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1. Review of last week: overlap / correlation
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Overlap: similarity between
state S(t) and pattern



1. Review of last week: overlap / correlation

Image: Neuronal Dynamics,
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Correlation: overlap between
one pattern and another

Overlap: similarity between
state S(t) and pattern

Orthogonal patterns



1. Hoptield model: memory. ret attractor model




Quiz 1: overlap and attractor dynamics

[ ] The overlap Is maximal
If the network state matches one of the patterns.
[ ] The overlap increases during memory retrieval.
[] The mutual overlap of orthogonal patterns is one.
[ ] In an attractor memory, the dynamics converges to a stable
fixed point.
[ ] In a perfect attractor memory network, the network state
moves towards one of the patterns.
[ ] In a Hopfield model with N random patterns stored in a
network N neurons, the patterns are attractors.
[ ] In a Hopfield model with 200 random patterns stored in a
network 1000 neurons, all fixed points have overlap one.
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6.1 Summary:

Attractor dynamics implies that the dynamics of a network are attracted towards
certain preferred states.

These states correspond to the previously stored patterns (also called stored
memories, or ‘engrams’

The movement of the network dynamics towards these special states is called
memory retrieval. Once the network is in one of these special states we say that
the corresponding memory has been retrieved.

Mathematically, the attractor states are the fixed points of the network dynamics
Mathematically, the overlap with pattern mu measures the similarity between the
momentary network state (activity of all neurons) and the stored memory mu.

In the attractor state, and number of patterns small compared to N the overlap is
(close to) 1

Low-activity patterns are patterns where the ratio of black pixels to white pixels is
not 50:50. The mean fraction of black pixels (neurons that should be ‘ON’) is
2a—1 where a is the expectation value of p*



2. Stochastic Hopfield model: memory retrieval

Overlap: Neurons that should be ‘on’ Neurons that should be ‘off’

overlap picture




2. Stochastic Hopfield model = attractor model

Image: Neuronal Dynamics,
Gerstner et al.,
Cambridge Univ. Press (2014),



Quiz 2: Stochastic networks and overlap equations

[] The update of the overlap leads always to a fixed point with
overlap m=1

[] The update equation as derived here implicitly assumed
orthogonal patterns because otherwise we would have to analyze
overlaps with several patterns in parallel

[ ] The update equation as derived here requires a function
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2. Stochastic Hopfield model: memory retrieval

- Memory retrieval possible
with stochastic dynamics

- Fixed point at value with
large overlap (e.g., 0.95)

- Need to check that overlap
of other patterns remains small

- Random patterns: nearly
orthogonal but ‘noise’ term



6.2 Summary:

- Instead of deterministic dynamics, we can also study stochastic dynamics.

- Memory retrieval is possible with stochastic dynamics, if the number of patterns is
small (in some sense) to the total number of neurons. In this case, the similarity
variables (also called overlap variable) have negligible noise, because they
iInvolve averaging over a large number of neurons.

- Similar to deterministic dymanics we find fixed points with a large overlap.

- Since random patterns are nearly orthogonal, a large overlap with one of the
patterns implies that the overlap with other patterns in this network state is small.



3. Symmetric interactions: Energy/Lyapunov function

Assume symmetric interaction,
Assume deterministic asynchronous update

Claim: the energy

- decreases, if neuron k changes

J.J. Hopfield (1982) Neural networks and physical
systems with emergent collective computational abilities.
Proc. Natl. Acad. Sci. USA 79, pp. 2554—-2558




3. Energy picture

energy picture historically Important: (5 2 eren: caiecive compiniona anies
- capacity calculations
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Hopfield (1984 ), Neurons with graded response have

collective computational properties like those of
two-state neurons. PNAS 81: 3088-3092
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energy picture is a side-track: colecive computatonalpropertes e hose o
- It needs symmetric interactions



Quiz 3: Energy picture and Lyapunov function

Let be the energy of the Hopfield model
and the dynamics.

[] The energy picture requires random patterns with prob = 0.5
[ ] The energy picture requires symmetric weights
[] It follows from the energy picture of the Hopfield model that the
only fixed points are those where the overlap is exactly one
[ ] In each step, the value of a Lyapunov function decreases or
stays constant

[ ] Under deterministic dynamics the above energy is a Lyapunov
function
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3. Energy picture

We will not use the energy picture —
because the assumption of symmetric
interactions is too restrictive.

