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LEARNING OUTCOMES 

•Solve linear one-dimensional differential equations

•Analyze two-dimensional models in the phase plane

•Develop a simplified model by separation of time scales

•Analyze connected networks in the mean-field limit

•Formulate stochastic models of biological phenomena

•Formalize biological facts into mathematical models

•Prove stability and convergence

•Apply model concepts in simulations

•Predict outcome of dynamics

•Describe neuronal phenomena

Transversal skills 

•Plan and carry out activities in a way which makes 

optimal use of available time and other resources.

•Collect data.

•Write a scientific or technical report.
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Neural Manifolds and 

Low-dimensional dynamics:

What are Neural Manifolds? 



Introduction:  low-dimensional dynamics

Flow described by small number of variables 1, … D,

Low-dimensional dynamics even during sleep/absence of input!
Image: Pezon et al. 2024Chaudhuri et al, 2019



Summary 1:

There are two different perspectives on how to interpret neuronal activity:

- The classic view since Hubel and Wiesel was to start with receptive fields. We can 

then define functional similarity between neurons as neurons with similar receptive 

fields. On the theory side, this view has led to field models where neurons are 

organized along one or several abstract axis. Functionally similar neurons have 

typically stronger (more positive) connections to each other than to functionally 

different neurons. Hence wiring reflects functional similarity. 

- The modern view is that neurons perform computational and that these computations 

can be described by a flow or dynamics in low-dimensional manifolds: Even 

though modern experiment probe the activity of hundreds of neurons simultaneously, 

we do not need 100 variables to describe the activity but only a few. On the theory this 

is similar to mean-field models or the Hopfield model. In the Hopfield model, we have 

encountered effective variables (‘overlap’) that describe the collective dynamics.

The question of today is how the two views are connected to each other and to 

topics that we have seen in this class.
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Review: Hopfield model: attractor dynamics
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Overlap (definition)

Attractor Dynamics: https://www.youtube.com/watch?v=9LjFqc2JRk4



0

rate (response to a stimulus)

cell 7

Review:  functional similarity of neurons

abstract axis: - a feature of receptive field

nearby cells (along abstract axis)

respond similarly

z
a stimulus that maximally 

excites cell 7

z1

z2

z3
orientation of rec. field: z1
horizontal placement of rec. field: z2

vertical placement of rec. field: z3

functional

characterization

of neuron

cell 5

functional similarity =

neighborhood in abstract space

Blackboard 1



Summary/review: Field equation
A population rate model in continuous space is sometimes called a field equation.

Here the variable x can be interpreted as an abstract quantity, such as the 

orientiation and location of the preferred visual stimulus: Functional similarity

In this case we may think of x as a three-dimensional vector

In the general model w(x,x’) could be an arbitrary function; but in most field equations 

it is taken as a distance-dependent function w(x-x’). Therefore connectivity is 

stronger between cells with similar ‘functional role’.

A classic choice is the Mexican-Hat function with long-range inhibition and short-range 

excitation. Note that in real neural networks, inhibition involves a separated class of 

neurons.

𝜏
𝑑

𝑑𝑡
ℎ(𝑥, 𝑡) = −ℎ(𝑥, 𝑡) + 𝑅𝐼𝑒𝑥𝑡(𝑥, 𝑡) + 𝑑න𝑤(𝑥 − 𝑥′) 𝐹(ℎ(𝑥′, 𝑡))𝑑𝑥′



- low dimensional dynamics

(e.g., flow towards fixed point/attractor dynamics)

- neurons and functional similarity

(functional similarity reflected in wiring,

wiring causes dynamics)

Summary: How can we interpret neural activity?

→Relation between the two views? Relation to known models?

How can we understand principles of neuronal activity?

