Week 4 — part 1 : Reduction of the Hodgkin-Huxley Model

B C'r 4.1 From Hodgkin-Huxley to 2D
B - Qverview: From 4 to 2 dimensions

- - MathDetour 1: Separation of time scales
Neuronal Dynamics: - MathDetour 2: Exgloiting similarities
Computational Neuroscience 4.2 Phase Plane Analysis
of Single Neurons - Role of nullclines
4.3 Analysis of a 2D Neuron Model
Week 4 — Reducing detail: - MathDetour 3: Stability of fixed points

4.4 Typel and Il Neuron Models
- where is the firing threshold?
Wulfram Gerstner - separation of time scales

EPFL, Lausanne, Switzerland 4.5. Nonlinear Integrate-and-fire
- from two to one dimension

Two-dimensional neuron models



Neuronal Dynamics —4.1. Review :Hougkin-Huxiey Model
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- Hodgkin-Huxley model
- Compartmental models



Neuronal Dynamics — 4.1 Review :Hodgkin-Ruxiey Model

Week 2:
Cell membrane contains
- 1on channels
- lon pumps

lons/proteln

Dendrites (week 3):
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Neuronal Dynamics - 4.1. Review :HodgKin-Huxiey Model
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Neuronal Dynamics - 4.1. Review: HotgKin-Huxiey Modek

Hodgkin and Huxley, 1952
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Neuronal Dynamics - 4.1. Overview and aims

Can we understand the dynamics of the HH model?
- mathematical principle of Action Potential generation?
- Types of neuron model (type | and I1)?
- threshold behavior?

- Reduce from 4 to 2 equations

Type | and type Il models

ramp Input/ + f-1 curve ] f-1 curve
f

constant input L
1o / ‘

lo lo




Neuronal Dynamics - 4.1. Overview and aims

Can we understand the dynamics of the HH model?

- Reduce from 4 to 2 equations

Type | and type Il models

ramp Input/ + f-l curve ] f-1 curve
f

constant input L
1o / ‘

lo lo




Neuronal Dynamics - 4.1. Overview and aims

Toward a
two-dimensional neuron model

-Reduction of Hodgkin-Huxley to 2 dimension
-step 1: separation of time scales

-step 2: exploit similarities/correlations



Neuronal Dynamics — 4.1. Reduction of Hodgkin-Huxley model

| | | stimulus
du ~ 3/\Na . 4/K\ . Aﬁleak - 1
C dt = —gpnaM h(u_ENa)_gKn (U—EK)—9|(U—E|)—I—|(t)
dm = m—m,(u) m(U) 7, (U)
dt 7. (U)
dh  h—h,(u) No(U) C
dt 7, (U) "u U
dn _ n—n,(u)
dt z.(U)

1) dynamics of m is fast - m(t) = mg(u(t))



Neuronal Dynamics — 4.1. Reduction of Hodgkin-Huxley model

| | | stimulus
du ~ 3/\Na _ ~ {K\ . J\?Ieak ~ l
Cr = InaMh(U—Ey) =g (U—Ex) =g (u—E)+1()
dm  m-—-—mgy(u) -
dt 7, (U) No(U) Tn W)
dh  h—h;(u) No(U) C
dt 7, (u) u N
dn  n—n,(U)
dt 7 (u)
1) dynamics of m are fast - m(t) = my(u(t))

2) dynamics of h and n are similar



Neuronal Dynamics — 4.1. Reduction of Hodgkin-Huxley model

StUmuius

du l
C == = —gum’h(Uu—Ey) = gcn* (U—E) =g, (u—E)+ 1 ()

2) dynamics of h and n are similar - 1—h(t) =an(t)

u




Neuronal Dynamics — 4.1. Reduction of Hodgkin-Huxley model

/I\Na Iﬁ j\l leak

du ~ ~

C=>=-0,[MOFNO () - E,) g NI UM -E) —0,u)—E)+1(t)

c‘(’j—‘t‘=—gm () (- WU~ Ep) - 9,21 (U= E) -9, (u—E) + 10

1) dynamics of m are fast - m(t) =m,(u(t))
2) dynamics of h and n are similar - 1=h() =fgmy(t)
w(t)  w(Y)




