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𝑃𝐹 = 𝜈(𝑡)Δ𝑡

Probability of spike in time step:

Neuronal Dynamics – Poisson process versus white noise

Δ𝑡

spike train

Probability of spike

in  step n AND step k

→ Autocorrelation in discrete time

𝑆(𝑡)𝑆(𝑡′) = 𝜈(𝑡)𝛿(𝑡 − 𝑡′) + [𝜈(𝑡)]2

Autocorrelation in continuous time:

See also Exercise

last week!

𝑆(𝑡) = 𝜈(𝑡)
Mean in continuous time:

caused by mean

White noise: mean zero

𝜉(𝑡) = 0

𝜉 𝑡 𝜉(𝑡′) = 𝜏𝛿(𝑡 − 𝑡)

White noise: autocorrlation



𝜗

escape process,

stochastic intensity

𝜗

stochastic spike arrival

(diffusive noise)

Noise models

u(t)

t

𝜌(𝑡)

𝜌(𝑡) = 𝑓(𝑢(𝑡) − 𝜗)

escape rate

𝜏 ⋅
𝑑𝑢𝑖
𝑑𝑡

= −𝑢𝑖 + 𝑅𝐼 + 𝜉(𝑡)

noisy integration

Relation between the two models:

Section 11.4

Now:

Escape noise!

Ƹ𝑡 Ƹ𝑡



𝜗

escape process

u(t)

t

𝜌(𝑡)

𝜌(𝑡) = 𝑓(𝑢(𝑡) − 𝜗)

escape rate

u𝜗

Neuronal Dynamics – 11.1 Escape noise

𝜌(𝑡) = 𝜌𝜗 exp(
𝑢(𝑡) − 𝜗

Δ
)escape rate

𝜏 ⋅
𝑑

𝑑𝑡
𝑢 = −(𝑢 − 𝑢𝑟𝑒𝑠𝑡) + 𝑅𝐼(𝑡)

𝑖𝑓 𝑠𝑝𝑖𝑘𝑒 𝑎𝑡 𝑡𝑓 ⇒ 𝑢 𝑡𝑓 + 𝛿 = 𝑢𝑟

Example: leaky integrate-and-fire model

Ƹ𝑡



Neuronal Dynamics – Quiz 11.1.

Escape rate/stochastic intensity in neuron models

[ ] The escape rate of a neuron model has units one over time

[ ] The stochastic intensity of a point process has units one over time

[ ] The escape rate is bounded (e.g. a sigmoidal function) : For large voltages, the 

escape rate of a neuron model always saturates at some finite value

[ ] After a step in the membrane potential, the mean waiting time until a spike is 

fired is proportional to the escape rate 

[ ] After a step in the membrane potential, the mean waiting time until a spike is 

fired is equal  to the inverse of the escape rate 

[ ] The stochastic intensity of a leaky integrate-and-fire model with reset  only 

depends on the external input current but not on the time of the last reset

[ ] The stochastic intensity of a leaky integrate-and-fire model with reset  depends 

on the external input current AND on the time of the last reset

[x]

[x]

[ ]

[0]

[x]

[0]

[x]



11.1 Summary:  Escape noise

𝜌(𝑡) =
𝑐

Δ
exp(

𝑢(𝑡) − 𝜗

Δ
)

𝜌(𝑡) =

All noise models are ad hoc. White noise is an approximation of stochastic spike arrival –

compared to the Poisson model the ‘mean’ is removed (and integrated in the deterministic 

part of  driving current I). We can think of white noise and Poisson noise as ‘noise in the 

input’.

In this section we focus on a different noise model that we call escape noise.

In discrete time, the probability to generate a spike with the escape noise model

depends on the momentary distance between the membrane potential u(t) and the 

threshold 

In continuous time, this ‘firing probability’ turns into the stochastic intensity of spike firing 

(t) = f[u(t) – ] which has units of a rate. We can think of escape noise as a noise in the 

output.

Escape noise can be combined with a leaky integrate-and-fire model: As soon as a spike is 

fired, the membrane potential is reset to a lower value so that a second spike becomes 

unlikely. In this case a good choice of the function f is an exponential.

;
𝑐

Δ
= 𝜌𝜗 is a constant the characterizes the mean firing

rate at u(t) = 

Here the parameter   indicates how ‘smooth’ the threshold is. In practice, for 

u(t) <  −  the neuron is unlikely to fire and for u(t) >  +  it fires immediately. 



