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Week 4 – Reducing detail:

Two-dimensional neuron models
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4.1 From Hodgkin-Huxley to 2D  

       - Overview: From 4 to 2 dimensions

         - MathDetour 1: Separation of time scales

         - MathDetour 2: Exploiting similarities

4.2 Phase Plane Analysis
      - Role of nullclines

4.3 Analysis of  a 2D Neuron Model
         - MathDetour 3: Stability of fixed points

4.4 TypeI and II Neuron Models
        - where is the firing threshold?

        - separation of time scales

4.5. Nonlinear Integrate-and-fire
         - from two to one dimension

Week 4 – part 1 : Reduction of the Hodgkin-Huxley Model



Neuronal Dynamics – 4.1. Review :Hodgkin-Huxley Model
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Neuronal Dynamics – 4.1 Review :Hodgkin-Huxley Model

Dendrites (week 3):

Active processes?

action 

potential

Ca2+

Na+

K+

-70mV

Ions/proteins

Week 2:

Cell membrane contains

- ion channels

- ion pumps
assumption:

(mainly) passive

→ point neuron
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Neuronal Dynamics – 4.1. Review :Hodgkin-Huxley Model

ion pumps →concentration difference  voltage difference

K
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Neuronal Dynamics – 4.1.  Review: Hodgkin-Huxley Model

NaI KI 4 equations

= 4D system 



Type I and       type II  models
ramp input/

constant input

I0

I0 I0

ff

f-I curve f-I curve

Can we understand the dynamics of the HH model?

- mathematical principle of Action Potential generation?

- Types of neuron model (type I and II)?

- threshold behavior?

→ Reduce from 4 to 2 equations

Neuronal Dynamics – 4.1.  Overview and aims
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Toward a 

two-dimensional  neuron model

-Reduction of Hodgkin-Huxley to 2 dimension
    -step 1: separation of time scales

    -step 2: exploit similarities/correlations

Neuronal Dynamics – 4.1.  Overview and aims
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Neuronal Dynamics – 4.1.  Reduction of Hodgkin-Huxley model



3 4( ) ( ) ( ) ( )Na Na K K l l

du
C g m h u E g n u E g u E I t

dt
= − − − − − − +

stimulus

NaI KI leakI

u u

h0(u)

n0(u)
)(uh

)(um

1) dynamics of m are fast

2) dynamics of h and n are similar

))(()( 0 tumtm =

)(

)(0

u

umm

dt

dm

m

−
−=

)(

)(0

u

unn

dt

dn

n

−
−=

)(

)(0

u

uhh

dt

dh

h

−
−=

n

Neuronal Dynamics – 4.1.  Reduction of Hodgkin-Huxley model
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Neuronal Dynamics – 4.1.  Reduction of Hodgkin-Huxley model
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Neuronal Dynamics – 4.1.  Reduction to 2 dimensions
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Enables graphical analysis!

-Discussion of threshold

-Type I and II

- Repetitive firing

2-dimensional equation



Neuronal Dynamics – Quiz 4.1.
A- Assumptions: In order to reduce a detailed 

compartmental neuron model to two dimensions 

we have to assume that

[ ] dendrites can be approximated as passive

[ ] the neuron model has no dendrite

[ ] the neuron model has at most 2 types of ion 

channels

[ ] all gating variables are fast

[ ] no gating variable is fast

[ ] gating variables fall in two groups: 

those that are fast and those that are slow

[ ] at least one of the ion channels is inactivating

[ ] the neuron does not generate spikes

B - A biophysical point model with 3 ion 

channels, each with activation and inactivation, 

has a total number of equations  equal to  

[ ] 3  or  [ ] 4 or  [ ] 6 or   [ ] 7 ;  [ ] 8 or more    

C- Separation of time scales:

We start with two equations

We assume that 

In this case a reduction of dimensionality

[  ] is not possible

[  ] is possible and the result is

[  ] is possible and the result is
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Neuronal Dynamics – MathDetour 4.1: Separation of time scales
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Neuronal Dynamics – MathDetour 4.1: Separation of time scales
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Neuronal Dynamics – MathDetour 4.1: Separation of time scales
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Neuronal Dynamics – MathDetour 4.1: Separation of time scales

1

2

( )

( ) ( )

dx
x c t

dt

dc
c f x I t

dt





= − +

= − + +

Two coupled differential equations

‘slow drive’

x

c

I

1 2 



3 4( ) ( ) ( ) ( )Na Na K K l l

du
C g m h u E g n u E g u E I t

dt
= − − − − − − +

stimulus

NaI KI leakI

u u

h0(u)

n0(u)
)(uh

)(um

dynamics of m is fast ))(()( 0 tumtm =

)(

)(0

u

umm

dt

dm

m

−
−=

)(

)(0

u

unn

dt

dn

n

−
−=

)(

)(0

u

uhh

dt

dh

h

−
−=

n

Neuronal Dynamics – Reduction of Hodgkin-Huxley model

Fast compared to what?