Neuronal Dynamics — 4.1. Reduction of Hodgkin-Huxley model

INa IK IIeak
du ~ 3/\ o Vj\; ~
CE:_gNa mo(u) (1_W)(U_ENa)_gK(g) (U_EK)_gl(u_El)+|(t)
d_W_ W_Wo(u)
dt ) z-eff (U)
cz—‘: = f (u(t), w(t)) + 1 (t)
dw

P (u(t), w(t))



Neuronal Dynamics — 4.1. Reduction to 2 dimensions

2-dimensional equation

c‘(’j—‘: — f(u(t), w(t)) + I (t)

dw

P (u(t), w(t))

Enables graphical analysis!

-Discussion of threshold
-Type | and I
- Repetitive firing



Neuronal Dynamics - Quiz4.1.

A- Assumptions: In order to reduce a detailed ! |, C- Separation of time scales:
We start with two equations

.compartmental neuron model to two dimensions

:We have to assume that ) % (D)
I[ ] dendrites can be approximated as passive 't |

:[] the neuron model has no dendrite dy :

1| | the neuron model has at most 2 types of ion E =—y+X" +A

‘channels

1| ] all gating variables are fast

'[1 no gating variable is fast

I[ ] gating variables fall in two groups:

' those that are fast and those that are slow
I[ ] at least one of the ion channels Is Inactivating

:[] the neuron does not generate spikes

We assume that 7, Ll 7,

In this case a reduction of dimensionality
[ ]Is not possible
| ]Is possible and the result Is

LYy nmE+ A

IB - A biophysical point model with 3 ion > dt

‘channels, each with activation and inactivation, [ ]is possible and the result is
Ihas a total number of equations equal to . ax _ %2+ A

(13 or [J4or [160r []7: []8 or more "t



Week 4 - part 1 : Separation of time scales
(PP 4.1 From Hodgkin-Huxley to 2D

EEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEE

- Qverview: From 4 to 2 dimensions
ur 1: Separation of time scales

Neuronal Dynamics: “MathDetour 2: Exploiting similarities
Computational Neuroscience 4.2 Phase Plane Analysis
of Single Neurons - role of nullclines

4.3 Analysis of a 2D Neuron Model
Week 4 - Reducing detail: - MathDetour 3: Stability of fixed points

4.4 Type | and Il Neuron Models

- where is the firing threshold?
Wulfram Gerstner - separation of time scales

EPFL, Lausanne, Switzerland 4.5. Nonlinear Integrate-and-fire
- from two to one dimension

Two-dimensional neuron models



Neuronal Dynamics - MathDetour 4.1: Separation of time scales

Two coupled differential equations

dx
Tla: & C(t)

n Y= 1)+ g

Separation of time scales
T, U 7,

Reduced 1-dimensional system

z, j—f = T (y)+g(c(t))



Neuronal Dynamics - MathDetour 4.1: Separation of time scales

Two coupled differential equations

dx
Tlaz X C(t)

Tz%: f(y)+9(x)

Separation of time scales
T, U 7,

Reduced 1-dimensional system

n = 1(y)+g(c)



Neuronal Dynamics - MathDetour 4.1: Separation of time scales

Linear differential equation 7 —=—-X+c(t)

step ‘'slow drive’



Neuronal Dynamics - MathDetour 4.1: Separation of time scales

Two differential equations

Tl% = —X+C(t)

TZ%Z—C-F'(J[)

U7y

'slow drive’




Neuronal Dynamics - MathDetour 4.1: Separation of time scales

Two coupled differential equations

2'1% = —X+ (1)

72%=—C+f(x) (t)

U1,

'slow drive’




Neuronal Dynamics — Reduction of Hodgkin-Huxiey model

| | | stimulus
du - 3/\Na - 4/K\ Aﬁleak l
C— =" OnM°h(U—Ey) ~gcn*(U-E)—g,(U—E)+ 1)
dm  m-—mgy(u) z,
dt 7, (U) No(U) Th (W
dh  h—hy(u) no(u) T, (U)
dt 7z, (u) u |
% __N—hg (u)
dt 7, (u)
dynamics of m is fast - m(t) =mg(u(t))

Fast compared to what?