11.2. Firing probability in discrete time

𝑆(𝑡𝑘+1ȁ𝑡𝑘) = exp[ − න

𝑡𝑘

𝑡𝑘+1

𝜌(𝑡′)𝑑𝑡′]

𝑡1 𝑡2 𝑡30 𝑇

Probability to survive 1 time step

𝑆(𝑡𝑘+1ȁ𝑡𝑘) = exp[ − 𝜌(𝑡𝑘)Δ𝑡] = 1 − 𝑃𝑘
𝐹

Probability to fire in  1 time step

𝑃𝐹(Δt) = 1 − 𝑆 𝑡 + Δt t)

Δ𝑡 Δ𝑡

Δ𝑡 = tk+1 − tk 

𝑡𝑘

The probability 𝑃𝐹(Δt) in discrete 

time is bounded even if the escape 

rate 𝜌 𝑡 = 𝑓 𝑢 − 𝜗 is not.



11.2. Escape noise - experiments

𝜌(𝑡) = 𝜌𝜗 exp(
𝑢(𝑡) − 𝜗

Δ
)escape

rate

𝑃𝑘
𝐹 = 1 − exp[ − 𝜌(𝑡𝑘)Δ]

Jolivet et al. ,

J. Comput. Neurosc.

2006



Ƹ𝑡

𝜌(𝑡ห Ƹ𝑡) = 𝑓(𝑢(𝑡ห Ƹ𝑡)) = 𝜌𝜗 exp( 𝑢(𝑡ห Ƹ𝑡) − 𝜗)

escape rate𝜗
𝜌(𝑡)

Example: I&F with reset, time-dependent input, 

Ƹ𝑡

Survivor function
1 𝑆(𝑡ห Ƹ𝑡) 𝑆(𝑡ȁ Ƹ𝑡) = exp( − න

መ𝑡

𝑡

𝜌(𝑡′ȁ Ƹ𝑡)𝑑𝑡′)

Interval distribution

Ƹ𝑡

𝑃(𝑡ห Ƹ𝑡)
𝑃(𝑡ȁ Ƹ𝑡) = 𝜌(𝑡ȁ Ƹ𝑡) exp( − න

መ𝑡

𝑡

𝜌(𝑡′ȁ Ƹ𝑡)𝑑𝑡′)

= −
𝑑

𝑑𝑡
𝑆(𝑡ȁ Ƹ𝑡)

11.2. Time-dependent Renewal theory 



Neuronal Dynamics – Quiz 11.2.

Consider a leaky integrate-and-fire model with escape noise

[ ] For large voltages, the escape rate of a neuron model always saturates

at some finite value

[ ] For large voltages, the firing probability in discrete time always saturates

at 1

[ ] The firing probability in discrete time can be calculated from the Survivor function

[ ] For constant input, the distribution of intervals can be calculated.

[ ] The distribution of intervals has small or negligible  values for very short intervals

[ ] An integrate-and-fire model with escape noise yields a time-dependent renewal 

model: If we know the ‘age’ of the neuron (time since last spike) and the time-

dependent input I(t’) for t’<t we can predict the probability that it fires in a small 

interval around time t. 

[ ]

[x]

[x]

[x]

[x]

[x]



11.2 Summary:  Renewal models

Even though the interspike-interval-distribution is most often used for STATIONARY data, (or 

constant input), we can also define an interspike-interval distribution for time-dependent input: 

Given an observed spike at time Ƹ𝑡, and given that we know the time-dependent input up to time t, 

we ask: what is the probability density that the next spike occurs at time t? The answer is given by 

the ISI distribution 𝑃(𝑡ȁ Ƹ𝑡).

In the same way we can ask: Given an observed spike at time Ƹ𝑡, and given that we know the time-

dependent input up to time t,  what is the probability that the neuron ‘survives’ without firing up to 

time t? The answer is given by the survivor function S(𝑡ȁ Ƹ𝑡).
Similarly, given an observed spike at time Ƹ𝑡, and given that we know the time-dependent input up to 

time t,  what is the momentary rate of firing at time t? The answer is given by the stochastic intensity 

𝜌(𝑡ȁ Ƹ𝑡), also called the ‘hazard’. The three functions are closely related to each other. 

For constant input, all three functions only depend on the time difference 𝑡 − Ƹ𝑡.  If the stochastic 

intensity (e.g., of a neuron model) only depends on the time difference 𝑡 − Ƹ𝑡 it is called a (stationary) 

renewal model. If it depends on 𝑡 − Ƹ𝑡 and the input (but not on earlier spikes),  it is a generalized (or 

time-dependent) renewal model. The LIF with escape noise and constant input is a renewal model, 

with time-dependent input it is a generalized renewal model.