Neuronal Dynamics – MathDetour 4.1: Separation of time scales
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Neuronal Dynamics – Quiz 4.2.
A- Separation of time scales:

We start with two equations

[  ] If              then the system can be 

reduded to 

[  ] If              then the system can be 

reduded to 

[  ] None of the above is correct.

1

2

2

( )
dx

x y I t
dt

dy
y x A

dt





= − + +

= − + +

1 2 

2

2 [ ( )]
dy

y y I t A
dt

 = − + + +

2

1 ( )
dx

x x A I t
dt

 = − + + +

2 1 

B- Separation of time scales:

A channel with gating variable r, given by

influences the voltage

We assume that 

In this case a reduction of dimensionality
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4.1 From Hodgkin-Huxley to 2D  

       - Overview: From 4 to 2 dimensions

         - MathDetour 1: Separation of time scales

         - MathDetour 2: Exploiting similarities

4.2 Phase Plane Analysis
      - role of nullclines

      - MathDetour 3: Stability of fixed points

4.3 Analysis of  a 2D Neuron Model

4.4 Type I and II Neuron Models
        - where is the firing threshold?

        - separation of time scales
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Week 4 – MathDetour 2: Exploiting similarities



Reduction of Hodgkin-Huxley 

 Model to 2 Dimension
    -step 1:

     separation of time scales

                  (→ 4.1 and 4-Detour1)

    -step 2: 

      exploit similarities/correlations

Neuronal Dynamics – 4.1.  Reduction of Hodgkin-Huxley model

Now !
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Neuronal Dynamics – Detour 4.2.  Exploit similarities/correlations



dynamics of h and n are similar
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Neuronal Dynamics – Detour 4.2.  Exploit similarities/correlations
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dynamics of h and n are similar

1 ( ) ( ) ( )h t a n t w t− = =

0

1

n

t

h(t)

n(t)nrest

hrest
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Neuronal Dynamics – 4.1.  Reduction of Hodgkin-Huxley model
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Neuronal Dynamics – 4.1.  Reduction of Hodgkin-Huxley model
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Neuronal Dynamics – 4.1.  Reduction to 2 dimensions

Enables graphical analysis!

-Discussion of threshold

-Repetitive firing

-Type I and II

2-dimensional equation
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Neuronal Dynamics – Quiz 4.3.

Exploiting similarities:

A sufficient condition to replace two gating variables r,s

by a single gating variable w is

[ ] Both r and s have the same time constant (as a function of u)

[ ] Both r and s have the same activation function

[ ] Both r and s have the same time constant (as a function of u)

AND the same activation function

[ ] Both r and s have the same time constant (as a function of u)

AND activation functions that are identical after some additive rescaling

[ ] Both r and s have the same time constant (as a function of u)

AND activation functions that are identical after some multiplicative

rescaling
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Week 4 – part 2: Phase Plane Analysis



Neuronal Dynamics – 4.2.  Phase Plane Analysis

Enables graphical analysis!
-Discussion of threshold

-Type I and II

2-dimensional equation
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Neuronal Dynamics – 4.1.  Reduction of Hodgkin-Huxley model
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Neuronal Dynamics – 4.2.  Nullclines of reduced HH model

u-nullcline

w-nullcline

there is a factor R 

missing here 

( assume R=1)
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Neuronal Dynamics – 4.2.  Nullclines of reduced HH model

u-nullcline

w-nullcline
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Neuronal Dynamics – 4.2.  flow arrows

Consider change in small time step

Flow on nullcline

Flow in reginons between nullclines
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Neuronal Dynamics – 4.2.  Phase Plane Analysis

Enables graphical analysis!

Important role of 

- nullclines

- flow arrows

2-dimensional equation
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Neuronal Dynamics – Quiz 4.4.