Neuronal Dynamics - MathDetour 4.1: Separation of time scales

Two coupled differential equations

dx

Tlaz X+h(y)

72%: f(y)+a(x)

Separation of time scales
., 7, => x=h(y)
Reduced 1-dimensional system

r, Y= 1) +g(h(y)




Neuronal Dynamics - Quiz4.2.

A- Separation of time scales: B- Separation of time scales:
We start with two equations A channel with gating variable r, given by

dx
=—-X+Vy+I(t ar
dt y + 1(t) o r+r(u)
dy Influences the voltage
— =—y+X +A N
dt rzaz—(u—uo)JrrzA
[ 11f .U 7, then the system can be We assume that 7, U 7,

In this case a reduction of dimensionality
| ]1s not possible

| ]Is possible and the result Is
du

dy | ;
E3m y+[y+ ()] +A

[ 11f 7, U 7, then the system can be

|
|
|
|
|
|
|
|
|
|
|
|
: reduded to
|
|
|
|
|
|
|
|
|
|
|
|

reduded to 27t U-+Up + [ U A
IS possible and the result Is
71%: X+ X+ A+ 1(t) L pdr
dt _ r,—=—r+r,(U, +r°A)
| ] None of the above Is correct. dt



Week 4 — MathDetour 2: Exploiting similarities
M 4.1 From Hodgkin-Huxley to 2D

\I - Overview: From 4 to 2 dimensions

EEEEEEEEEEEEEEEEE

= \I MathDetour 1: Se aratlon of t|me scales

Neuronal Dynamics: =
ﬂﬂll!Illllatiﬂllal Nﬂlll'ﬂsciellce 4 % Phase P|ane Ana|ys|s
of Single Neurons - role of nullclines

- MathDetour 3: Stability of fixed points
Week 4 — Reducing detail: 4.3 Analysis of a 2D Neuron Model

Two-dimensional neuron models 4.4 Type | and |l Neuron Models

- where is the firing threshold?
Wulfram Gerstner - separation of time scales
EPFL, Lausanne, Switzerland 4.5. Nonlinear Integrate-and-fire

- from two to one dimension



Neuronal Dynamics — 4.1. Reduction of Hodgkin-Huxley model

Reduction of Hodgkin-Huxley

Model to 2 Dimension
-step 1.
separation of time scales
(= 4.1 and 4-Detourl)

-step 2:
exploit similarities/correlations

Now !



Neuronal Dynamics - Detour 4.2. EXploit similarities/ cnrre_latinns
|
C ‘C’j‘t’ — g,.M*h(U—E)—g.n*(U—E.)—g,(u—E)+I1()

dynamics of h and n is similar - 1—h(t) =an(t)

u




Neuronal Dynamics — Detour 4.2. Exploit similarities/correlations

dynamics of h and n are similar

1—h(t) =an(t)




Neuronal Dynamics — Detour 4.2. Exploit similarities/correlations

h | dynamics of h and n are similar

1—h(t)=an(t)
at rest




h rest

Nrest

Neuronal Dynamics — Detour 4.2. Exploit similarities/correlations

dynamics of h and n are similar

() Rotate coordinate system
(1) Suppress one coordinate
(1) Express dynamics in new
variable
1—h(t) =an(t) = w(t)
dh  h-—h,(u)

— = dw wW—w, (U)
dt 7, (U) E = - ()
d_n B n — no (U) eff

dt 7 (u)




Neuronal Dynamics — 4.1. Reduction of Hodgkin-Huxley model

du _ /I\Na _ - Ijt _ ) j\lvleak\
C = ~0ya[MOTN(E) U®) -Ey.) — 9k O U®) -Ex) —g,ut)-E)+1(t)
C o =g, My (0) (- WU~ Epy)— 0[] (U= E ) - 9,u—E) + 1)
1) dynamics of m are fast - m(t) =m,y(u(t))
2) dynamics of h and n are similar - 1-n(t) =an(t)

