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Attractor Networks and  
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1. Review of last week: overlap / correlation

Overlap: similarity between 
 state S(t) and pattern

Image: Neuronal Dynamics,  
Gerstner et al., 
 Cambridge Univ. Press (2014),



1. Review of last week: overlap / correlation

Overlap: similarity between 
 state S(t) and pattern

Correlation: overlap  between 
   one pattern and another

Orthogonal patterns

Image: Neuronal Dynamics,  
Gerstner et al., 
 Cambridge Univ. Press (2014),



1. Hopfield model: memory retrieval (attractor model)



Quiz 1: overlap and attractor dynamics 

[ ] The overlap is maximal  
       if the network state matches one of the patterns.  
[ ]  The overlap increases during memory retrieval. 
[ ]  The mutual overlap of orthogonal patterns is one. 
[ ]  In an attractor memory, the dynamics converges to a stable 
      fixed point. 
[ ] In a perfect attractor memory network, the network state 
     moves towards one of the patterns. 
[ ] In a Hopfield model with N random patterns stored in a  
    network N neurons, the patterns are attractors. 
[ ] In a Hopfield model with 200 random patterns stored in a  
    network 1000 neurons, all fixed points have overlap one. 
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6.1 Summary: 
- Attractor dynamics implies that the dynamics of a network are attracted towards 

certain preferred states. 
- These states correspond to the previously stored patterns (also called stored 

memories, or ‘engrams’ 
- The movement of the network dynamics towards these special states is called 

memory retrieval. Once the network is in one of these special states we say that 
the corresponding memory has been retrieved. 

- Mathematically, the attractor states are the fixed points of the network dynamics 
- Mathematically, the overlap with pattern mu  measures the similarity between the 

momentary network state (activity of all neurons) and the stored memory mu. 
- In the attractor state, and number of patterns small compared to N the overlap is 

(close to) 1 
- Low-activity patterns are patterns where the ratio of black pixels to white pixels is 

not 50:50.   The mean fraction of black pixels (neurons that should be ‘ON’) is  
      2a – 1   where a is the expectation value of  𝑝𝜇

𝑖



2. Stochastic Hopfield model: memory retrieval

overlap picture

Overlap: Neurons that should be ‘on’ Neurons that should be ‘off’



2. Stochastic Hopfield model = attractor model

Image: Neuronal Dynamics,  
Gerstner et al., 
 Cambridge Univ. Press (2014),



Quiz 2: Stochastic networks and overlap equations
[ ]  The update of the overlap leads always to a fixed point with  
      overlap m=1 
[ ]  The update equation as derived here implicitly assumed  
     orthogonal patterns because otherwise we would have to analyze  
     overlaps  with several patterns in parallel 
[ ]  The update equation as derived here requires a function  
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2. Stochastic Hopfield model: memory retrieval

- Memory retrieval possible 
    with stochastic dynamics 

- Fixed point at value with  
    large overlap (e.g., 0.95) 

- Need to check that overlap 
   of other patterns remains small 

- Random patterns: nearly  
   orthogonal but ‘noise’ term 



6.2 Summary: 
- Instead of deterministic dynamics, we can also study stochastic dynamics. 

- Memory retrieval is possible with stochastic dynamics, if the number of patterns is 
small (in some sense) to the total number of neurons. In this case, the similarity 
variables (also called overlap variable) have negligible noise, because they 
involve averaging over a large number of neurons.  

- Similar to deterministic dymanics we find fixed points with a large overlap. 

-    Since random patterns are nearly orthogonal, a large overlap with one of the 
patterns implies that the overlap with other patterns in this network state is small.  



E

3. Symmetric interactions: Energy/Lyapunov function
Assume symmetric interaction, 
Assume deterministic asynchronous update  

Claim: the energy 

decreases, if neuron k changes 

J.J. Hopfield (1982) Neural networks and physical  
systems with emergent  collective computational abilities.  
Proc. Natl. Acad. Sci. USA 79, pp. 2554–2558



  3. Energy picture

energy picture historically important: 
   - capacity calculations 

energy picture is very general: 
   -  also possible for patterns with   
       non-zero mean. 

D.J. Amit, H. Gutfreund and H. Sompolinsky (1987)  
Information storage in neural networks with low levels of activity.  
Phys. Rev. A 35, pp. 2293–2303. 

J.J. Hopfield (1982) Neural networks and physical  
systems with emergent  collective computational abilities.  
Proc. Natl. Acad. Sci. USA 79, pp. 2554–2558

Peretto (1984) Collective Properties of Neural Networks:  
A statistical Mechanics Approach Biol. Cybern. 
50: 51-62 (received November 1983). 

Amit-Gutfreund-Sompolinsky (1985)  
Spin-glass models of neural network  
Phys. Rev. A. 32: 1007-1018

Amit-Gutfreund-Sompolinsky (1985) Spin-glass models of neural 
network Phys. Rev. A. 32: 1007-1018

Energy picture with rate neurons: 
Cohen and Grossberg (1983) Absolute Stability of 
Global Pattern Formation and Parallel Memory Storage 
by Competitive Neural Network in IEEE Trans. Systems, 
Man, Cybernetics 

Hopfield (1984), Neurons with graded response have 
collective computational properties like those of 
two-state neurons. PNAS 81: 3088-3092

M. Tsodyks and M.V. Feigelman (1986) The enhanced storage  
capacity in neural networks with low activity level.  Europhys. Lett. 6, pp. 101–105.
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energy picture is a side-track: 
   - it needs symmetric interactions

Peretto (1984) Collective Properties of Neural Networks:  
A statistical Mechanics Approach Biol. Cybern. 
50: 51-62 (received November 1983). 
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Quiz 3: Energy picture and Lyapunov function 

Let                                  be the energy of the Hopfield model 

and                                                          the dynamics.  