Two different perspectives
D. Barack and J. Krakauer, 2021

C. Langdon and T. Engel, 2023

→ Hopfield model

→ continuum model
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Three assumptions

Each abstract axis:  a feature of receptive field

orientation of rec. field: z1
horizontal placement of rec. field: z2

functional

characterization

of neuron

functional similarity = neighborhood in abstract space

vertical placement of rec. field: z3 z1

z2

z3

Assumption 1: neurons are functionally characterized by features 



functional similarity = neighborhood in abstract space

𝑊𝑖𝑗 = 𝑤 𝒛𝒊, 𝒛𝒋

Position of neuron i in abstract space: 𝒛𝒊=(𝑧1,𝑧2,𝑧3,…)(𝒊)

Functional similarities and ‘wiring’

𝑊𝑖𝑗 =෍

𝜇

𝐷

𝐹𝑖
𝜇
𝐺𝑗
𝜇
=෍

𝜇

𝐷

𝑓𝜇 𝒛𝒊 𝑔𝜇(𝒛𝒋)

Weight of connection from j to i depends on the positions 𝒛𝒊, 𝒛𝒋:

Specific choice of weight from j to i: 𝑓𝜇 𝒛𝒊 = 𝐹𝑖
𝜇

Assumption 1:

Assumption 2:

𝑔𝜇 𝒛𝒋 = 𝐺𝑗
𝜇

Assumption 3:



Field equation in functional similarity space

𝑑

𝑑𝑡
ℎ 𝒛𝒊, 𝑡 = −

1

𝜏
ℎ 𝒛𝒊, 𝑡 +෍

𝑗

෍

𝜇

𝐷

𝑓𝜇 𝒛𝒊 𝑔𝜇 𝒛𝒋 𝜙(ℎ(𝒛𝒋, 𝑡))

generalized field equation (large number of neurons)

use weights: 𝑊𝑖𝑗 =෍

𝜇

𝐷

𝑓𝜇 𝒛𝒊 𝑔𝜇(𝒛𝒋)

𝑑

𝑑𝑡
ℎ𝑖 𝑡 = −

1

𝜏
ℎ𝑖 𝑡 +෍

𝑗

𝑊𝑖𝑗 𝜙(ℎ𝑗(𝑡))

with neuron i at position 𝒛𝒊

𝑑

𝑑𝑡
ℎ 𝒛, 𝑡 = −

1

𝜏
ℎ(𝒛, 𝑡) + ∫ 𝑑𝒛′𝜌(𝒛′) ෍

𝜇

𝐷

𝑓𝜇 𝒛 𝑔𝜇 𝒛′ 𝜙(ℎ(𝒛′, 𝑡))



Field equation and low-dimensional dynamics

𝑑

𝑑𝑡
ℎ 𝒛, 𝑡 = −

1

𝜏
ℎ(𝒛, 𝑡) + ∫ 𝑑𝒛′𝜌(𝒛′) ෍

𝜇

𝐷

𝑓𝜇 𝒛 𝑔𝜇 𝒛′ 𝜙(ℎ(𝒛′, 𝑡))

𝑑

𝑑𝑡
ℎ 𝒛, 𝑡 = −

1

𝜏
ℎ(𝒛, 𝑡) +෍

𝜇

𝐷

𝑓𝜇 𝒛 𝛼𝜇 𝑡

D ‘basis functions’

Idea: write 
ℎ 𝒛, 𝑡 =෍

𝜇

𝐷

𝑓𝜇 𝒛 𝜅𝜇 𝑡

projection onto basis f.

coefficient

𝛼𝜇(𝑡)



Field equation and low-dimensional dynamics

Idea: write 
ℎ 𝒛, 𝑡 =෍

𝜇

𝐷

𝑓𝜇 𝒛 𝜅𝜇 𝑡

𝑑

𝑑𝑡
𝜅𝜇 𝑡 = −

1

𝜏
𝜅𝜇 𝑡 + ∫ 𝑑𝒛𝜌(𝒛)𝑔𝜇 𝒛 𝜙(෍

𝜈

𝐷

𝑓𝜈 𝒛 𝜅𝜈 𝑡 )

→yields D coupled equations

𝜙(ℎ 𝒛, 𝑡 )

→ activity of all N neurons (N>>1) is described by D equations

in recurrent network (without external input)



To generate low-dimensional dynamics in heterogeneous

networks of neurons, three ingredients are important:

(i) neurons characterized by abstract positions z 

representing functional similarity

(ii) Weight matrix depends on z and z’

(iii) Weight matrix is of low rank: outer-product of rank D

Summary 3:  low-dimensional dynamics

Result: - field model for N to infinity

- small number D<<N of variables describe dynamics



Exercise at 11h15



Examples of low-dimensional dynamics:
- Visual Cortex Model

- Ring model (with sinusoidal coupling)