Y Y t
dh  h—h,(u) w( Wi

dt 7. (U) dw w—Ww, (U)

dn  n—ny(u) | dt T i (u)

dt z, (u)




Neuronal Dynamics — 4.1. Reduction of Hodgkin-Huxley model

INa IK IIeak
du S W o o
CE:_gNa mo(u) (1_W)(U_ENa)_gK(g) (U_EK)_gl(u_El)+|(t)
dw  w—w,(u)
dt - z-eff (U)
T T:I_E[J =F(u(t), w(t))+ R I(t)
S =G, W)




Neuronal Dynamics — 4.1. Reduction to 2 dimensions
2-dimensional equation

du
— =F(u,w)+RI(t
o (U, w) (t)
dw
= G(u,w

Enables graphical analysis!

-Discussion of threshold
-Repetitive firing
-Type | and ||



Neuronal Dynamics — Quiz4.3.

= |

Exploiting similarities:

A sufficient condition to replace two gating variables r,s
by a single gating variable w IS
| ] Both r and s have the same time constant (as a function of u)
| ] Both r and s have the same activation function
| ] Both r and s have the same time constant (as a function of u)
AND the same activation function
| ] Both r and s have the same time constant (as a function of u)
AND activation functions that are identical after some additive rescaling
| | Both r and s have the same time constant (as a function of u)
AND activation functions that are identical after some multiplicative
rescaling




Week 4 - part 2: Phase Plane Analysis
(P \l 4.1 From Hodgkin-Huxley to 2D

EEEEEEEEEEEEEEEEE - Overview: From 4 to 2 dimensions
- MathDetour 1: Separation of time scales

Ne“ronal Ilvnamlcs: - MathDetour 2: Exploiting similarities

Computational Neuroscience 4.2 Phase Plane Analysis
of Single Neurons - Role of nullcline

4.3 Analysis of a 2D Neuron Model

Week 4 - Reducing detail: - MathDetour 3: Stability of fixed points
Two-dimensional neuron models 4.4 Type | and |l Neuron Models
- where is the firing threshold?
Wulfram Gerstner - separation of time scales
EPFL, Lausanne, Switzerland 4.5. Nonlinear Integrate-and-fire

- from two to one dimension



Neuronal Dynamics — 4.2. Phase Plane Analysis

2-dimensional equation

stimulus

du ,,
—=F(u,w)+ RI(t
o (U, w) (t)

dw
— =G(u,
7, =G(UW)
Enables graphical analysis!
-Discussion of threshold

-Type | and I




Neuronal Dynamics — 4.1. Reduction of Hodgkin-Huxley model

/I\Na I/K\ f\J\IIeak
du ; T Wy, o 0
CE:_gNa mo(u) (1_W)(U_ENa)_gK(g) (U_EK)_gl(u_El)+|(t)
dw  w—wg(u)
dt 7., (U)
stimulus
P F (u,w) + RI (1)
dt |
rwd—WzG(u,W)

dt



Neuronal Dynamics — 4.2. Nuliclines of reduced HH model

stimulus

du "
r— =F(Uu,w)+1(t)

dt

there iIs a factor R
T d_W — G(U W) missing here
Yo dt ’ (assume R=1)
u-nullcline

w-nullcline



Neuronal Dynamics — 4.2. Nullclines of reduced HH model

—=0
dt
stimulus 1 | 71 | |
] 3 b = -
U ,.
TE — F(U W) + | (t) 5 L -
/G =0
dw = 1k _
Ty — =G (U,wW) = _/ _
dt S g
OFr—7 + au 0
| B | — =
u-nullcline G LVE=0 *m
—060 —40 =20 0 20 40
. uw [mV]
w-nullcline

Stable fixed point




Neuronal Dynamics - 4.2. FitzHugh-Nagumo Model

adu
—=F(u,w)+ RI(t
T (U, w) (t)
1
—U——U"+ RI(t
2 (t)

