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Part I: Single Neurons,
deterministic. Week 1-4

Week 1: A first simple neuron model/
neurons and mathematics
Week 2: Hodgkin-Huxley models and
biophysical modeling
Week 3: Two-dimensional models and
phase plane analysis
Week 4: Two-dimensional models,
type | and type Il models
Nonlinear IF model
Week 5,6: Associative Memory, Hebb, Hopfield
Week 7,8,9. Networks, cognition,decision
Week 10-13. Noise models, noisy neurons,
coding, and network dynamics
Week 14: Neural Manifolds and low-rank networks
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Gomputational Neuroscience: Neuronal Dynamics =PrL

LEARNING OUTCOMES

*Solve linear one-dimensional
differential equations
*Analyze two-dimensional models
In the phase plane
*Develop a simplified model by
separation of time scales
*Analyze connected networks
iIn the mean-field limit
Formulate stochastic models of
biological phenomena
Formalize biological facts into math
*Prove stablility and convergence
*Apply model concepts in simulations
*Predict outcome of dynamics
*Describe neuronal phenomena
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How to best use the time In the inverted classroom

[ ] prof should spend more time on the Quiz questions
[ ] prof should spend less time on the Quiz questions

[ ] prof should spend more time on repetition of contents
[ ] prof should spend less time on repetition of contents

[ ] prof should be more explicit in answering posted questions
[ ] prof should be more concise in answering posted questions

[ ] it would be great if my classmates asked more questions
[ ] it would be great if my classmates asked fewer questions

[ ] Overall, the exercises should start after a max of 25 minutes
[ ] Overall timing OK as is



Before | start, are there any questions?

Are there any comments?
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4.1. Summary: Separation of time scales

We have seen a first separation of time scales last week to remove the m-

variable. Today | have introduced a second separation of time scale: the

w-variable is (in reality only a bit) slower than the voltage variable.

For mathematical reasons we considered the limit where w is MUCH

slower than the voltage variable.

In this limit, the flow arrows are all horizontal — except in the region very

close to the u-nulicline.

This condition can be exploited for two interesting stimuli:

(1) A constant stimulus strong enough to evoke a limit cycle. In this case
the trajectory either jumps or follows the u-nulicline.

(i1) A pulse stimulus. In this case, the voltage either goes rapidly back to
the fixed point or it takes a detour.

We look at both stimulation paradigms again throughout the lecture.
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4.2. Type | Neuron Models: saddie-node bifurcation

stimulus constant input
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4.2. Typeland Il Neuron Models

2-dimensional equation
. stimulus neuron

ramp input/

| . 4 N
| constant input %
o

- /

Type | and type Il models

| f-1 curve -1 curve
Constant input f

- repetitive firing (or not) / e
- limit cycle (or

IO IO
not)

Enables graphical analysis!




A. 2-dimensional neuron model with (supercritical) saddle-node-
onto-limit cycle bifurcation

[ ] The neuron model is of type |l, because there is a jump in the f-I

curve

[ ] The neuron model is of type |, because the f-| curve is continuous

[ ] The neuron model is of type |, if the limit cycle passes through a

regime where the flow is very slow.

B. Threshold in a 2-dimensional neuron model with subcritical

Hopf bifurcation

[ ] The neuron model is of type |l, because there is a jump in the f-I

curve

[ ] The neuron model is of type |, because the f-| curve is continuous

[ ] In the regime below the Hopf bifurcation, bistability between
regular firing and rest state is possible.




A. 2-dimensional neuron model with (supercritical) saddle-node-
onto-limit cycle bifurcation
[] [ ] The neuron model is of type |l, because there is a jump in the f-I
curve
x] [] The neuron model is of type |, because the f-I curve is continuous
[x] [] The neuron model is of type I, if the limit cycle passes through a
regime where the flow is very slow.

B. Threshold in a 2-dimensional neuron model with subcritical

[ ] The neuron model is of type |l, because there is a jump in the f-I

curve

[ ] The neuron model is of type |, because the f-I curve is continuous

[ ] In the regime below the Hopf bifurcation, bistability between
regular firing and rest state is possible.

|
|
|
|
|
|
|
|
|
|
|
|
|
: Hopf bifurcation
|
|
|
|
|
|
|
|
|
|
|
|
|




[ ]

[X]
[X]

[X]

A. 2-dimensional neuron model with (supercritical) saddle-node-
onto-limit cycle bifurcation

[ ] The neuron model is of type |l, because there is a jump in the f-I

curve

[ ] The neuron model is of type |, because the f-I curve is continuous

[ ] The neuron model is of type |, if the limit cycle passes through a

regime where the flow is very slow.

B. Threshold in a 2-dimensional neuron model with subcritical

Hopf bifurcation

[ ] The neuron model is of type |l, because there is a jump in the f-I

curve

[ ] The neuron model is of type |, because the f-I curve is continuous

[ ] In the regime below the Hopf bifurcation, bistability between
regular firing and rest state is possible.




A. 2-dimensional neuron model with (supercritical) saddle-node-
onto-limit cycle bifurcation
[] [ ] The neuron model is of type |l, because there is a jump in the f-I
curve
x] [] The neuron model is of type |, because the f-I curve is continuous
[x] [] The neuron model is of type I, if the limit cycle passes through a
regime where the flow is very slow.