We are interested in biology:

while brain-areas are typically reciprocally
connected, it is unlikely that we would find
perfect symmetry of interactions on a
neuron-to-neuron basis.

Nearly all calculations can be done
without the energy picture

Hopfield model
special case

attractor energy

\4

biology
(asymmetric interactions)



6.3 Summary:
- If the weight matrix is symmetric, then network dynamics can be described as
down-hill movement in an energy landscape.

- The Energy is also called a Lyapunov function of the system.

- In the Hopfield model, states of lowest energy correspond to the attractors (which
in term correspond to states with overlap 1, and hence to the stored memories)

-  The energy picture is much more restrictive than the general attractor dynamics.



~ 4. attractor memory with ‘low’ activity patterns

Random patterns +/-1 with low activity -
e.g.10 percent of neurons should be active in each pattern

with overlap

yield dynamics

b=0 or b=1



6.4 Summary:

- In the standard-Hopfield model, the patterns that are stored have 50 percent active
and 50 percent inactive neurons. Low activity-patterns means that in each pattern
only a small number of neurons is active.

- With an appropriate choice of the connection weights, low-activity patterns can
become stable fixed points of the attractor dynamics

- Note that there is no need for the weights to be symmetric!



~ 5. attractor memory with spiking neurons

L1 —®

Total input to neuron

- rewrite binary state variable:

- use low firing probabillity (in time)
- use low activity (across neurons)
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L1 —®

Total input to neuron i - rewrite binary state variable:

- use low firing probability (in time)
- use low activity (across neurons)



~ 5. attractor memory with spiking neurons
11

L 1 —®

Total input to neuron ; Separation of excitation/ inhibitior
- rewrite weights:




- 9. Separation of excitation and inhibition

Image: Neuronal Dynamics,
Gerstner et al.,

I N h 1 ~ Cambridge Univ. Press (2014)
- Inh1
Hebb-rule: . Inh?
' O
Active together A
S O

theta



9. attractor memory with 8000 spiking neurons
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Image: Neuronal Dynamics,
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~ 5. attractor memory with spiking neurons

Memory with spiking neurons

-Low activity of patterns?
-Separation of excitation and inhibition? All possible
-Modeling with integrate-and-fire?
-Asymmetric weights

-Low connection probabillity

-Neural data?



5. memory data (review from week 5)

Human Hippocampus

=

Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., and Fried, I. (2005).
Invariant visual representation by single neurons in the human brain.
Nature, 435:1102-1107.



5. memory data: delayed match to sample

Delayed Matching to Sample Task
Animal experimentsA
Do *

sample 15 match
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5. memory data: delayed match-to-sample

20 r

[Hz] iﬁ ”ﬂ‘{f "‘ﬂfﬂ’n{]f

T _ T
sample 15 match

Miyashita, Y. (1988). Neuronal correlate of visual associative long-term
memory in the primate temporal cortex. Nature, 335:817-820.



5. memdry data: delayed match-to-sample

20
Lg¥4

sample match

Rainer and Miller (2002). Timecourse of object-related neural activity in the primate
prefrontal cortex during a short-term memory task. Europ. J. Neurosci., 15:1244-1254.
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9. attractor memory In realistic networks

Memory In realistic networks

-Mean activity of patterns? -> can be low
-Asymmetric connections? - possible
-Better neuron model? - possible
-Separation of excitation/inhibition? - possible
-Low probability of connections”? - possible

Attractor Memory model

- Abstract concept!

- Influential!

- General!

- Neural data!

- consistent with spikinbg variability!



9. attractor memory In realistic networks

Memory In realistic networks

-Mean activity of patterns? -> can be low
-Asymmetric connections? - possible
-Better neuron model? - possible
-Separation of excitation/inhibition? - possible
-Low probability of connections”? - possible

Attractor Memory model

- Abstract concept! Outlook to final week:
- Influential - Neural manifolds

- General! - Low-rank connectivity
- Neural data!

- consistent with spikinbg variability!



6.5 Summary:
From a biological perspective, we need to consider several modifications of the
Hopfield model.

The stored patterns should be low-activity patterns.

Neurons are not ‘spins’ with values +/-1, but send out spikes that are better
described by values 0/1.

After a spike there is a refractory time or at least a reset

A given neuron sends out either excitatory or inhibitory synapses, but normally not
both.

Connections are not symmetric

All these modifications can be implemented in attractor networks. Moreover In
delayed-match to sample tasks, activity traces suggest vaguely attractor dynamics.
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