
Week 4  
Reducing detail: 
Analysis of 2D models

3.1 From Hodgkin-Huxley to 2D   

3.2  Phase Plane Analysis 
       

3.3 Analysis of  a 2D Neuron Model 
         
4.1 Separation of time scales 
4.2 Type I and II Neuron Models 
         -  limit cycles: constant input 
4.3  Pulse input 
         -  where is the firing threshold? 
4.4. Nonlinear integrate-and-fire 
      - further reductin to 1 dimension 

Reading for week 4: 
NEURONAL DYNAMICS 
- Ch. 4.4 – 4.7 

Cambridge Univ. Press

Computational Neuroscience: 
Neuronal Dynamics

Lecture 4 of video series (last 60 minutes) 
https://lcnwww.epfl.ch/gerstner/NeuronalDynamics-MOOCall.html



Week 1: A first simple neuron model/ 
                       neurons and mathematics 
Week 2:  Hodgkin-Huxley models and 
                        biophysical modeling 
Week 3: Two-dimensional models and  
                        phase plane analysis 
Week 4: Two-dimensional models, 
                        type I and type II models 
                       Nonlinear IF model 
Week 5,6: Associative Memory, Hebb, Hopfield 
Week 7,8,9: Networks, cognition,decision 
Week 10-13: Noise models, noisy neurons,    
                   coding, and network dynamics 
Week 14: Neural Manifolds and low-rank networks

 Computational Neuroscience: Neuronal Dynamics
Part I: Single Neurons, 
deterministic. Week 1-4 LEARNING OUTCOMES  

•Solve linear one-dimensional  
  differential equations 
•Analyze two-dimensional models  
    in the phase plane 
•Develop a simplified model by  
    separation of time scales 
•Analyze connected networks  
    in the mean-field limit 
•Formulate stochastic models of  
    biological phenomena 
•Formalize biological facts into math 
•Prove stability and convergence 
•Apply model concepts in simulations 
•Predict outcome of dynamics 
•Describe neuronal phenomena
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How to best use the time in the inverted classroom 
  [ ] prof should spend more time on the Quiz questions 
  [ ] prof should spend less time on the Quiz questions 
   
  [ ] prof should spend more time on repetition of contents 
  [ ] prof should spend less time on repetition of contents 

  [ ] prof should be more explicit in answering posted questions 
  [ ] prof should be more concise in answering posted questions 

  [ ] it would be great if my classmates asked more questions 
  [ ] it would be great if my classmates asked fewer questions 

  [ ] Overall, the exercises should start after a max of 25 minutes 
  [ ] Overall timing OK as is 



Before I start, are there any questions? 

Are there any comments?



stimulus

3.2.  Nullclines of reduced HH model

u-nullcline

w-nullcline
Image: Neuronal Dynamics,  
Gerstner et al., 
 Cambridge Univ. Press (2014)
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Separation of time scales

w

u
I(t)=0

Stable fixed point

Δu
Δw

Δw<<Δu
Unless close to nullcline

stimulus



 4.1. Summary: Separation of time scales
We have seen a first separation of time scales last week to remove the m-
variable.  Today I have introduced a second separation of time scale: the 
w-variable is (in reality only a bit) slower than the voltage variable. 
For mathematical reasons we considered the limit where w is MUCH 
slower than the voltage variable. 
In this limit, the flow arrows are all horizontal – except in the region very 
close to the u-nullcline. 
This condition can be exploited for two interesting stimuli:  
(i) A constant stimulus strong enough to evoke a limit cycle. In this case 

the trajectory either jumps or follows the u-nullcline. 
(ii) A pulse stimulus. In this case, the voltage either goes rapidly back to 

the fixed point or it takes a detour. 
We look at both stimulation paradigms again throughout the lecture.
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 4.2.   Type I Neuron Models: saddle-node bifurcation

constant input 
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stimulus

w

u
I(t)=I0

unstable

- flow arrows,  
- ghost/ruins

 4.2.   Type I Neuron Models: saddle-node bifurcation

constant input 

+RI(t)



4.2.   Type I and II Neuron Models

Type I and   type II  models

I0 I0

f
f-I curve f-I curve

ramp input/ 
constant input

I0

 neuron

Enables graphical analysis!

Constant input 
       repetitive firing (or not) 
       limit cycle (or 
not) 

2-dimensional equation
stimulus



Neuronal Dynamics –  Quiz 4.1.
A. 2-dimensional neuron model with (supercritical) saddle-node-

onto-limit cycle bifurcation  
[ ] The neuron model is of type II, because there is a jump in the f-I 
curve 
[ ] The neuron model is of type I, because the f-I curve is continuous 
[ ] The neuron model is of type I, if the limit cycle passes through a 
regime where the flow is very slow. 

B. Threshold in a 2-dimensional neuron model with subcritical 
Hopf bifurcation  
[ ] The neuron model is of type II, because there is a jump in the f-I 
curve 
[ ] The neuron model is of type I, because the f-I curve is continuous 
[ ] in the regime below the Hopf bifurcation, bistability between 
    regular firing and rest state is possible. 