Tw(jj_\f[V:G(u’W):bO_l_blu_W

u-nullcline

w-nullcline



Neuronal Dynamics — 4.2. flow arrows

du
—=F(u,w)+RI(t
Gy (U, w) (t)
1 4
—U——U"+RI(t
2 (t)

rwcil—\isz(u,w) =b, +bu—w

u-nullcline

w-nullcline



Neuronal Dynamics — 4.2. flow arrows

/ . —
z_((jj_u _ F(u, W) L R (t) Stimulus 1=0 dw &5
dt W /l// dt
W
r.— =0G(U,w

Consider change in small time step

Flow on nullcline (1)=0

Flow In reginons between nullclines

Stable fixed point




Neuronal Dynamics - 4.2. FitzHugh-Nagumo Model

M
= =
ad 0
I F
= =
= «|m
) _
LL -
1 1
5 | =
3|5
T

dw

=G(u,w)=hb, +bhu—-w
Wdt ( ) 0 bl

T




Neuronal Dynamics — 4.2. Phase Plane Analysis

2-dimensional equation

stimulus

du

— = F(u,w)+RI(t
Cr (u,w) (t)
dw
= G(u,w

Enables graphical analysis!

Important role of
- nullclines
- flow arrows



Neuronal Dynamics - Quiz4.4.

A. u-Nullclines

[ ] On the u-nullcline, arrows are always vertical

[ ] On the u-nulicline, arrows point always vertically upward
[ ] On the u-nullcline, arrows are always horizontal

[ ] On the u-nullcline, arrows point always to the left

[ ] On the u-nullcline, arrows point always to the right

B. w-Nullclines

[ ] On the w-nullcline, arrows are always vertical

[ ] On the w-nullcline, arrows point always vertically upward

[ ] On the w-nullcline, arrows are always horizontal

[ ] On the w-nullcline, arrows point always to the left

[ ] On the w-nullcline, arrows point always to the right

[ ] On the w-nullcline, arrows can point in an arbitrary direction




Week 4 — part 3A: Analysis of a 2D neuron model — pulse input

R 4.1 From Hodgkin-Huxley to 2D
Neuronal Dynamics: \l4.2 Phase Plane Analysis
Computational Neuroscience - Role of nullcline
of Single Neurons

- MathDetour 3: Stability of fixed points
Week 4 - Reducing detail: 4.4 Type | and Il Neuron Models

- where is the firing threshold?
- separation of time scales

Wulfram Gerstner 4.5. Nonlinear Integrate-and-fire
EPFL, Lausanne, Switzerland - from two to one dimension

Two-dimensional neuron models



Neuronal Dynamics — 4.3. Analysis of a 2D neuron model

2-dimensional equation

stimulus

du ,,
—=F(u,w)+ RI(t
o (U, w) (t)

dw
— = G(u,
7, =G(uw)
Enables graphical analysis!
- Pulse Input

- Constant input




Neuronal Dynamics — 4.3. 2D neuron model : Pulse input

4 | \€>
1) """" | ?EUZF(U,W)-I—M h
— dt
Tl d -
— / _ \\ — ’
\_ @dtw (U, w) )

pulse Input




Neuronal Dynamics — 4.3. FitzHugh-Nagumo Model : Pulse input

du 1

Y EU W) RI(t) =u— =0’ —w+RI(t) o
(t)=0 1

dW /
7, — =G(U,w) =b, +bu—-w

dt |

. I(t)  Pulse input: jump of voltage d
pulse input PHE- JHITP : d—l: =0




Neuronal Dynamics — 4.3. FitzHugh-Nagumo Model : Pulse input

a1+ = T ~1T T n SEm | | | |
u=0] —_ w =0
2 B E N - e 3 - *'1—'"‘-———_ 2 B B
L= \. <« P, S -
B 0  — , . . --l——-._ Igl
_ . e A\ — 0F -
N R S
=t~ T :
— T = T\ _9 | l l |
—3 —2 -1 0 1 2 3 0 310 100 150 200
V] ¢ [ms]
FN model with b@ =0.9; bl =1.0 Image: Neuronal Dynamics,

. . o . Gerstner et al.,
Pulse input: jJump of voltage/initial condition Cambridge Univ. Press (2014



Neuronal Dynamics - 4.3. FizHugh-Nagumo Model

dw

Pulse input: ~ DONE! S ===0
. S dt
- jump of voltage W
- ‘new initial condition’ I()=0
- spike generation for large input pulses

constant input: y
- graphics? Lesson 4.3B! \/ |
- spikes?

