Reading for this Lecture: |
NEURONAL DYNAMICS fifissimt

Cambridge Univ. Press |

N. Brunel (2000) Dynamics of sparsely connected networks of excitatory and inhibitory
neurons. J. Computational Neuroscience 8, pp. 183-208

D. Nykamp and D. Tranchina (2000) A population density approach that facilitates
large-scale modeling of neural networks: analysis and application to orientation
tuning. J. Computational Neuroscience 8, pp. 19-50
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Computational Neuroscience: Neuronal Dynamics

1. What are Neural Manifolds?

- experimental observations

week 14 —-Neural Manifolds and

Low-dimensional dynamics 2. Two views of Neural Activity
- computing (Hopfield model)
- neural circuits (field model)

Neuronal

Wulfram Gerstner
EPFL, Lausanne, Switzerland

3. Low-dimensional dynamics

- formalism and assumption
- dynamics

Cambridge Univ. Press

4. Examples of low-dim dynamics

Lecture 15 of video series - context-dependent decision making
https://lcnwww.epfl.ch/gerstner/NeuronalDynamics-MOOCall.nhtmi



Gomputational Neuroscience: Neuronal Dynamics

Written Exam (70%) - Select 1 Miniproject,

C. 0 (out of a list of 2)
T m'n'prO_JeCt (30%) - Perform task in teams of 2
- 5 credits

Neuronal
: & 1
* e Dynamlcs'

Textbook: e
http://neuronaldynamics.epfl.ch/ [l

Video:
https://lcnwww.epfl.ch/gerstner/NeuronalDynamics-MOOCall.nhtml

Miniproject in 2025: two variations of Hopfield model



https://lcnwww.epfl.ch/gerstner/NeuronalDynamics-MOOC1.html

Gomputational Neuroscience: Neuronal Dynamics

Written Exam (70%)

You can bring 1 sheet A5 (double-sided) of handwritten notes.
(no calculator, no textbook, no phone)

Exam Is orthogonal to miniproject.
- Look at written exercises
- Look at exams from previous years



LEARNING OUTCOMES

*Solve linear one-dimensional differential equations
*Analyze two-dimensional models in the phase plane
*Develop a simplified model by separation of time scales
*Analyze connected networks in the mean-field limit
Formulate stochastic models of biological phenomena
*Formalize biological facts into mathematical models
*Prove stability and convergence

*Apply model concepts In simulations

*Predict outcome of dynamics

*Describe neuronal phenomena

Transversal skills

Plan and carry out activities in a way which makes
optimal use of available time and other resources.
Collect data.

*\Write a scientific or technical report.
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AN

-Poisson process
-renewal process
-Ornstein-Uhlenbeck

process

-escape noise
-membrane pot. density
-Focker-Planck eq.



LEARNING OUTCOMES

*Solve linear one-dimensional differential equations
*Analyze two-dimensional models in the phase plane
*Develop a simplified model by separation of time scales
Analyze connected networks in the mean-field limit
Formulate stochastic models of biological phenomena
*Formalize biological facts into mathematical models
*Prove stabllity and convergence

*Apply model concepts In simulations

*Predict outcome of dynamics

*Describe neuronal phenomena

Transversal skills

Plan and carry out activities in a way which makes
optimal use of available time and other resources.
Collect data.

*\Write a scientific or technical report.

VAN

-averaging
-coupled networks
-Focker-Planck eq.
-low-rank networks
-overlaps
-macroscopic

network dynamics

-competitive dynamics
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Computational Neuroscience: Neuronal Dynamics

1. What are Neural Manifolds?

Neural Manifolds and

Low-dimensional dynamics: - experimental observations

What are Neural Manifolds? 2. Two views of Neural Activity

- computing (Hopfield model)
- neural circuits (field model)

3. Low-dimensional dynamics

— - formalism and assumption

Pynarmics - dvnamics
Wulfram Gerstner [ y

EPFL, Lausanne, Switzerland

Cambridge Univ. Press




Introduction: low-dimensional dynamics

computations are described by collective dynamics in the manifold

Ex: motor cortex (monkey)

ax_is 2

collective dynamics
BN N 7,

Flow described by small number of variables «;, ... «o,

Low-dimensional dynamics even during sleep/absence of input!