𝑆(𝑡) =෍

𝑓

𝛿(𝑡 − 𝑡𝑓)

𝑡1 𝑡2 𝑡30 𝑇

𝐿𝑁(𝑡1, . . . , 𝑡𝑁) = exp( − න

0

𝑇

𝜌(𝑡′)𝑑𝑡′)ෑ

𝑓

𝜌(𝑡𝑓)

log 𝐿 (𝑡1, . . . , 𝑡𝑁) = −න

0

𝑇

𝜌(𝑡′)𝑑𝑡′ +෍

𝑓

log𝜌(𝑡𝑓)

11.3. likelihood of a spike train

generative model of spike train
- generates spikes stochastically

- calculated likelihood that an

observed experimental spike train

could have been generated

𝜗

u(t)

Ƹ𝑡 t

𝜌(𝑡)

𝜌(𝑡) = 𝑓(𝑢(𝑡) − 𝜗)
escape rate



Neuronal Dynamics – Quiz 11.3.

Consider a leaky integrate-and-fire model with escape noise

[ ]  The term exp( − 𝑡0׬
𝑡1 𝜌(𝑡′)𝑑𝑡′) represents the probability that the neuron fires in the 

interval [𝑡0, 𝑡1]

[ ]  The term exp( − 𝑡0׬
𝑡1 𝜌(𝑡′)𝑑𝑡′) represents the probability that the neuron does not 

fire in the interval [𝑡0, 𝑡1]

[ ] The term ( 𝑡0׬
𝑡1 𝜌(𝑡′)𝑑𝑡′) represents the probability that the neuron fires in the 

interval [𝑡0, 𝑡1]

[ ] The term ( 𝑡0׬
𝑡1 𝜌(𝑡′)𝑑𝑡′) represents the expected number of spikes observed in 

the in the interval [𝑡0, 𝑡1]

[ ]

[x]

[ ]

[x]



11.3 Summary:  Likelihood of a spike train
Suppose an experimentalist has observed a spike train with spikes a times {𝑡1, . . . , 𝑡𝑁}.
We ask how likely it is that this specific spike train could have been generated by ‘my’ neuron 

model. 

As a neuron model we use a formal spiking neuron such as the leaky integrate-and-fire model with 

escape noise    

Given the observed spike times 𝑡1, . . . , 𝑡𝑛 < t up to time t, and the external input 𝐼 𝑡′ ; 𝑡′ < 𝑡
we calculate the membrane potential u(t). Given the membrane potential, equation (1) gives us the 

stochastic intensity. The likelihood that the observed spike train is then

The exponential decay term is the ‘survival’ probability without firing between two observed spikes; 

the product term is the likelihood that the model would fire at the actually observed times. 

We have to integrate N times over t to get a unit-free quantity with constraint:

0׬
𝑇
𝑑𝑡1 𝑡1׬

𝑇
𝑑𝑡2 𝑡2׬

𝑇
𝑑𝑡3…׬𝑡𝑁−1

𝑇
𝑑𝑡𝑁 𝐿

𝑁 𝑡1, . . . , 𝑡𝑁 ≤ 1

𝐿𝑁(𝑡1, . . . , 𝑡𝑁) = exp( − න

0

𝑇

𝜌(𝑡′)𝑑𝑡′)ෑ

𝑓

𝜌(𝑡𝑓)

𝜌 𝑡 = 𝑓 𝑢 𝑡 − 𝜗 (1)



𝜗

escape process

(fast noise)

𝜗

stochastic spike arrival

(diffusive noise)
A C

u(t)

noise

= 𝜌(𝑡) ⋅ exp( − න

Ƹ𝑡 

𝑡

𝜌(𝑡′)𝑑𝑡′)

𝑃𝐼(𝑡ȁ Ƹ𝑡) : first passage

time problem

𝑃𝐼 𝑡 Ƹ𝑡 =

Interval distribution

t

Survivor function
escape

rate

𝜌(𝑡)

𝜌(𝑡) = 𝑓(𝑢(𝑡) − 𝜗)

escape rate

𝜏 ⋅
𝑑𝑢𝑖
𝑑𝑡

= −𝑢𝑖 + 𝑅𝐼 + 𝜉(𝑡)

noisy integration

11.4. Comparison of Noise Models

Stationary input:

-Mean ISI

-Mean firing rate

𝑓 =
1

𝑠

𝑡 − Ƹ𝑡
Ƹ𝑡Ƹ𝑡



11.4. Comparison of Noise Models

𝜌(𝑡) = 𝑓(𝑢0(𝑡) − 𝜗)

escape rate (Arrhenius&Currtent model)

exp( −
(𝑢0(𝑡) − 𝜗)2

𝜎2
) [

𝑐1
𝜏
+
𝑐2 𝑢′0 𝑡 +

𝜎
]∝𝜌(𝑡) = 𝑓(𝑢0(𝑡), 𝑢′0(𝑡)) ∝

subthreshold

potential

Probability of first spike

diffusive

escape

𝑃𝐼(𝑡ȁ Ƹ𝑡)

𝜌(𝑡)Is  there a choice for escape noise         that makes the two noise models ‘similar’?



