

Computational Neuroscience: Neuronal Dynamics

EPFL

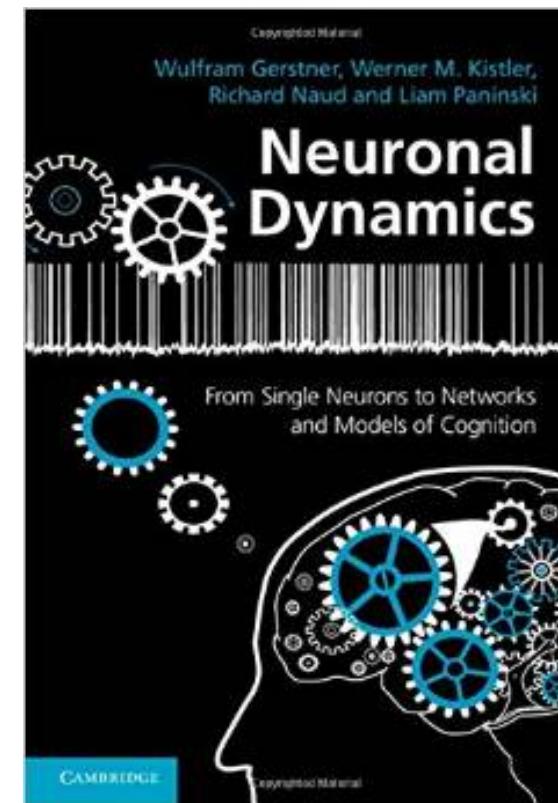
Week 4

Reducing detail:

Analysis of 2D models

Reading for week 4:
NEURONAL DYNAMICS
- Ch. 4.4 – 4.7

Cambridge Univ. Press



- 3.1 From Hodgkin-Huxley to 2D
- 3.2 Phase Plane Analysis
- 3.3 Analysis of a 2D Neuron Model
- 4.1 Separation of time scales**
- 4.2 Type I and II Neuron Models**
 - limit cycles: constant input
- 4.3 Pulse input**
 - where is the firing threshold?
- 4.4. Nonlinear integrate-and-fire**

Lecture 4 of video series (last 60 minutes) - further reduction to 1 dimension
<https://lcnwww.epfl.ch/gerstner/NeuronalDynamics-MOOCall.html>

Computational Neuroscience: Neuronal Dynamics

EPFL

Part I: Single Neurons, deterministic. Week 1-4

**Week 1: A first simple neuron model/
neurons and mathematics**

**Week 2: Hodgkin-Huxley models and
biophysical modeling**

**Week 3: Two-dimensional models and
phase plane analysis**

**Week 4: Two-dimensional models,
type I and type II models
Nonlinear IF model**

Week 5,6: Associative Memory, Hebb, Hopfield

Week 7,8,9: Networks, cognition, decision

**Week 10-13: Noise models, noisy neurons,
coding, and network dynamics**

Week 14: Neural Manifolds and low-rank networks

LEARNING OUTCOMES

- Solve linear one-dimensional differential equations
- Analyze two-dimensional models in the phase plane
- Develop a simplified model by separation of time scales
- Analyze connected networks in the mean-field limit
- Formulate stochastic models of biological phenomena
- Formalize biological facts into math
- Prove stability and convergence
- Apply model concepts in simulations
- Predict outcome of dynamics
- Describe neuronal phenomena

Computational Neuroscience: Neuronal Dynamics

EPFL

Part I: Single Neurons, deterministic. Week 1-4

**Week 1: A first simple neuron model/
neurons and mathematics**

**Week 2: Hodgkin-Huxley models and
biophysical modeling**

**Week 3: Two-dimensional models and
phase plane analysis**

**Week 4: Two-dimensional models,
type I and type II models
Nonlinear IF model**

Week 5,6: Associative Memory, Hebb, Hopfield

Week 7,8,9: Networks, cognition, decision

**Week 10-13: Noise models, noisy neurons,
coding, and network dynamics**

Week 14: Neural Manifolds and low-rank networks

LEARNING OUTCOMES

- Solve linear one-dimensional differential equations
- Analyze two-dimensional models in the phase plane
- Develop a simplified model by separation of time scales
- Analyze connected networks in the mean-field limit
- Formulate stochastic models of biological phenomena
- Formalize biological facts into math
- Prove stability and convergence
- Apply model concepts in simulations
- Predict outcome of dynamics
- Describe neuronal phenomena