Chaudhuri et al, 2019 Image: Pezon et al. 2024



Summary 1:
There are two different perspectives on how to interpret neuronal activity:

- The classic view since Hubel and Wiesel was to start with receptive fields. We can
then define functional similarity between neurons as neurons with similar receptive
fields. On the theory side, this view has led to field models where neurons are
organized along one or several abstract axis. Functionally similar neurons have
typically stronger (more positive) connections to each other than to functionally
different neurons. Hence wiring reflects functional similarity.

- The modern view Is that neurons perform computational and that these computations
can be described by a flow or dynamics in low-dimensional manifolds: Even
though modern experiment probe the activity of hundreds of neurons simultaneously,
we do not need 100 variables to describe the activity but only a few. On the theory this
IS similar to mean-field models or the Hopfield model. In the Hopfield model, we have
encountered effective variables (‘overlap’) that describe the collective dynamics.

The question of today Is how the two views are connected to each other and to
topics that we have seen In this class.



Computational Neuroscience: Neuronal Dynamics cPrL

1. What are Neural Manifolds?

- experimental observations
week 14 —Neural Manifolds and

Low-dimensional dynamics 2. Two views of Neural Activity
- computing (Hopfield model)

- neural circuits (field model)

3. Low-dimensional dynamics

- formalism and assumption
- dynamics

4. Examples of low-dim dynamics
- context-dependent decision making



Review: Hopfield model: attractor dynamics

Overlap (definition)
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Attractor Dynamics: https://www.youtube.com/watch?v=9LjFgc2JRk4



Review: functional similarity of neurons

- : . _ (ZsI
functional orientation of rec. field: z;
L : : Z2
characterization | horizontal placement of rec. field: z: /&-—

f ' |
of neuron vertical placement of rec. field: z; 7 ,
- Ji

rate (response to a stimulus) functional similarity =
cell 7 neighborhood In abstract space

nearby cells (along abstract axis)
cell 5@ W respond similarly

|

0 Z
a stimulus that maximally
excites cell 7

. abstract axis: - a feature of receptive field



Summary/review: Field equation

A population rate model In continuous space Is sometimes called a field equation.

. h(x,t) = —h(x,t) + RI¢*'(x,t) + d fw(x —x)F(h(x',t))dx’

Ydt

Here the variable x can be interpreted as an abstract guantity, such as the
orientiation and location of the preferred visual stimulus: Functional similarity

In this case we may think of x as a three-dimensional vector

In the general model w(x,x’) could be an arbitrary function; but in most field equations
It IS taken as a distance-dependent function w(x-x’). Therefore connectivity Is
stronger between cells with similar ‘functional role’.

A classic choice Is the Mexican-Hat function with long-range inhibition and short-range
excitation. Note that in real neural networks, inhibition involves a separated class of

neurons.



Summary: How can we interpret neural activity?

How can we understand principles of neuronal activity?
D. Barack and J. Krakauer, 2021

Two different perspectives C. Langdon and T. Engel, 2023

- low dimensional dynamics -> Hopfield model
s U flowtewardsfixed point/attractor dynamics)

- continuum model

neurons and functional similarity
Tetionat-simitarty-reflected in wiring,
wiring causes dynamics)

-2 Relation between the two views? Relation to known models?
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- experimental observations
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- computing (Hopfield model)
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3. Low-dimensional dynamics
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- dynamics
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- context-dependent decision making



Three assumptions

Assumption 1: neurons are functionally characterized by features

Z3,
functional orientation of rec. field: z -

L : : O
characterization | horizontal placement of rec. field: z: /

o neuror vertical placement of rec. field: z; o253

®

Each abstract axis: a feature of receptive field

functional similarity = neighborhood in abstract space



functional similarity = neighborhood in abstract space

Assumption 1:
Position of neuron i In abstract space: z;=(z; z, z3 ) (i)

Assumption 2:
Welight of connection from | to | depends on the positions z;, z;:

i
Wij = W(Zv )

Assumption 3:
Specific choice of weight from j to I:

D D
— z Fiu Gjﬂ — zfu(zi)gu(zj)
u u




Field equation in functional similarity space

d 1
—hi(t) = == hy(® +2Wl, b (hy ()

dt
Zf (i) 9u(2))

use weights: Wi;

d
© h(z,t) = —~h(z, 1 ) Zf,le)gu( 1) & (h(z;, 1))