- Hopfield model

- Decision making



Simulation of 3 populations of spiking neurons, unbiased strong input

X.J. Wang, 2002

NEURON

iew

eiw

iew

Popul.1 

Popul. 2 

stimulus

Review: Decisions in populations of neurons: simulation 

)(1 tA

)(2 tA



Phase plane
01 =h

dt
d

extext hh 21 8.0 ==

symmetric solution exists, but 

    → saddle point

    → decision must be taken

2 asymmetric stable solutions

Review. Theory of decision dynamics: unbiased strong 

With unbiased input, there is a minimal input strength where

the (single) stable solution turns into a saddle



Example :  low-dimensional dynamics in decision making

Task: Mante, … Newsome 2014

Model of 2-dim dynamics

- Mante, … Newsome 2014

- Mastrogiuseppe, Ostojic, 2018

Context-dependent decision making

Idea: - design fixed-point structure in D-dim. decision space                    

- embedded in N-dimensional neuronal space



Example:  low-dimensional dynamics in decision making

Two different spiking neuron models, similar dynamics



Example 2:  low-dimensional dynamics in decision making

Two different spiking neuron models, similar dynamics

uniform in 1d, ring

uniform in 2d, square

Flow in 2 dimensions:

1st axis: color

2nd axis: motion

Flow pattern depends 

on context input



Summary 4: Task of context-dependent decision making (Mante et al.)

Patterns of dots move on a screen. Dots have two characteristic features, i.e. color (green or 

magenta) and motion (movement up or down). A monkey watches the dot pattern. An additional 

context input tells the monkey which of the two features he should consider, color or motion.

After a go-cue, the monkey has to respond positively if the majority of the dots move upwards 

(for motion context) or if the majority of dots is green (color context).

Simulations of a model with thousands of neurons can reproduce this behavior. A theoretical 

model implements a low-dimensional manifold as follows.

(i) If no context cue is given, then  there is a single fixed point. The monkey does not move.

(ii) If color context is given, then there are two fixed points at two different horizontal positions. 

The one to the left corresponds to color=green.

(iii) If motion context is given, then there are two fixed points at two different vertical positions.

The one on top corresponds to motion=upward.

The model can be implemented with the formalism of outer-product matrix as described starting 

from two different layouts of functional similarity in the z-space: either a one-dimensional ring 

model (blue model), or a two-dimensional square (orange model). Both models generate the 

same trajectories in the manifold and both lead to a valid choice readout.



Summary 4, Mante task, continued.  

To extract the similarity space (embeddings of neurons in the z-space), one can use the fact that 

functionally similar neurons generate very similar time-dependent signals r(t).

Therefore the similarity becomes visible if we plot the time-series r(t) of each neuron (= one row 

of the experimental data matrix) in some high-dimensional space: similar neurons will be 

neighbors.

The simplest way of doing this would be to cut the time series in K distinct intervals, and plot 

neurons as point in K-dimensional space. However, any other preprocessing tool that takes the 

time series and transforms it into K values can be used as well.

Hence:

if you plot the columns (rate vector) of the data matrix in the N-dimension space as a function of 

time , you can extract the low-dimensional manifold.

If you plot the rows (time series for each neuron) in the K-dimensional space as a function of 

neurons (1 neuron = 1 point), then you can extract the similarity of neurons in the z-space.

Importantly, different implementations in z-space can give rise to qualitatively identical low-

dimension trajectories in the manifold: trajectory (1(t),2(t)|context)
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5.   From Spikes to Rates
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Low-dimensional dynamics:



Correlations between two neurons: low-rank weight matrix

𝑤𝑖𝑗 =
1

𝑁
෍

𝜇

𝑃

𝜉𝑖
𝜇
𝜉𝑗
𝜇

𝑃 = 0.0001 𝑁

Neurons become uncorrelated for  𝑃 → ∞; 𝑁 → ∞;
𝑃

𝑁
→ 0

𝜉𝑗
𝜇
 are Gaussian distributed

→ no duplicate neurons

𝑒. 𝑔. 𝑃 = 𝑁1/3

P=100 in

1 Mio 

neurons

V. Schmutz, J. Brea, W. Gerstner (2025) Emergent rate-based dynamics in 

duplicate-free populations of spiking neurons

 Physical Review Letters, 134:018401

𝑁 = 106𝑁 = 106

low rank modelring model



Quiz:  Hopfield model –

Are  neurons correlated or uncorrelated for large N?