Computational Neuroscience: Neuronal Dynamics

EPFL

Part I: Single Neurons, deterministic. Week 1-4

Week 1: A first simple neuron model/
neurons and mathematics

Week 2: Hodgkin-Huxley models and
biophysical modeling

Week 3: Two-dimensional models and
phase plane analysis

Week 4: Two-dimensional models,
type I and type II models
Nonlinear IF model

Week 5,6: Associative Memory, Hebb, Hopfield

Week 7,8,9: Networks, cognition, decision

Week 10-13: Noise models, noisy neurons,
coding, and network dynamics

Week 14: Neural Manifolds and low-rank networks

LEARNING OUTCOMES

- Solve linear one-dimensional differential equations
- Analyze two-dimensional models in the phase plane
- Develop a simplified model by separation of time scales
- Analyze connected networks in the mean-field limit
- Formulate stochastic models of biological phenomena
- Formalize biological facts into math
- Prove stability and convergence
- Apply model concepts in simulations
- Predict outcome of dynamics
- Describe neuronal phenomena

Computational Neuroscience: Neuronal Dynamics

EPFL

Part I: Single Neurons, deterministic. Week 1-4

Week 1: A first simple neuron model/
neurons and mathematics

Week 2: Hodgkin-Huxley models and
biophysical modeling

Week 3: Two-dimensional models and
phase plane analysis

Week 4: Two-dimensional models,
type I and type II models
Nonlinear IF model

Week 5,6: Associative Memory, Hebb, Hopfield

Week 7,8,9: Networks, cognition, decision

Week 10-13: Noise models, noisy neurons,
coding, and network dynamics

Week 14: Neural Manifolds and low-rank networks

LEARNING OUTCOMES

- Solve linear one-dimensional differential equations
- Analyze two-dimensional models in the phase plane
- Develop a simplified model by separation of time scales
- Analyze connected networks in the mean-field limit
- Formulate stochastic models of biological phenomena
- Formalize biological facts into math
- Prove stability and convergence
- Apply model concepts in simulations
- Predict outcome of dynamics
- Describe neuronal phenomena

Part I: Single Neurons, deterministic. Week 1-4

Week 1: A first simple neuron model/
neurons and mathematics

Week 2: Hodgkin-Huxley models and
biophysical modeling

Week 3: Two-dimensional models and
phase plane analysis

Week 4: Two-dimensional models,
type I and type II models
Nonlinear IF model

Week 5,6: Associative Memory, Hebb, Hopfield

Week 7,8,9: Networks, cognition, decision

Week 10-13: Noise models, noisy neurons,
coding, and network dynamics

Week 14: Neural Manifolds and low-rank networks

LEARNING OUTCOMES

- Solve linear one-dimensional differential equations
- Analyze two-dimensional models in the phase plane
- Develop a simplified model by separation of time scales
- Analyze connected networks in the mean-field limit
- Formulate stochastic models of biological phenomena
- Formalize biological facts into math
- Prove stability and convergence
- Apply model concepts in simulations
- Predict outcome of dynamics
- Describe neuronal phenomena

Part I: Single Neurons, deterministic. Week 1-4

Week 1: A first simple neuron model/
neurons and mathematics

Week 2: Hodgkin-Huxley models and
biophysical modeling

Week 3: Two-dimensional models and
phase plane analysis

Week 4: Two-dimensional models,
type I and type II models
Nonlinear IF model

Week 5,6: Associative Memory, Hebb, Hopfield

Week 7,8,9: Networks, cognition, decision

Week 10-13: Noise models, noisy neurons,
coding, and network dynamics

Week 14: Neural Manifolds and low-rank networks

LEARNING OUTCOMES

- Solve linear one-dimensional differential equations
- Analyze two-dimensional models in the phase plane
- Develop a simplified model by separation of time scales
- Analyze connected networks in the mean-field limit
- Formulate stochastic models of biological phenomena
- Formalize biological facts into math
- Prove stability and convergence
- Apply model concepts in simulations
- Predict outcome of dynamics
- Describe neuronal phenomena