R S N

d

—oh(z,t) = ——h(z,t) + [ dZ'p(z') EfH(Z)gu(Z’) b(h(Z, 1))
U

generalized field equation (large number of neurons)




Field equation and low-dimensional dynamics

D

d 1

—h(z,0) = ——h(z,) + [ dZp(z) ) [u(Dg,(z) $(h(Z, 1))
u

dt | | | ,

\;»
oy (t)

D
d 1
ah(z’ t) — —;h(z, t) + Eflu(z)a,u(t')\
U .
\ coefficient

D ‘basis functions’

ldea: write

D
h(z,t) = 2 fu (@)K, (t)
u

N projection onto basis f.



Field equation and low-dimensional dynamics

|dea: write

D
h(z,t) = Z £, (D1, ()

-—>vields D coupled equatlons
d
(D) =~ K, (O + ] dzp(z)gu(z)qb(Z fo(@e, (1) )

\_Y_I

¢(h(z, 1))

-> activity of all N neurons (N>>1) Is described by D equations
IN recurrent network (without external input)



simmary 3: low-dimensional dynamics

To generate low-dimensional dynamics in heterogeneous
networks of neurons, three ingredients are important:

(1) neurons characterized by abstract positions z
representing functional similarity

(1) Weight matrix depends on z and z

(1) Weight matrix 1s of low rank: outer-product of rank D

Result: - fleld model for N to Infinity
- small number D<<N of variables describe dynamics



Exercise at 11h15

d 1 b
FW z)=—_h(t,z) +J A D Fu(2)gu(2)b(h(t, 2"))p(z")d2" (3)
)

As a field model, this is an infinite-dimensional dynamical system. Yet, due to the particular form of the
connectivity in Eq.(2), it can be reduced to a D-dimensional description. The goal of this exercise is to
derive the hidden D-dimensional dynamics.

In this exercise, we assume that the functions f,, are orthonormal:

/ fulz)fu(z)p(z)dz = 6,, = {1 if p = v, and 0 otherwise} (4)
1%

1.1 Assume that the field A(f,z) is given by a linear combination of the functions f,, with time-
dependent coefficients #, (%) (= 1,...,D); that is:

D
Z Z)ku(t (

What is the expression of each coefficient x, in terms of the field A(t, z)?

o
R

Hint: compute the projection of the field on the function f,,: [, fu(2)h(t.z)p(z)dz.

1.2 We are now interested in the fixed points of Eq.(3). Find a closed-form expression solved by the
coefficients x,, in the steady-state.

Hint: use Eq.(5) to replace the field with the variables .

1.3 Starting from the field dynamics of Eq.(3), derive a closed-form expression for the dynamics of the
coefficients x,.

Hint: use Eq.(5) to compute the time derivative of the variables #,(f).
1.4 Consider that, at initial time ¢ = 0, the field is a linear combination of the functions f,, plus an
additional term:

h(t =0, 2) pr )i (0) + Ah(2)

where ft Ah(z)fu(z)p(z)dz = 0, for all p. What are the dynamics of Ah?7 Why is Eq.(5) a good
assumption?

1.5 Consider now that the network receives an external input, given by an additional term in Eq.(3):

Ie*ct Z f“

What are the dynamics of the coefficients x, now? Can the external input affect the fixed points?




Examples of low-dimensional dynamics:
- Visual Cortex Model

- Ring model (with sinusoidal coupling)

- Hopfield model

- Decision making
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Review. Theory of decision dynamics: unbiased strong

Phase plane

ext _ ext
hy =0.8=h;

symmetric solution exists, but
- saddle point

-> decision must be taken
2 asymmetric stable solutions

With unbiased input, there I1s a minimal input strength where
the (single) stable solution turns into a saddle



Example : low-dimensional dynamics In decision making

Context-dependent decision making

Task setup:
color context:
- 2 sensory inputs (color & motion) COIOT ™ —
motion wwwrt—-- Y \ | T sgn(color)
- binary context input SN Y _— —

motion context:

input output

- the network must output the sign of
the specified sensory feature

Task: Mante, ... Newsome 2014

... solved by 2-dimensional collective dynamics.