A.  u-Nullclines

[ ] On the u-nullcline, arrows are always vertical

[ ] On the u-nullcline, arrows point always vertically upward

[ ] On the u-nullcline, arrows are always horizontal

[ ] On the u-nullcline, arrows point always to the left

[ ] On the u-nullcline, arrows point always to the right

B. w-Nullclines

[ ] On the w-nullcline, arrows are always vertical

[ ] On the w-nullcline, arrows point always vertically upward

[ ] On the w-nullcline, arrows are always horizontal

[ ] On the w-nullcline, arrows point always to the left

[ ] On the w-nullcline, arrows point always to the right

[ ] On the w-nullcline, arrows can point in an arbitrary direction
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4.1 From Hodgkin-Huxley to 2D  

4.2 Phase Plane Analysis
      - Role of nullcline

4.3 Analysis of  a 2D Neuron Model

        - MathDetour 3: Stability of fixed points

4.4 Type I and II Neuron Models
        - where is the firing threshold?

        - separation of time scales

4.5. Nonlinear Integrate-and-fire
         - from two to one dimension

Week 4 – part 3A: Analysis of a 2D neuron model – pulse input



Neuronal Dynamics – 4.3.  Analysis of a 2D neuron model

Enables graphical analysis!
- Pulse input

- Constant input

2-dimensional equation
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pulse input

Neuronal Dynamics – 4.3.  2D neuron model : Pulse input
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Neuronal Dynamics – 4.3.  FitzHugh-Nagumo Model : Pulse input
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Pulse input: jump of voltage



Neuronal Dynamics – 4.3.  FitzHugh-Nagumo Model : Pulse input

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014Pulse input: jump of voltage/initial condition

FN model with 
0 10.9; 1.0b b= =
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Neuronal Dynamics – 4.3.  FitzHugh-Nagumo Model 

constant input: 

- graphics?

- spikes?

- repetitive firing? 

Pulse input: 

- jump of voltage

- ‘new initial condition’

- spike generation for large input pulses  

Lesson 4.3B!

…

Comes next

DONE!
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4.1 From Hodgkin-Huxley to 2D  

4.2 Phase Plane Analysis
      - Role of nullcline

4.3 Analysis of  a 2D Neuron Model

        - MathDetour 3: Stability of fixed points

4.4 Type I and II Neuron Models
        - where is the firing threshold?

        - separation of time scales

4.5. Nonlinear Integrate-and-fire
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Week 4 – part 3B:  Analysis of a 2D neuron model – constant input
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Neuronal Dynamics – 4.3.  FitzHugh-Nagumo Model 

constant input: 

- graphics?

- spikes?

- repetitive firing? 

Pulse input: 

- jump of voltage

- ‘new initial condition’

- spike generation for large input pulses  

Now!
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Neuronal Dynamics – 4.3.  FitzHugh-Nagumo Model: Constant input

0

3

0

( , )

1

3

du
F u w RI

dt

u u w RI

 = +

= − − +

0 1( , )w

dw
G u w b b u w

dt
 = = + −
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u

I(t)=I0

u-nullcline

w-nullcline

Intersection point (fixed point)

-moves

-changes Stability

Neuronal Dynamics – 4.3.  FitzHugh-Nagumo Model: Constant input

0

3

0

( , )

1

3

du
F u w RI

dt

u u w RI

 = +

= − − +

0 1( , )w

dw
G u w b bu w

dt
 = = + −



Neuronal Dynamics – 4.3.  FitzHugh-Nagumo Model : Constant input

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014)constant input: u-nullcline moves

limit cycle

FN model with 
0 1 00.9; 1.0; 2b b RI= = =



Neuronal Dynamics – 4.3.  Limit Cycle

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014)

-unstable fixed point in 2D

-bounding box with inward flow

→ limit cycle  (Poincare Bendixson)



Neuronal Dynamics – 4.3.  Limit Cycle

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014)

-containing one unstable fixed point 

-bounding box with inward flow

→ limit cycle  (Poincare Bendixson)

In 2-dimensional equations,

a limit cycle must exist, if we can

find a surface  



Neuronal Dynamics – 4.3.  Analysis of a 2D neuron model

Enables graphical analysis!
-Pulse input 

→ AP firing (or not)

- Constant input

→ repetitive firing (or not)

2-dimensional equation

( , ) ( )
du

F u w RI t
dt

 = +

stimulus

),( wuG
dt

dw
w =



Neuronal Dynamics – Quiz 4.5.
A. Short current pulses.  In a 2-dimensional neuron model, the effect of a delta 

current pulse  can be analyzed 

[ ] By moving the u-nullcline vertically upward

[ ] By moving the w-nullcline vertically upward

[ ] As a potential change in the stability or number of the fixed point(s)

