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Neuronal Dynamics - Poisson process versus white noise

Probability of spike In time step - spiketrain
Fr = VDAL BERINE RN
Probability of spike r T
IN step n AND step k
- Autocorrelation In discrete time -
Mean In continuous time: White noise: mean zero
(S(®) = v(t) (E(D) =0
Autocorrelation in continuous time:  White noise: autocorrlation
(S(B)S(E)) = v(D)8(t —t') + [/v(t)]z (E()E)) =165(t —t)

caused by mean



escape process,
stochastic intensity
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Noise models
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escape rate

p(t) = f(u(t) —9)

NOow:
Escape noise!

stochastic spike arrival
(diffusive noise)

noisy integration
dui
dt

T =—ui+R1+€(t)

Relation between the two models:
Section 11.4




Neuronal Dynamics - 11.1 Escape noise

escape process

""" oo [T
u(t)

escape rate . p(t) = py exp(

u(t) =49

4>

{

escape rate

p(t) = f(u(t) = V)

A

Example: leaky integrate-and-fire model
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Neuronal Dynamics - Quiz 11.1.

Escape rate/stochastic intensity in neuron models

| ] The escape rate of a neuron model has units one over time

| ] The stochastic intensity of a point process has units one over time

| ] The escape rate Is bounded (e.g. a sigmoidal function) : For large voltages, the
escape rate of a neuron model always saturates at some finite value

| ] After a step In the membrane potential, the mean waiting time until a spike is
fired Is proportional to the escape rate

| ] After a step In the membrane potential, the mean waiting time until a spike Is
| firedis equal to the inverse of the escape rate

| ] The stochastic intensity of a leaky integrate-and-fire model with reset only
depends on the external input current but not on the time of the last reset

| ] The stochastic intensity of a leaky integrate-and-fire model with reset depends
S on the external input current AND on the time of the last reset




11.1 Summary: Escane noise

All noise models are ad hoc. White noise Is an approximation of stochastic spike arrival —
compared to the Poisson model the ‘'mean’ is removed (and integrated in the deterministic
part of driving current I). We can think of white noise and Poisson noise as ‘noise in the
input’.

In this section we focus on a different noise model that we call escape noise.

In discrete time, the probability to generate a spike with the escape noise model

depends on the momentary distance between the membrane potential u(t) and the
threshold 6.

In continuous time, this ‘firing probability’ turns into the stochastic intensity of spike firing
p(t) = flu(t) — 6] which has units of a rate. We can think of escape noise as a noise In the
output.

Escape noise can be combined with a leaky integrate-and-fire model: As soon as a spike Is
fired, the membrane potential is reset to a lower value so that a second spike becomes
unlikely. In this case a good choice of the function f is an exponential.

; % = pg iS a constant the characterizes the mean firing
rate at u(t) = 6

Here the parameter A indicates how ‘smooth’ the threshold is. In practice, for

u(t) < 0 —3A the neuron is unlikely to fire and for u(t) > 6 + 3A It fires Immediately.




11.2. Firing probhability in discrete time
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Probabllity to survive 1 time step At =ty — ti
S(trsqlt) = exp[ — f o(t")dt'] S(tr+1lti) = exp[ — p(tp)At] =1 — Py
Probabillity to fire in 1 time step The probability P* (At) in discrete
PY (At) = 1 — S(t + At [t) time is bounded even if the escape

rate p(t) = f(u —9)is not.



11.2. EScape noise - experiments
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11.2. Time-dependent Renewal theory

Example: I1&F with reset, time-dependent input,

9  Lo_____ |
P o escape rate
p(t|D) = f(u(t|)) = pg exp(u(t|t) —9)
t
1] Survivor function ‘
S(t|) S(tlf) = exp( — | p(¢'1D)de)
t
' t
; Interv?)I(OilrlrttSIbutlon P(tIF) = p(t|D) eXp(—ff,D(t'ﬁ)dt')
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Neuronal Dynamics - Quiz 11.2.

Consider a leaky integrate-and-fire model with escape noise
| ] For large voltages, the escape rate of a neuron model always saturates
at some finite value
[ ] For large voltages, the firing probabillity In discrete time always saturates
at 1
[ ] The firing probabillity in discrete time can be calculated from the Survivor function

| ] For constant input, the distribution of intervals can be calculated.

[ ] The distribution of intervals has small or negligible values for very short intervals

[ ] An Integrate-and-fire model with escape noise yields a time-dependent renewal
model: If we know the ‘age’ of the neuron (time since last spike) and the time-

W dependent input I(t') for t'<t we can predict the probability that it fires in a small

Interval around time t.




11.2 Summary: Renewal models

Even though the interspike-interval-distribution is most often used for STATIONARY data, (or
constant input), we can also define an interspike-interval distribution for time-dependent input:
Given an observed spike at time t, and given that we know the time-dependent input up to time t,
we ask: what is the probability density that the next spike occurs at time t? The answer Is given by

the IS distribution P(t|t).

In the same way we can ask: Given an observed spike at time t, and given that we know the time-
dependent input up to time t, what is the probability that the neuron ‘survives’ without firing up to
time t? The answer is given by the survivor function S(t|t).

Similarly, given an observed spike at time t, and given that we know the time-dependent input up to
time t, what is the momentary rate of firing at time t? The answer Is given by the stochastic intensity
p(t|t), also called the ‘hazard’. The three functions are closely related to each other.

For constant input, all three functions only depend on the time difference t — t. If the stochastic
intensity (e.g., of a neuron model) only depends on the time difference t — t it is called a (stationary)
renewal model. If it depends on t — t and the input (but not on earlier spikes), it is a generalized (or
time-dependent) renewal model. The LIF with escape noise and constant input is a renewal model,

with time-dependent input it is a generalized renewal model.