Model of 2-dim dynamics
- Mante, ... Newsome 2014

- Mastrogiuseppe, Ostojic, 2018




Example: low-dimensional dynamics In decision making

Two different spiking neuron models, similar dynamics

model of context-dependent decision-making

Population activity

9 Similar collective dynamics The networks’ outputs are similar
g
= “‘motion” axis
o '
= projection on _~ choice readout
v 1 | 1.0 | ~
c relevant axes
~ o5 color context
Cf:'“*" a2 = — motion context
MOLION yywyrg - —
M, | —— 2 0.0-
input N g—— " o
M.I-“ _ _ i T - S T 0.5 - ; .
context “color” axis = 727 motion input |
< 1| color input
% -1.0 A
£ R e 0 250 500 750 1000 1250 1500 1750 2000
c y . | time [ms]
E o |
2 0 e !
C PR e Soleus s
A AR e e T one point = one time step
1 i A e

0 50 100 150 200 250
time [ms]



Example 2: low-dimensional dynamics in decision making

Two different spiking neuron models, similar dynamics

COlOr wpstd -

motion W"iw ;
iINnput
context W

Flow In 2 dimensions:

1St axis: color

2"d axis: motion

Flow pattern depends
on context Input

Circuit structure

ring (d = 1)
Zi \27r
<]

uniform in 1d, ring

plane (d = 2)

uniform In 2d, square

e S

"~ lcolor context motion context

? I S8\ VW LT S >
(motion) : ST IO /% ‘_;) E ——
s P TN \/Z e ‘ 37 -
——— : : = Sl P AED / —>— , = —
K’z (color) 0 %5 — ® = 1= 0 _. 9 =~ ‘};_ =
o _ /| v | 1 ‘ AR - _—P — e
85 oA MO L AL TTIY 4 AR 7 e
e A IRE SRS ‘o ' Al > gy N "A'
-2 . o/t '-ﬁ.;& WL‘J.;'::Q
-2 0 0 2 =2 0 2




Summary 4: Task of context-dependent decision making (Mante et al.)

Patterns of dots move on a screen. Dots have two characteristic features, 1.e. color (green or
magenta) and motion (movement up or down). A monkey watches the dot pattern. An additional
context input tells the monkey which of the two features he should consider, color or motion.

After a go-cue, the monkey has to respond positively if the majority of the dots move upwards
(for motion context) or If the majority of dots Is green (color context).

Simulations of a model with thousands of neurons can reproduce this behavior. A theoretical

model implements a low-dimensional manifold as follows.

() If no context cue Is given, then there Is a single fixed point. The monkey does not move.

(1) If color context is given, then there are two fixed points at two different horizontal positions.
The one to the left corresponds to color=green.

(1) If motion context Is given, then there are two fixed points at two different vertical positions.
The one on top corresponds to motion=upward.

The model can be implemented with the formalism of outer-product matrix as described starting
from two different layouts of functional similarity in the z-space: either a one-dimensional ring
model (blue model), or a two-dimensional square (orange model). Both models generate the
same trajectories in the manifold and both lead to a valid choice readout.



Summary 4, Mante task, continued.

To extract the similarity space (embeddings of neurons Iin the z-space), one can use the fact that
functionally similar neurons generate very similar time-dependent signals r(t).

Therefore the similarity becomes visible if we plot the time-series r(t) of each neuron (= one row
of the experimental data matrix) in some high-dimensional space: similar neurons will be
neighbors.

The simplest way of doing this would be to cut the time series In K distinct intervals, and plot
neurons as point in K-dimensional space. However, any other preprocessing tool that takes the
time series and transforms it into K values can be used as well.

Hence:
If you plot the columns (rate vector) of the data matrix in the N-dimension space as a function of
time , you can extract the low-dimensional manifold.

If you plot the rows (time series for each neuron) in the K-dimensional space as a function of
neurons (1 neuron = 1 point), then you can extract the similarity of neurons in the z-space.