11.4 Diffusive noise (stochastic spike arrival), far below threshold

𝜗

Δ𝑢(𝑡)Δ𝑢(𝑡) = 𝑢(𝑡)𝑢(𝑡) − 𝑢(𝑡) 2 =

Δ𝑢(𝑡)
𝑢(𝑡)

𝜏
𝑑

𝑑𝑡
𝑢 = −(𝑢 − 𝑢𝑟𝑒𝑠𝑡) + 𝑅𝐼(𝑡) + 𝜉(𝑡)

Δ𝑢(𝑡′)Δ𝑢(𝑡) = 𝑢(𝑡)𝑢(𝑡′) − 𝑢(𝑡) 𝑢(𝑡′) =

Math argument:

- no threshold

- trajectory starts at known value 

→Gaussian distribution around

→Mean=‘deterministic trajectory’

p(u(t))



Superthreshold vs. Subthreshold regime

u
p(u) p(u)

Nearly Gaussian

subthreshold distr.

11.4. Diffusive noise/stochastic arrival: Two regimes



𝜗

stochastic spike arrival

(diffusive noise)

11.4 Superthreshold regime: role of slope u’

escape rate

noisy integration

𝑢0(𝑡)
𝜎

𝜎𝑡

𝑢′0(𝑡)

𝑢0′𝜎𝑡 = 𝜎

𝜌(𝑡) = 𝑓(𝑢0(𝑡), 𝑢′0(𝑡)) ∝



Neuronal Dynamics – Quiz 11.4.

Compare a leaky integrate-and-fire model with escape noise 

And a leaky integrate-and-fire model with stochastic spike arrival

[ ]  Both models are equivalent. 

[ ] There is no exact equivalence, but there is a reasonable approximation.

[ ] In an escape noise model, the escape rate may also depend on the slope of the 

trajectory

[ ]

[x]

[x]



11.4 Summary: Comparison of noise models
We have seen two noise models:

1) Stochastic spike arrival can be considered as noise in the input, described either as a Poisson 

process or as a white noise.  In a computer implementation of white noise, you have to call in 

each time step a random number generator. Since the random number is applied as an addition 

input current, the membrane potential shows fluctuations that are not white but have a finite 

autocorrelation time.

2) Escape noise can be considered as noise in the output, described by a stochastic intensity, also 

called escape rate that depends on the difference between threshold and voltage. In a computer 

implementation of escape noise, you call in each  time step a random number generator. The 

random number decides whether the neuron fires or not. The membrane potential has no noise.

The two models are conceptually different and there is no exact mapping from one to the other. 

Nevertheless, we can observe that

(i) In the subthreshold regime, the diffusive noise model leads to a Gaussian distribution around 

the deterministic distribution. Hence it is rare that one of the fluctuations hits the threshold. 

Heuristically, the stochastic intensity (escape rate) of the escape model should hence depend 

on the membrane potential density at threshold.

(ii) In the superthreshold regime, the deterministic trajectory is actively pushed across the threshold 

and traverses the threshold with finite slope u’. This leads to a second term in the escape rate

that needs to added to the term from (i). The two terms together provide a reasonable mapping.



Time to first spike after input

Phase with respect to oscillation

11.5. Temporal codes

Spike timing codes:

-time-to-first spike

-phase code

Brain 



Stochastic Resonance: changing the noise level in subthreshold regime

u

Sinusoidal  input 

+ noise

+ threshold

)cos()( 0 tItI =

)()( ttI noise =



I(t)

11.5. Stochastic Resonance



11.5. Summary Renewal process, firing probability

Famous temporal codes are

(i) TTFS coding: Time-to-First-Spike.  The coding scheme assumes that a novel input is switched 

on abruptly.  Different neurons respond at different times after the onset of the input. This 

coding scheme is probably relevant in the retina and in the ear.

(ii) Phase coding: The coding scheme assumes that there is an ongoing slow oscillation that is 

running in the background. Different neurons respond at different phases with respect to the 

background oscillation. This coding scheme is probably relevant in the hippocampus.
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