11.3. likelihood of a spike train
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S(t) = Y 8t~ t) — L
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generative model of spike train

- generates spikes stochastically
- calculated likelihood that an
T observed experimental spike train

log L (¢1,..., tN) = _fp(t')dturzlogp(tf) could have been generated
7

-



Neuronal Dynamics - 0Quiz 11.3.

Consider a leaky integrate-and-fire model with escape noise
[]1 The term exp( — fttolp(t')dt') represents the probability that the neuron fires in the

L Interval [t,, tq]
[] The term exp( — fti)lp(t')dt') represents the probabllity that the neuron does not
W fire In the Interval [t,, t4]

[ ] The term (fttolp(t')dt') represents the probability that the neuron fires in the

[]Theterm (/. ttol p(t)dt") represents the expected number of spikes observed in
W the In the Interval [t,, t4]




11.3 Summary: Likelihood of a spike train

Suppose an experimentalist has observed a spike train with spikes a times {t1,...,t"}.
We ask how likely it is that this specific spike train could have been generated by ‘my’ neuron
model.

As a neuron model we use a formal spiking neuron such as the leaky integrate-and-fire model with

escape noise o(t) = fw@®) —9) (1)

Given the observed spike times t?,...,t" <tup to time t, and the external input I(t') ; t' <t
we calculate the membrane potential u(t). Given the membrane potential, equation (1) gives us the
stochastic intensity. The likelihood that the observed spike train Is then

T
IN(tL, ..., tN) = exp(—fp(t’)dt’)l_[p(tf)
0 f

The exponential decay term is the ‘survival’ probability without firing between two observed spikes;
the product term is the likelihood that the model would fire at the actually observed times.
We have to integrate N times over t to get a unit-free quantity with constraint:

f()T dtl ft’: dtz ftz dtg fT dtN LN(tl,...,tN) S 1

tN-1



11.4. Gomparison of Noise Models

escape process
A (fast noise)
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11.4. Gomparison of Noise Models

Is there a choice for escape noise p(t) that makes the two noise models ‘similar’?
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11.4 Diffusive noise (stochastic spike arrival), far helow threshold

T%u = —(U — Upese) + RI(L) +$(2)

p(u(t))
(Au(t)Au(t)) = (u®)u(t)) — (u(t))? = S
(Bu(t)du(t)) = w®u(t)) — wOXult)) =
Math argument: ol
- no threshold 09 1f[m81]5 2025
- trajectory starts at known value
: : : : ey 1 o u(t|t) — uo(t)]?
-> Gaussian distribution around plst) = s p{ > (A2 (1) }

- Mean="‘deterministic trajectory’



11.4. Diffusive noise/stochastic arrival: Two regimes

Superthreshold vs. Subthreshold regime
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11.4 Superthreshold regime: role of siope u

uO O-t — 0
noisy integration o,
N T O
- . e T
stochastic spike arrival /
(diffusive noise) "WO (t)

escape rate

p(t) = f(uo(®), u'o(t)) x  uo(t)




Neuronal Dynamics - Quiz 11.4.

Compare a leaky integrate-and-fire model with escape noise

And a leaky integrate-and-fire model with stochastic spike arrival

| ] Both models are equivalent.

| ] There Is no exact equivalence, but there Iis a reasonable approximation.

[ ] In an escape noise model, the escape rate may also depend on the slope of the
trajectory




11.4 Summary: Gomparison of noise models

We have seen two noise models:

1) Stochastic spike arrival can be considered as noise in the input, described either as a Poisson
process or as a white noise. In a computer implementation of white noise, you have to call in
each time step a random number generator. Since the random number is applied as an addition
Input current, the membrane potential shows fluctuations that are not white but have a finite
autocorrelation time.

2) Escape noise can be considered as noise In the output, described by a stochastic intensity, also
called escape rate that depends on the difference between threshold and voltage. In a computer
Implementation of escape noise, you call in each time step a random number generator. The
random number decides whether the neuron fires or not. The membrane potential has no noise.

The two models are conceptually different and there Is no exact mapping from one to the other.

Nevertheless, we can observe that

() In the subthreshold regime, the diffusive noise model leads to a Gaussian distribution around
the deterministic distribution. Hence it is rare that one of the fluctuations hits the threshold.
Heuristically, the stochastic intensity (escape rate) of the escape model should hence depend
on the membrane potential density at threshold.

(i) In the superthreshold regime, the deterministic trajectory Is actively pushed across the threshold
and traverses the threshold with finite slope u’. This leads to a second term in the escape rate
that needs to added to the term from (i). The two terms together provide a reasonable mapping.



11.0. Temporal codes

Spike timing codes:
-time-to-first spike
-phase code

. ) Phase with respect to oscillation




~ 115.Stochastic Resonance @~

Stochastic Resonance: changing the noise level in subthreshold regime

1 (t) = 1, cos(wt) 1)
\O o ) m A
Inoise (t) _ O'é:(t) ///

Sinusoidal input
+ noise
+ threshold

________




11.9. Summary Renewal process, firing prohability

Famous temporal codes are

()

()

TTFS coding: Time-to-First-Spike. The coding scheme assumes that a novel input is switched
on abruptly. Different neurons respond at different times after the onset of the input. This
coding scheme Is probably relevant in the retina and in the ear.

Phase coding: The coding scheme assumes that there is an ongoing slow oscillation that is
running in the background. Different neurons respond at different phases with respect to the
background oscillation. This coding scheme Is probably relevant in the hippocampus.



	Slide 33:  
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