We have stored P binary patterns in a networks of N neurons using 

The standard weight matrix  

The number of neurons N  is (much) larger than the number  P. 

[ ] There are at most  P different ‘types of neuron’ so that if

N>P neurons can become correlated.

[ ] There are at most 𝑃3 different ‘types of neuron’ so that if

𝑁 > 𝑃3 neurons can become correlated.

[ ] There are at most 2𝑃 different ‘types of neuron’ so that if

𝑁 > 2𝑃 neurons can become correlated.

𝑤𝑖𝑗 =
1

𝑁
෍

𝜇

𝑃

𝜉𝑖
𝜇
𝜉𝑗
𝜇

[ ]

[ ]

[x]



Distance between potential in  SNN  (spikes) and RNN (rates)

bound for small 

V. Schmutz, J. Brea, W. Gerstner (2025) Emergent rate-based dynamics in 

duplicate-free populations of spiking neurons Phys.Rev. Lett. 134:018401

P=𝑁1/3

fixed 𝑃   while 𝑁 → ∞:   correlated neurons (duplicates, e.g. ring model) 

𝑃 = 𝛼𝑁 while 𝑁 → ∞:  uncorrelated neurons (no duplicates) 

𝑃 = 𝑁1/3 while 𝑁 → ∞:  uncorrelated neurons (no duplicates) 

𝑃 = 𝛼𝑁 while 𝑁 → ∞:  distance Δ𝑁
𝑟𝑒𝑐 ∝ √𝛼   finite!                  SNN ≠  RNN

𝑃 = 𝑁1/3 while 𝑁 → ∞:  distance Δ𝑁
𝑟𝑒𝑐 ∝ 𝛼 = 1/𝑁1/3 SNN → RNN

𝛼 = 𝑃/𝑁



Summary Rate coding with 

instantaneous time-dependent rates

is possible in network of spiking neurons even though 

not a single pair of neurons is correlated (no duplicates)

→ completely heterogeneous population

→ no spatial averaging

→ no temporal averaging

Rather:  low-rank weight matrix

→ low-dimensional network-input to each neuron

→ neural activity lives in a P-dimensional manifold

→ 𝑒. 𝑔. 𝑃 = 𝑁1/3

→ P=100-dimensional activity in 1 Mio neurons
V. Schmutz, J. Brea, W. Gerstner (2025) Emergent rate-based dynamics in 

duplicate-free populations of spiking neurons Phys.Rev. Lett. 134:018401

SNN→ RNN RNN



Conclusions

- SNN → RNN  without averaging!

- rather ‘loose’ conditions

- rank P can be ‘relatively large’

V. Schmutz, J. Brea, W. Gerstner (2025) Emergent rate-based 

dynamics in duplicate-free populations of spiking neurons 

Phys.Rev. Lett. 134:018401



Is low-rank connectivity a strange assumption? 

1) “Neurons have receptive fields and wiring patterns:

is a low-rank model realistic AT ALL?”

Answer: All standard models of cortex are dominated 

by a low-rank connectivity matrix

Answer: rank P weight matrix (outer product matrix) always 

generate  P-dimensional dynamics (→neural manifolds)

Mastrogiuseppe, F., Ostojic, S.: Linking connectivity, dynamics, and computations in low-rank recurrent neural 
networks. Neuron 99(3), 609–62329 (2018)

Barack, D.L., Krakauer, J.W.: Two views on the cognitive brain.  Nat. Rev. Neurosc. (2021)

Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nat. Rev. 

Neurosci. (2023)

2) “How are low-rank networks related to low-dim. dynamics?”

Pezon, L., Schmutz, V, Gerstner, W. (2024), Linking Neural Manifolds  to Principles of Circuit Structure in Recurrent 

Networks  bioRxiv doi: https://doi.org/10.1101/2024.02.28.582565

https://doi.org/10.1101/2024.02.28.582565


Written Exam (70%)

You can bring 1 sheet A5 (double-sided) of handwritten notes.

(no calculator, no textbook, no phone)

Exam is orthogonal to miniproject.

- Look at written exercises

- Look at exams from previous years
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I wish you Good Luck and Great Success

for the Written Examv
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