[ ] As a new  initial condition

[ ] By following the flow of arrows in the appropriate phase plane diagram

B.  Constant current.  In a 2-dimensional neuron model, the effect of a constant 

current  can be analyzed 

[ ] By moving the u-nullcline vertically upward

[ ] By moving the w-nullcline vertically upward

[ ] As a potential change in the stability or number of the fixed point(s)

[ ] As a new  initial condition

[ ] By following the flow of arrows in the appropriate phase plane diagram



Neuronal Dynamics:
Computational Neuroscience

of Single Neurons

Week 4 – Reducing detail:

Two-dimensional neuron models

Wulfram Gerstner

EPFL, Lausanne, Switzerland

4.1 From Hodgkin-Huxley to 2D  

4.2 Phase Plane Analysis
      - Role of nullcline

4.3 Analysis of  a 2D Neuron Model

        - MathDetour 3: Stability of fixed points

4.4 Type I and II Neuron Models
        - where is the firing threshold?

        - separation of time scales

4.5. Nonlinear Integrate-and-fire
         - from two to one dimension

Week 4 – MathDetour 3: Stability of fixed points



0=
dt

du

0=
dt

dww

u

I(t)=I0

u-nullcline

w-nullcline

Neuronal Dynamics – Detour 4.3 : Stability of fixed points.  

0( , )
du

F u w RI
dt

 = +

0 1w

dw
b b u w

dt
 = + −

stable?



Neuronal Dynamics – 4.3 Detour.  Stability of fixed points

2-dimensional equation

0( , )
du

F u w RI
dt

 = +

stimulus

),( wuG
dt

dw
w =

How to determine stability

of fixed point?
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dt
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w

u

I(t)=I0

unstable
saddle

stable

Neuronal Dynamics – 4.3 Detour.  Stability of fixed points

0Iwau
dt

du
+−=

stimulus

wuc
dt

dw
w −=



unstable
saddle

stable

Neuronal Dynamics – 4.3 Detour.  Stability of fixed points

0=
dt

du

0=
dt

dww

u

I(t)=I0

u-nullcline

w-nullcline
0( , )

du
F u w RI

dt
 = +

( , )w

dw
G u w

dt
 = stable?

zoom in:

Math derivation

now



Neuronal Dynamics – 4.3 Detour.  Stability of fixed points

0( , )
du

F u w RI
dt

 = +

( , )w

dw
G u w

dt
 =

zoom in:

0

0

x u u

y w w

= −

= −

Fixed point at 0 0( , )u w

At fixed point 

0 0 00 ( , )F u w RI= +

0 00 ( , )G u w=



Neuronal Dynamics – 4.3 Detour.  Stability of fixed points

0( , )
du

F u w RI
dt

 = +

( , )w

dw
G u w

dt
 =

zoom in:

0

0

x u u

y w w

= −

= −

Fixed point at 0 0( , )u w

At fixed point 

0 0 00 ( , )F u w RI= +

0 00 ( , )G u w=

u w

dx
F x F y

dt
 = +

w u w

dy
G x G y

dt
 = +



Neuronal Dynamics – 4.3 Detour.  Stability of fixed points

Linear matrix equation

Search for solution

Two solution with Eigenvalues , + −

u wF G + −+ = +

u w w uF G F G + − = −



Neuronal Dynamics – 4.3 Detour.  Stability of fixed points

Linear matrix equation

Search for solution

Two solution with Eigenvalues , + −

u wF G + −+ = +

u w w uF G F G + − = −

Stability requires:

0 0and + − 

0u wF G+ 

0u w w uF G F G− 
and
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u
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unstable
saddle

stable

Neuronal Dynamics – 4.3 Detour.  Stability of fixed points

0Iwau
dt

du
+−=

stimulus

wuc
dt

dw
w −=

/+ − =



Neuronal Dynamics – 4.3 Detour.  Stability of fixed points

2-dimensional equation

0( , )
du

F u w RI
dt

 = +

),( wuG
dt

dw
w =

Stability characterized 

by Eigenvalues of 

linearized equations



Neuronal Dynamics – Assignment.

Stability analysis of 2-dimensional 

equations is important for the 

homework assignment of week 4.

0=
dt

du

0=
dt

dw

w

u

I(t)=I0
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