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Neuronal Dynamics – 4.4.  Type I and II Neuron Models
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2 dimensional Neuron Models
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FitzHugh Nagumo Model – limit cycle
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Type II Model 

constant input
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Neuronal Dynamics – 4.4.  Hopf bifurcation
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Neuronal Dynamics – 4.4.  Hopf bifurcation:  f-I -curve
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FitzHugh-Nagumo:  type II Model – Hopf bifurcation
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Neuronal Dynamics – 4.4.  Type I and II Neuron Models

Type I and   type II  models
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type I Model: 3 fixed points
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Neuronal Dynamics – 4.4.  Type I and II Neuron Models

apply constant stimulus I0

size of arrows!
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type I Model – constant input
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Morris-Lecar,  type I Model – constant input

I=0

I>Ic



type I Model – constant input
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Type I and type II  models
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Neuronal Dynamics – 4.4.  Type I and II Neuron Models
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Neuronal Dynamics – 4.4b Threshold in 2dim. Neuron Models
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Neuronal Dynamics – 4.4 Bifurcations, simplifications

Bifurcations in neural modeling,

Type I/II neuron models,

Canonical simplified models

Nancy Koppell,

Bart Ermentrout,

John Rinzel,

Eugene Izhikevich

and many others
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Neuronal Dynamics – 4.4b Pulse input
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4.4b Type I model: Pulse input



4.4b Type I model: Threshold for Pulse input

Stable manifold plays role of

‘Threshold’ (for pulse input)

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014)



4.4b Type I model: Delayed spike initation for Pulse input

Delayed spike initiation close to

‘Threshold’ (for pulse input)

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014)



Neuronal Dynamics – 4.4b Threshold in 2dim. Neuron Models
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FitzHugh-Nagumo Model: Hopf bifurcation
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FitzHugh-Nagumo Model  - pulse input
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FitzHugh-Nagumo Model  - pulse input threshold?
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4.4b FitzHugh-Nagumo model: Threshold for Pulse input

Middle branch of u-nullcline

plays role of

‘Threshold’ (for pulse input)

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014)
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Assumption:



4.4b Detour: Separation fo time scales in 2dim models

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014)
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4.4b FitzHugh-Nagumo model: Threshold for Pulse input

trajectory 

-follows u-nullcline:

-jumps between branches:  

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014)
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Assumption:
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Neuronal Dynamics – 4.4b Threshold in 2dim. Neuron Models
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Neuronal Dynamics – 4.4 Literature
Reading: W. Gerstner, W.M. Kistler, R. Naud and L. Paninski,

Neuronal Dynamics: from single neurons to networks and 

models of cognition. Chapter 4: Introduction.  Cambridge Univ. Press, 2014

OR W. Gerstner and W.M. Kistler, Spiking Neuron Models, Ch.3. Cambridge 2002

OR J. Rinzel and G.B. Ermentrout,  (1989). Analysis of neuronal excitability and oscillations. 

In Koch, C. Segev, I., editors, Methods in neuronal modeling. MIT Press, Cambridge, MA. 

Selected references.

-Ermentrout, G. B. (1996). Type I membranes, phase resetting curves, and synchrony. 

Neural Computation, 8(5):979-1001.

-Fourcaud-Trocme, N., Hansel, D., van Vreeswijk, C., and Brunel, N. (2003). How spike 

generation mechanisms determine the neuronal response to fluctuating input. 

J. Neuroscience, 23:11628-11640.

-Badel, L., Lefort, S., Berger, T., Petersen, C., Gerstner, W., and Richardson, M. (2008). 

Biological Cybernetics,  99(4-5):361-370.

- E.M. Izhikevich, Dynamical Systems in Neuroscience, MIT Press (2007)



Neuronal Dynamics – Quiz 4.6.
A. Threshold in a 2-dimensional neuron model with saddle-node bifurcation 

[ ] The voltage threshold for repetitive firing is always the same

as the voltage threshold for pulse input.

[ ] in the regime below the saddle-node bifurcation, the voltage threshold for repetitive 

firing  is given by the stable manifold of the saddle.

[ ] in the regime below the saddle-node bifurcation, the voltage threshold for repetitive 

firing  is given by the middle branch of the u-nullcline.

[ ] in the regime below the saddle-node bifurcation, the voltage threshold for action 

potential firing in response to a short pulse input is given by the middle branch of the u-

nullcline.

[ ] in the regime below the saddle-node bifurcation, the voltage threshold for action 

potential firing in response to a short pulse input is given by the stable manifold of the 

saddle point. 

B. Threshold in a 2-dimensional neuron model with subcritical Hopf bifurcation 

[ ]in the regime below the  bifurcation, the voltage threshold for action potential firing in 

response to a short pulse input is given by the stable manifold of the saddle point.