[ ]  The energy picture requires random patterns with prob = 0.5  
[ ]  The energy picture requires symmetric weights 
[ ]  It follows from the energy picture of the Hopfield model that the   
          only fixed points are those where the overlap is exactly one 
[ ] In each step, the value of a Lyapunov function decreases or  
   stays constant 
[ ] Under deterministic dynamics the above energy is a Lyapunov  
    function 
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  3. Energy picture

Hopfield model 
  special case

biology

attractor energy

(asymmetric interactions)

We will not use  the energy picture – 
because the assumption of symmetric 
interactions is too restrictive. 

We are interested in biology:   
while brain-areas are typically reciprocally 
connected, it is unlikely that we would find 
perfect symmetry of interactions on a 
neuron-to-neuron basis. 

Nearly all calculations can be done 
without the energy picture



6.3 Summary: 
- If the weight matrix is symmetric, then network dynamics can be described as 

down-hill movement in an energy landscape. 

- The Energy is also called a Lyapunov function of the system. 

- In the Hopfield model, states of lowest energy correspond to the attractors (which 
in term correspond to states with overlap 1, and hence to the stored memories) 

- The energy picture is much more restrictive than the general attractor dynamics. 



Random patterns +/-1 with low activity   
   e.g.10 percent of neurons should be active in each pattern

4. attractor memory with ‘low’ activity patterns

with overlap 

yield dynamics 

b=0 or b=1



6.4 Summary: 
- In the standard-Hopfield model, the patterns that are stored have 50 percent active 

and 50 percent inactive neurons. Low activity-patterns means that in each pattern 
only a small number of neurons is active. 

- With an appropriate choice of the connection weights, low-activity patterns can 
become stable fixed points of the attractor dynamics 

- Note that there is no need for the weights to be symmetric!



5. attractor memory with spiking neurons

- rewrite binary state variable: 

- use low firing probability (in time) 
- use low activity (across neurons)

Total input to neuron i
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5. attractor memory with spiking neurons

Separation of excitation/ inhibition 
- rewrite weights:

Total input to neuron i



Inh1

Inh2

theta

Exc

Inh1

Inh2
Hebb-rule:  
Active together

5. Separation of excitation and inhibition
Image: Neuronal Dynamics,  
Gerstner et al., 
 Cambridge Univ. Press (2014)



Spike raster

Overlap with patterns 1 … 6 (total 90 patterns stored, a=0.1)

Image: Neuronal Dynamics,  
Gerstner et al., 
 Cambridge Univ. Press (2014)

5. attractor memory with 8000 spiking neurons



Memory with spiking neurons 
-Low activity of patterns? 
-Separation of excitation and inhibition? 
-Modeling with integrate-and-fire? 
-Asymmetric weights  
-Low connection probability 

-Neural data?

All possible

5. attractor memory with spiking neurons



Sidney 
opera

Sidney 
opera

Sidney 
opera

Human Hippocampus

Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., and Fried, I. (2005).  
Invariant visual representation by single neurons in the human brain.  
Nature, 435:1102-1107.

5. memory data (review from week 5)



Delayed Matching to Sample Task

1ssample match

Animal experiments

5. memory data: delayed match to sample



Delayed Matching to Sample Task

1ssample match

1ssample match

Animal experiments

5. memory data: delayed match to sample



Delayed Matching to Sample Task

1ssample match

1ssample match

Animal experiments

5. memory data: delayed match to sample



20

1ssample match

[Hz]

Miyashita, Y. (1988). Neuronal correlate of visual associative long-term 
memory in the primate temporal cortex. Nature, 335:817-820.

5. memory data: delayed match-to-sample



match

20
[Hz]

sample
0 1650ms

0

Rainer and Miller (2002). Timecourse of object-related neural activity in the primate 
prefrontal cortex during a short-term memory task. Europ. J. Neurosci., 15:1244-1254.

5. memory data: delayed match-to-sample



D-F: 
Three sample neurons

A: examples of chaotic-like 
Firing rates. 
B,C. Overlap is stable

G: 1-overlap (distance) 
H: Same neuron, two 
different initial conditions 
I: overlap, two different 
initial conditions 

U. Pereira and N. Brunel, Attractor Dynamics in Networks with Learning Rules 
Inferred from In Vivo Data Neuron 2018



Memory in realistic networks 
-Mean activity of patterns?   can be low 
-Asymmetric connections?   possible 
-Better neuron model?        possible 
-Separation of excitation/inhibition?  possible 
-Low probability of connections?  possible  

Attractor Memory model 
- Abstract concept! 
- Influential! 
- General! 
-   Neural data! 
-  consistent with spikinbg variability!

5. attractor memory in realistic networks
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-Better neuron model?        possible 
-Separation of excitation/inhibition?  possible 
-Low probability of connections?  possible  

Attractor Memory model 
- Abstract concept! 
- Influential! 
- General! 
-   Neural data! 
-  consistent with spikinbg variability!

5. attractor memory in realistic networks

Outlook to final week: 
- Neural manifolds 
- Low-rank connectivity



6.5 Summary: 
From a biological perspective, we need to consider several modifications of the 
Hopfield model. 

- The stored patterns should be low-activity patterns. 

- Neurons are not ‘spins’ with values +/-1, but send out spikes that are better 
described by values 0/1. 

- After a spike there is a refractory time or at least a reset 

- A given neuron sends out either excitatory or inhibitory synapses, but normally not 
both. 

- Connections are not symmetric 

All these modifications can be implemented in attractor networks. Moreover in 
delayed-match to sample tasks, activity traces suggest vaguely attractor dynamics.
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