- repetitive firing? Comes next du




Week 4 — part 3B: Analysis of a 2D neuron model — constant input

R 4.1 From Hodgkin-Huxley to 2D
Neuronal Dynamics: \l4.2 Phase Plane Analysis
Computational Neuroscience - Role of nullcline
of Single Neurons

- MathDetour 3: Stability of fixed points
Week 4 - Reducing detail: 4.4 Type | and Il Neuron Models

- where is the firing threshold?
- separation of time scales

Wulfram Gerstner 4.5. Nonlinear Integrate-and-fire
EPFL, Lausanne, Switzerland - from two to one dimension

Two-dimensional neuron models



Neuronal Dynamics - 4.3. FizHugh-Nagumo Model

Pulse input: Saw g4
| S dt
- jJump of voltage W
- ‘new Initial condition’ ()=0
- spike generation for large input pulses

constant input: u
- graphics? |
o Now! s

- Spikes?
- repetitive firing?




Neuronal Dynamics — 4.3. FitzHugh-Nagumo Model: Constant input

du
TE: F(U,w)+ Rl W 9dW _ 5 w-nullcline

Z'W(jj—\::V:G(U,W)ZbO-I-blU—W

Intersection point (fixed point)

-moves du _ 5

-changes Stability | dt
u-nullcline




Neuronal Dynamics — 4.3. FitzHugh-Nagumo Model: Constant input

du
at F(u,w)+RI, W 9w _ o w-nullcline

U—Tud—we RI,
3

rwcjj—\iV:G(u,W) =b, +bu—w

Intersection point (fixed point)
-moves
-changes Stabllity

u-nullcline



Neuronal Dynamics —4.3. FitzHugh- Nagumo Model constant mnut

qf L~ ¥ ¥ ¥ —r—)

i=0] < = [U=0 D
2 2\ . e 2
1 f I < 1
SoF L L o V- £
— > el .l | — 3
_1_——:--1- > —» — > | < | _1
—2 - I
—2
— T, = = T v
-3 -2 -1 2 3

FN model with b, =0.9;b, =1.0;RI, =2

constant input: u-nullcline moves
limit cycle

)

/

/

/

90

t [Ims]

l
100

Image: Neuronal Dynamics,

l
150

200

Gerstner et al.,

Cambridge Univ. Press (2014)



Neuronal Dynamics - 4.3. Limit Cycle

T+ Y T 3 | | | |
Th=0 = <« [@=0 D

2+ = ~ e - 2r -
Hezec i
Sor L Y = S I

— T, = = : | l l |
-3 -2 =1 0 1 2 3 0 50 100 150 200
u [mV] t [ms]
-unstable fixed point in 2D Image: Neuronal Dynamics,
. . . Gerstner et al.,
-bounding box with inward flow Cambridge Univ. Press (2014)

-> limit cycle (Poincare Bendixson)



Neuronal Dynamics - 4.3. Limit Cycle

W

| ,;'. /
In 2-dimensional equations, S~
a limit cycle must exist, If we can > 11=0
find a surface ’
-containing one unstable fixed point Image: Neuronal Dynamics,

: iy - Gerstner et al.,

-bounding box with inward flow Cambridge Univ. Press (2014)

-> limit cycle (Poincare Bendixson)



Neuronal Dynamics — 4.3. Analysis of a 2D neuron model

2-dimensional equation

stimulus

T‘;_‘t’: F (u,w) + RI (1)

dw
— =G(u,
7, —=G(uw)
Enables graphical analysis!
-Pulse Iinput
-> AP firing (or not)
- Constant input

- repetitive firing (or not)



Neuronal Dynamics - Quiz4.5.