[ ] in the regime below the  bifurcation, a voltage threshold for action potential firing in 

response to a short pulse input exists only if uw  
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Neuronal Dynamics – 4.5.  Further reduction to 1 dimension

Separation of time scales
-w is nearly constant 

(most of the time)

2-dimensional equation
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Crochet et al., 2011

awake mouse, cortex, freely whisking, 

Spontaneous activity in vivo

Neuronal Dynamics – 4.2 sparse activity in vivo

-spikes are rare events

-membrane potential fluctuates around ‘rest’

Aims of Modeling: - predict spike initation times

- predict subthreshold voltage
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Neuronal Dynamics – 4.5.  Further reduction to 1 dimension

Separation of time scales

→ Flux nearly horizontal
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Hodgkin-Huxley reduced to 2dim
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Neuronal Dynamics – 4.5.  Nonlinear Integrate-and-Fire Model

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014)
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Neuronal Dynamics – 4.5.  Nonlinear Integrate-and-Fire Model

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014)
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Neuronal Dynamics – 4.5.  Exponential Integrate-and-Fire Model

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014)
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Exponential integrate-and-fire model (EIF)

linear



Crochet et al., 2011

awake mouse, cortex, freely whisking, 

Spontaneous activity in vivo

Neuronal Dynamics – 4.5 sparse activity in vivo

-spikes are rare events

-membrane potential fluctuates around ‘rest’

Aims of Modeling: - predict spike initation times

- predict subthreshold voltage



Neuronal Dynamics – 4.5.How good are integrate-and-fire models?

Aims: - predict spike initation times

- predict subthreshold voltage

Badel et al., 2008

Add adaptation and

refractoriness (week 7)



Neuronal Dynamics – 4.5.  Exponential Integrate-and-Fire Model
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Neuronal Dynamics – 4.5.  Nonlinear Integrate-and-Fire Model
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Neuronal Dynamics – 4.5.  Nonlinear Integrate-and-Fire Model

Separation of time scales

-w is  constant (if not firing) 

2-dimensional equation
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Neuronal Dynamics – Quiz 4.5.
A. Exponential integrate-and-fire model.  

The model can be derived

[ ] from a 2-dimensional model, assuming that the auxiliary variable w is constant.

[ ] from the HH model, assuming that the gating variables h and n are constant.

[ ] from the HH model, assuming that the gating variables m is constant.

[ ] from the HH model, assuming that the gating variables m is instantaneous.

B.  Reset. 

[ ] In a 2-dimensional model, the auxiliary variable w is necessary to implement a 

reset of the voltage after a spike

[ ] In a nonlinear integrate-and-fire model, the auxiliary variable w is necessary to 

implement a  reset of the voltage after a spike

[ ] In a nonlinear integrate-and-fire model,  a  reset of the voltage after a spike is 

implemented algorithmically/explicitly



Neuronal Dynamics – 4.5 Literature
Reading: W. Gerstner, W.M. Kistler, R. Naud and L. Paninski,

Neuronal Dynamics: from single neurons to networks and 

models of cognition. Chapter 4 (Dimension Reduction and Phase Plane analysis)

Cambridge Univ. Press, 2014

OR J. Rinzel and G.B. Ermentrout,  (1989). Analysis of neuronal excitability and oscillations. 

In Koch, C. Segev, I., editors, Methods in neuronal modeling. MIT Press, Cambridge, MA. 

Selected references.

-Ermentrout, G. B. (1996). Type I membranes, phase resetting curves, and synchrony. 

Neural Computation, 8(5):979-1001.

-Fourcaud-Trocme, N., Hansel, D., van Vreeswijk, C., and Brunel, N. (2003). How spike 

generation mechanisms determine the neuronal response to fluctuating input. 

J. Neuroscience, 23:11628-11640.

-Badel, L., Lefort, S., Berger, T., Petersen, C., Gerstner, W., and Richardson, M. (2008). 

Biological Cybernetics,  99(4-5):361-370.

- E.M. Izhikevich, Dynamical Systems in Neuroscience, MIT Press (2007)



4.5. Summary: from HH to generalized integrate-and-fire

- The reduction of the Hodgkin-Huxley (HH) model from 4 to 2 

dimensions generates nonlinear nullclines with several intersections. 

- If we zoom in on the two left-most intersections the u-nullcline looks 

similar to a superposition of a linear and an exponential term

- Between (rare) spike events, the w-variable has always time to go back 

to resting potential. Hence during spike-initiation we can consider the 

w-variable as constant.

- This gives rise to the exponential integrate-and-fire model

- Adaptation means that for constant input the interspike intervals 

increase over time – we will add adaptation variables later

- The standard HH-model shows no (or very little) adaptation

- More complicated Hodgklin-Huxley type models would have additional 

variables (describing other ion channels) that cause adaptation

- In integrate-and-fire models, these additional adaptation variables can 

often be approximated by a linear dynamics for new variables wk


	Slide 1: Neuronal Dynamics: Computational Neuroscience of Single Neurons
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Neuronal Dynamics: Computational Neuroscience of Single Neurons
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Neuronal Dynamics: Computational Neuroscience of Single Neurons
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44: Neuronal Dynamics – 4.5.How good are integrate-and-fire models?
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

