltage after a spike Is

iImplemented algorithmically/explicitly




Neuronal Dynamics — 4.5 Literature

Reading: W. Gerstner, W.M. Kistler, R. Naud and L. Paninski,

Neuronal Dynamics: from single neurons to networks and

models of cognition. Chapter 4 (Dimension Reduction and Phase Plane analysis)
Cambridge Univ. Press, 2014

OR J. Rinzel and G.B. Ermentrout, (1989). Analysis of neuronal excitability and oscillations.
In Koch, C. Segev, |., editors, Methods in neuronal modeling. MIT Press, Cambridge, MA.

Selected references.

-Ermentrout, G. B. (1996). Type | membranes, phase resetting curves, and synchrony.
Neural Computation, 8(5):979-1001.

-Fourcaud-Trocme, N., Hansel, D., van Vreeswik, C., and Brunel, N. (2003). How spike
generation mechanisms determine the neuronal response to fluctuating input.

J. Neuroscience, 23:11628-11640.

-Badel, L., Lefort, S., Berger, T., Petersen, C., Gerstner, W., and Richardson, M. (2008).
Biological Cybernetics, 99(4-5):361-370.

- E.M. Izhikevich, Dynamical Systems in Neuroscience, MIT Press (2007)



4.5. Summary: from HH to generalized integrate-and-fire

The reduction of the Hodgkin-Huxley (HH) model from 4 to 2
dimensions generates nonlinear nullclines with several intersections.

If we zoom In on the two left-most intersections the u-nullcline looks
similar to a superposition of a linear and an exponential term

Between (rare) spike events, the w-variable has always time to go back
to resting potential. Hence during spike-initiation we can consider the
w-variable as constant.

This gives rise to the exponential integrate-and-fire model

Adaptation means that for constant input the interspike intervals
Increase over time — we will add adaptation variables later

The standard HH-model shows no (or very little) adaptation

More complicated Hodgklin-Huxley type models would have additional
variables (describing other ion channels) that cause adaptation

In Integrate-and-fire models, these additional adaptation variables can
often be approximated by a linear dynamics for new variables wx
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