A. Short current pulses. In a 2-dimensional neuron model, the effect of a delta
current pulse can be analyzed

[ ] By moving the u-nulicline vertically upward

[ ] By moving the w-nullcline vertically upward

[ ] As a potential change In the stability or number of the fixed point(s)

| ] As a new Initial condition

| ] By following the flow of arrows In the appropriate phase plane diagram

B. Constant current. In a 2-dimensional neuron model, the effect of a constant
current can be analyzed

[ ] By moving the u-nullcline vertically upward

| ] By moving the w-nullcline vertically upward

| | As a potential change In the stability or number of the fixed point(s)

[ ] As a new Initial condition

| ] By following the flow of arrows In the appropriate phase plane diagram




Week 4 — MathDetour 3: Stability of fixed points

)

M(lﬂ-q 4.1 From Hodgkin-Huxley to 2D
Neuronal Dynamics: \l4.2 Phase Plane Analysis
Gomputational Neuroscience - Role of nulicline
of Single Neurons 4.3 Analysis of a 2D Neuron Model
Week 4 - Reducing detail: 4.4 Type | and Il Neuron Models

- where is the firing threshold?
- separation of time scales

Wulfram Gerstner 4.5. Nonlinear Integrate-and-fire
EPFL, Lausanne, Switzerland - from two to one dimension

Two-dimensional neuron models



Neuronal Dynamics — Detour 4.3 : Stability of fixed points.

de—W=b0+b1u—W

dt

W dw
| dt

— o/W-nullcline

stable?

I(t)=1,

du du
i Fu,w)+Rly ¢

=0

u-nullcline



Neuronal Dynamics — 4.3 Detour. Stahility of fixed points

2-dimensional equation

stimulus

du

— = F(u,w)+RI
Td'[ ( ) 0
dw

—=0G(u,w

How to determine stability
of fixed point?



Neuronal Dynamics — 4.3 Detour. Stahility of fixed points

stimulus d—W =0
1 dt
du W
T— =au—w-+ |,
dt
dw
Tw—— =CU—W




Neuronal Dynamics — 4.3 Detour. Stahility of fixed points

du

r—=F(U,w)+RI, W
at dw _ o wonulicline
dw
fw e =G(u,w) stable?
Zoom In:

—— ()=l
// u;
au _ 4

unstable at
stable Saddle Math aerivation |,_jicline

NOW



Neuronal Dynamics — 4.3 Detour. Stahility of fixed points

T((jj_ltlz F (u,w)+RI, Fixed point at (U, W)
] At fixed point
Z'Wd—\::VZG(U,W) 0=F(uywW,)+RlI,
. 0=G(u,,
z00m in: Wos i)
X =U-—U,

y =W-=W,



Neuronal Dynamics — 4.3 Detour. Stahility of fixed points

T((jj_ltlz F (u,w)+RI, Fixed point at (Uy, W)
] At fixed point
de_\::V:G(u’W) O0=F(u,,w,)+RI,
. O:G(uo’wo)
zoom In:
X=U-U,
y=W-—-W, dx
— =Fx+F
T dt uX‘|‘ Wy {_1:13 _ FH Ffw T
Elf Gru er I

Twﬂ =G x+G,Yy
dt



Neuronal Dynamics — 4.3 Detour. Stability of fixed points
Linear matrix equation

d [ Fu, Fy
a“F \a, a, T

Search for solution
::.r::(t) = e exp()\t)

Two solution with Eigenvalues 4,4
A +A4 =F +G_
A =FG, —F G,



Neuronal Dynamics — 4.3 Detour. Stability of fixed points
Linear matrix equation

d [ F, F,
" \a, aq, )"

Search for solution

Stability requires:
A, <0 and 4 <O

a:(f) = e exp()\f) l
Two solution with Eigenvalues 4 _, 4
F+G, <0
A +A =F +G, and

S

A4 =EG, —FG, FG, -EG, >0



Neuronal Dynamics — 4.3 Detour. Stahility of fixed points

| dw
stimulus — =0




Neuronal Dynamics — 4.3 Detour. Stahility of fixed points

2-dimensional equation
du
—=Fu,w)+RI
4 dt ( ) 0

dw
—=0G(u,w
7, =G(uw)

Stability characterized
by Eigenvalues of
linearized equations

d (F, F,
a’ -\ G, G, )"



Stability analysis of 2-dimensional
eguations Is important for the
homework assignment of week 4.
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