B. Threshold in a 2-dimensional neuron model with subcritical

[ ] The neuron model is of type |l, because there is a jump in the f-I
Xl curve

[ ] The neuron model is of type |, because the f-I curve is continuous
[ ] [ ] In the regime below the Hopf bifurcation, bistability between
[X] regular firing and rest state is possible.

|
|
|
|
|
|
|
|
|
|
|
|
|
: Hopf bifurcation
|
|
|
|
|
|
|
|
|
|
|
|
|




4.2. Summary: Limit cycles and neuron models

1) In 2 dimensions we have a powerful theorem: if we can find a bounding
box around an unstable fixed such that all flow arrows point inside the
box, then there must be a limit cycle.

2) We can change the stability of the fixed point(s) by a constant input.

3) The limit cycle MAY appear at the moment when the fixed point looses
stability. In this case it would often be a limit cycle of small amplitude in
the neighborhood of the fixed point.

4) But we can also observe bistability between the stable fixed point and a
limit cycle.

5) Neuron models can be classified according to the bifurcation type that
makes a limit cycle appear. Type 1 neuron models have a smooth f-I
curve and are always linked to a saddle-node-onto limit cycle bifurcation.
6) Type 2 models can have various origins; an example is the subcritical
Hopf-bifurcation



4.3 Type | model: Delayed spike initation for Pulse input
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4.3 FitzHugh-Nagumo model: Threshold for Puise input
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Week 4- Quiz4.2.

A. Threshold in a 2-dimensional neuron model with saddle-node bifurcation
[] The voltage threshold for repetitive firing is always the same
as the voltage threshold for pulse input.

[ ] In the regime below the saddle-node bifurcation, the voltage threshold for
repetitive firing is given by the stable manifold of the saddle.

[ ] In the regime below the saddle-node bifurcation, the voltage threshold for
action potential firing in response to a short pulse input is given by the
stable manifold of the saddle point.
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Week 4- Quiz4.3.

B. Threshold in a 2-dimensional neuron model with subcritical Hopf bifurcation

[ ] in the regime below the Hopf bifurcation, the voltage threshold for firing of an
iIsolated action potential firing in response to a short pulse input is the middle branch of
the u-nullicline.

[ ] In the regime below the bifurcation, a voltage threshold for firing of an isolated
action potential f in response to a short pulse input exists only if
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[ ] in the regime below the Hopf bifurcation, the voltage threshold for firing of an
iIsolated action potential firing in response to a short pulse input is the middle branch of
the u-nulicline.

X

X [ ] in the regime below the bifurcation, a voltage threshold for firing of an isolated
action potential f in response to a short pulse input exists only if



~ A.3.Summary: Pulse input and thresholds

Neuron models with Saddle-node-onto limit cycle bifurcation have

- a smooth f-1 curve
- a well-defined threshold for pulse input: either an AP occurs or not.

- Transition from subthreshold to superthreshold happens via an AP with
very large delay.

Neuron models with subcritical Hopf-bifurcation have

- a non-smooth f-I curve
- not a well-defined threshold: there is a small regime where an AP

transforms smoothly into non-AP
- However, together with a separation of time scale, the middle branch of

the u-nulicline acts as a voltage threshold.



4.4. 2D model, after spike initiation
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4.4. 2D model, after spike initiation
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4.4. 2D model, after spike initiation
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4.4. Spike initiation: Nonlinear Integratt_e-and-rire Model
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4.4. Spike initiation: Nonlinear Integratg-and-rire Model
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During spike initiation, the 2D models with separation of time scales
can be reduced to a 1D model equivalent to nonlinear integrate-and-fire
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4.4 Extension to Adaptive Exponential I&F

AdEx model,
Brette&Gerstner (2005):



Add adaptation variables:
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after each spike
jumps by an amount

RI()

4.4 Extension to Adaptive Exponential 1&F

Exponential 1&F
+ 1 adaptation var.
= AdEX

AdEx model,
Brette&Gerstner (2005):



4.4. Summary: from HH to generalized integrate-and-fire

- The reduction of the Hodgkin-Huxley (HH) model from 4 to 2
dimensions generates nonlinear nullclines with several intersections.

- If we zoom in on the two left-most intersections the u-nulicline looks
similar to a superposition of a linear and an exponential term

- Between (rare) spike events, the w-variable has always time to go back
to resting potential. Hence during spike-initiation we can consider the
w-variable as constant.

- This gives rise to the exponential integrate-and-fire model

- Adaptation means that for constant input the interspike intervals
Increase over time

- The standard HH-model shows no (or very little) adaptation

- More complicated Hodgklin-Huxley type models would have additional
variables (describing other ion channels) that cause adaptation

- In integrate-and-fire models, these additional adaptation variables can

often be approximated by a linear dynamics for new variables wx
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LEARNING OUTCOMES
*Solve linear one-dimensional

Week 1: A first simple neuron model/ differential equations
heurons and mathematics -Analyze two-dimensional models
Week 2: Hodgkin-Huxley models and in the phase plane
biophysical modeling Develop a simplified model by
Week 3. Two-dimensional models and separation of time scales
phase plane analysis -Analyze connected networks
Week 4: Two-dimensional models, in the mean-field limit
type | and type Il models *Formulate stochastic models of
transition to IF models biological phenomena

*Formalize biological facts into math
*Prove stablility and convergence
*Apply model concepts in simulations
*Predict outcome of dynamics
*Describe neuronal phenomena
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