Importantly, different implementations in z-space can give rise to qualitatively identical low-
dimension trajectories in the manifold:  trajectory (ki(t),k:(t)|context)
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5. From Spikes to Rates




Correlations between two neurons: low-rank weight matrix

(a) rilng model
4
N = 10° — Simulation
3 = Theory

Density
o

®)  low rank model P =0.0001N
: 1 F .
N = 10° — Simulation P :1003 \
= Theory : o
) 3 1 Mio — 10
neurons 0T
2 r _1[}5.5

—10

1 F | | J
D|_ I |
—1 () Il

P
1
— i : .
Wij = szi S fj‘.‘ are Gaussian distributed
u

5.25
=

P

Neurons become uncorrelated for P » c: N >00: — >0

e.g. P =N/3

N

V. Schmutz, J. Brea, W. Gerstner (2025) Emergent rate-based dynamics in

9 n O d U p I | Ca.te ﬂ eU rO n S duplicate-free populations of spiking neurons

Physical Review Letters, 134:018401



Quiz: Hopfield model —
Are neurons correlated or uncorrelated for large N?

We have stored P binary patterns in a networks of N neurons using
The standard weight matrix 1 <
Wij = WZ & &

The number of neurons N Is (much) Iﬁrger than the number P.
| ] There are at most P different ‘types of neuron’ so that if
N>P neurons can become correlated.
[ ] There are at most P? different ‘types of neuron’ so that if
N > P3 neurons can become correlated.
[ ] There are at most 2° different ‘types of neuron’ so that if
N > 2" neurons can become correlated.



fixed P while N - c: correlated neurons (duplicates, e.g. ring model)
P =aN while N - co: uncorrelated neurons (no duplicates)
P = N3 while N - o: uncorrelated neurons (no duplicates)

10" ¢
p— 100
— Y p= 200
-
S O p= 400 a=P/N
-——- “;*i? /o | =——Dbound for small «
o V. Schmutz, J. Brea, W. Gerstner (2025) Emergent rate-based dynamics in
duplicate-free populations of spiking neurons Phys.Rev. Lett. 134:018401
P =aN while N - oo: distance AW < Va finite! SNN # RNN

P = N3 while N - oo: distance A€ « /a = 1/N1/3 SNN - RNN



SUmmary Rate coding with
Instantaneous time-dependent rates
IS possible In network of spiking neurons even though

not a single pair of neurons Is correlated (no duplicates)

- completely heterogeneous population
-> Nno spatial averaging

- no temporal averaging SNN =2 RNN

Rather: low-rank weight matrix

- low-dimensional network-input to each neuron
-> neural activity lives in a P-dimensional manifold
> e.g. P = N3

- P=100-dimensional activity in 1 Mio neurons

V. Schmutz, J. Brea, W. Gerstner (2025) Emergent rate-based dynamics in
duplicate-free populations of spiking neurons Phys.Rev. Lett. 134:018401



Conclusions

- SNN -2 RNN without averaging!
- rather ‘loose’ conditions
- rank P can be ‘relatively large’

V. Schmutz, J. Brea, W. Gerstner (2025) Emergent rate-based
dynamics in duplicate-free populations of spiking neurons
Phys.Rev. Lett. 134:018401



Is low-rank connectivity a strange assumption?

1) “Neurons have receptive fields and wiring patterns:
IS a low-rank model realistic AT ALL?”

Barack, D.L., Krakauer, J.W.: Two views on the cognitive brain. Nat. Rev. Neurosc. (2021)
Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nat. Rev.
Neuroscl. (2023)

Answer: All standard models of cortex are dominated
by a low-rank connectivity matrix

Pezon, L., Schmutz, V, Gerstner, W. (2024), Linking Neural Manifolds to Principles of Circuit Structure in Recurrent
Networks bioRxiv doi: https://doi.org/10.1101/2024.02.28.582565

2) "How are low-rank networks related to low-dim. dynamics?”

Answer: rank P weight matrix (outer product matrix) always
generate P-dimensional dynamics (-2 neural manifolds)

Mastrogiuseppe, F., Ostojic, S.: Linking connectivity, dynamics, and computations in low-rank recurrent neural
networks. Neuron 99(3), 609-62329 (2018)


https://doi.org/10.1101/2024.02.28.582565

Gomputational Neuroscience: Neuronal Dynamics

Written Exam (70%)

You can bring 1 sheet A5 (double-sided) of handwritten notes.
(no calculator, no textbook, no phone)

Exam Is orthogonal to miniproject.
- Look at written exercises
- Look at exams from previous years

| wish you Good Luck and Great Success
for the Written Examyv
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