[ ] 

[x] 
[x] 

[x] 

[ ] 
[X ] 
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 4.2. Summary: Limit cycles and neuron models
1) In 2 dimensions we have a powerful theorem: if we can find a bounding 
box around an unstable fixed such that all flow arrows point inside the 
box, then there must be a limit cycle. 
2) We can change the stability of the fixed point(s) by a constant input. 
3) The limit cycle MAY appear at the moment when the fixed point looses 
stability. In this case it would often be a limit cycle of small amplitude in 
the neighborhood of the fixed point.  
4) But we can also observe bistability between the stable fixed point and a 
limit cycle. 
5) Neuron models can be classified according to the bifurcation type that 
makes a limit cycle appear. Type 1 neuron models have a smooth f-I 
curve and are always linked to a saddle-node-onto limit cycle bifurcation. 
6) Type 2 models can have various origins; an example is the subcritical 
Hopf-bifurcation



 4.3 Type I model: Delayed spike initation  for Pulse input

- Stable manifold plays role of threshold 
     for pulse input 
- Delayed spike initiation close to 
   ‘Threshold’ (for pulse input)

Image: Neuronal Dynamics,  
Gerstner et al., 
 Cambridge Univ. Press (2014)



 4.3  FitzHugh-Nagumo model: Threshold for Pulse input

Middle branch of u-nullcline  
plays role of 
   ‘Threshold’ (for pulse input)

Image: Neuronal Dynamics,  
Gerstner et al., 
 Cambridge Univ. Press (2014)

Assumption:



Week 4–  Quiz 4.2.
A. Threshold in a 2-dimensional neuron model with saddle-node bifurcation  
[ ] The voltage threshold for repetitive firing is always the same 
    as the voltage threshold for pulse input. 

[ ] in the regime below the saddle-node bifurcation, the voltage threshold for 
repetitive firing  is given by the stable manifold of the saddle. 

[ ] in the regime below the saddle-node bifurcation, the voltage threshold for 
action potential firing in response to a short pulse input is given by the 
stable manifold of the saddle point.  

[ ] 

[ ] 

[x] 
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Week 4–  Quiz 4.3.
B. Threshold in a 2-dimensional neuron model with subcritical Hopf bifurcation  

[ ] in the regime below the Hopf bifurcation, the voltage threshold for firing of an 
isolated action potential firing in response to a short pulse input is the middle branch of 
the u-nullcline. 

[ ] in the regime below the  bifurcation, a voltage threshold for firing of an isolated 
action potential f in response to a short pulse input exists only if  

[  ] 

[x] 



Week 4–  Quiz 4.3.
B. Threshold in a 2-dimensional neuron model with subcritical Hopf bifurcation  

[ ] in the regime below the Hopf bifurcation, the voltage threshold for firing of an 
isolated action potential firing in response to a short pulse input is the middle branch of 
the u-nullcline. 

[ ] in the regime below the  bifurcation, a voltage threshold for firing of an isolated 
action potential f in response to a short pulse input exists only if  

[  ] 

[x] 



 4.3. Summary: Pulse input and thresholds
Neuron models with Saddle-node-onto limit cycle  bifurcation have 
- a smooth f-I curve 
- a well-defined threshold for pulse input: either an AP occurs or not. 
- Transition from subthreshold to superthreshold happens via an AP with 

very large delay. 

Neuron models with subcritical Hopf-bifurcation have 
- a non-smooth f-I curve 
- not a well-defined threshold: there is a small regime where an AP 

transforms smoothly into non-AP 
- However, together with a separation of time scale, the middle branch of 

the u-nullcline acts as a voltage threshold.



4.4.   2D model, after spike initiation

Separation of time scales:
w is  constant (if not firing) 

2-dimensional equation
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4.4.   2D model, after spike initiation

Separation of time scales:
w is  constant (if not firing) 

2-dimensional equation

Relevant during spike  
and immediately 
after downswing of AP

Integrate-and-fire: 
threshold+reset for AP 



4.4.  Spike initiation:  Nonlinear Integrate-and-Fire Model

Image: Neuronal Dynamics,  
Gerstner et al., 
 Cambridge Univ. Press (2014)
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4.4.  Spike initiation:  Nonlinear Integrate-and-Fire Model

Image: Neuronal Dynamics,  
Gerstner et al., 
 Cambridge Univ. Press (2014) Nonlinear I&F (see week 1!)

During spike initiation, the 2D models with separation of time scales 
 can be reduced to a 1D model equivalent to nonlinear integrate-and-fire



4.3. Exponential Integrate-and-Fire Model

Image: Neuronal Dynamics,  
Gerstner et al., 
 Cambridge Univ. Press (2014)

 Nonlinear I&F (see week 1!)

Exponential integrate-and-fire model 
                  (EIF)



Add adaptation variables:
 4.4 Extension to  Adaptive Exponential I&F

+RI(t)
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Add adaptation variables:

jumps by an amount 
after each spikeSPIKE AND 

RESET
AdEx model, 
Brette&Gerstner (2005):

 4.4 Extension to  Adaptive Exponential I&F

+RI(t)



Add adaptation variables:

jumps by an amount 
after each spikeSPIKE AND 

RESET
AdEx model, 
Brette&Gerstner (2005):

 4.4 Extension to  Adaptive Exponential I&F

Exponential I&F 
+ 1 adaptation var. 
= AdEx 

+RI(t)



 4.4. Summary: from HH to generalized integrate-and-fire
- The reduction of the Hodgkin-Huxley (HH) model from 4 to 2 

dimensions generates nonlinear nullclines with several intersections.  
- If we zoom in on the two left-most intersections the u-nullcline looks 

similar to a superposition of a linear and an exponential term 
- Between (rare) spike events, the w-variable has always time to go back 

to resting potential. Hence during spike-initiation we can consider the 
w-variable as constant. 

- This gives rise to the exponential integrate-and-fire model 

- Adaptation means that for constant input the interspike intervals 
increase over time 

- The standard HH-model shows no (or very little) adaptation 
- More complicated Hodgklin-Huxley type models would have additional 

variables (describing other ion channels) that cause adaptation 
- In integrate-and-fire models, these additional adaptation variables can 

often be approximated by a linear dynamics for new variables wk
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