Computational Neuroscience: Neuronal Dynamics

Part I: Single Neurons, deterministic. Week 1-4

Week 1: A first simple neuron model/
neurons and mathematics

Week 2: Hodgkin-Huxley models and
biophysical modeling

Week 3: Two-dimensional models and
phase plane analysis

Week 4: Two-dimensional models,
type I and type II models
Nonlinear IF model

Week 5,6: Associative Memory, Hebb, Hopfield

Week 7,8,9: Networks, cognition, decision

Week 10-13: Noise models, noisy neurons,
coding, and network dynamics

Week 14: Neural Manifolds and low-rank networks

LEARNING OUTCOMES

- Solve linear one-dimensional differential equations
- Analyze two-dimensional models in the phase plane
- Develop a simplified model by separation of time scales
- Analyze connected networks in the mean-field limit
- Formulate stochastic models of biological phenomena
- Formalize biological facts into math
- Prove stability and convergence
- Apply model concepts in simulations
- Predict outcome of dynamics
- Describe neuronal phenomena

Computational Neuroscience: Neuronal Dynamics

Part I: Single Neurons, deterministic. Week 1-4

Week 1: A first simple neuron model/
neurons and mathematics

Week 2: Hodgkin-Huxley models and
biophysical modeling

Week 3: Two-dimensional models and
phase plane analysis

Week 4: Two-dimensional models,
type I and type II models
Nonlinear IF model

Week 5,6: Associative Memory, Hebb, Hopfield

Week 7,8,9: Networks, cognition, decision

Week 10-13: Noise models, noisy neurons,
coding, and network dynamics

Week 14: Neural Manifolds and low-rank networks

LEARNING OUTCOMES

- Solve linear one-dimensional differential equations
- Analyze two-dimensional models in the phase plane
- Develop a simplified model by separation of time scales
- Analyze connected networks in the mean-field limit
- Formulate stochastic models of biological phenomena
- Formalize biological facts into math
- Prove stability and convergence
- Apply model concepts in simulations
- Predict outcome of dynamics
- Describe neuronal phenomena

Computational Neuroscience: Neuronal Dynamics

Part I: Single Neurons, deterministic. Week 1-4

Week 1: A first simple neuron model/
neurons and mathematics

Week 2: Hodgkin-Huxley models and
biophysical modeling

Week 3: Two-dimensional models and
phase plane analysis

Week 4: Two-dimensional models,
type I and type II models
Nonlinear IF model

Week 5,6: Associative Memory, Hebb, Hopfield

Week 7,8,9: Networks, cognition, decision

Week 10-13: Noise models, noisy neurons,
coding, and network dynamics

Week 14: Neural Manifolds and low-rank networks

LEARNING OUTCOMES

- Solve linear one-dimensional differential equations
- Analyze two-dimensional models in the phase plane
- Develop a simplified model by separation of time scales
- Analyze connected networks in the mean-field limit
- Formulate stochastic models of biological phenomena
- Formalize biological facts into math
- Prove stability and convergence
- Apply model concepts in simulations
- Predict outcome of dynamics
- Describe neuronal phenomena

Computational Neuroscience: Neuronal Dynamics

Part I: Single Neurons, deterministic. Week 1-4

Week 1: A first simple neuron model/
neurons and mathematics

Week 2: Hodgkin-Huxley models and
biophysical modeling

Week 3: Two-dimensional models and
phase plane analysis

Week 4: Two-dimensional models,
type I and type II models
Nonlinear IF model

Week 5,6: Associative Memory, Hebb, Hopfield

Week 7,8,9: Networks, cognition, decision

Week 10-13: Noise models, noisy neurons,
coding, and network dynamics

Week 14: Neural Manifolds and low-rank networks

LEARNING OUTCOMES

- Solve linear one-dimensional differential equations
- Analyze two-dimensional models in the phase plane
- Develop a simplified model by separation of time scales
- Analyze connected networks in the mean-field limit
- Formulate stochastic models of biological phenomena
- Formalize biological facts into math
- Prove stability and convergence
- Apply model concepts in simulations
- Predict outcome of dynamics
- Describe neuronal phenomena

How to best use the time in the inverted classroom

- [] prof should spend more time on the Quiz questions
- [] prof should spend less time on the Quiz questions

- [] prof should spend more time on repetition of contents
- [] prof should spend less time on repetition of contents

- [] prof should be more explicit in answering posted questions
- [] prof should be more concise in answering posted questions

- [] it would be great if my classmates asked more questions
- [] it would be great if my classmates asked fewer questions

- [] Overall, the exercises should start after a max of 25 minutes
- [] Overall timing OK as is

Before I start, are there any questions?

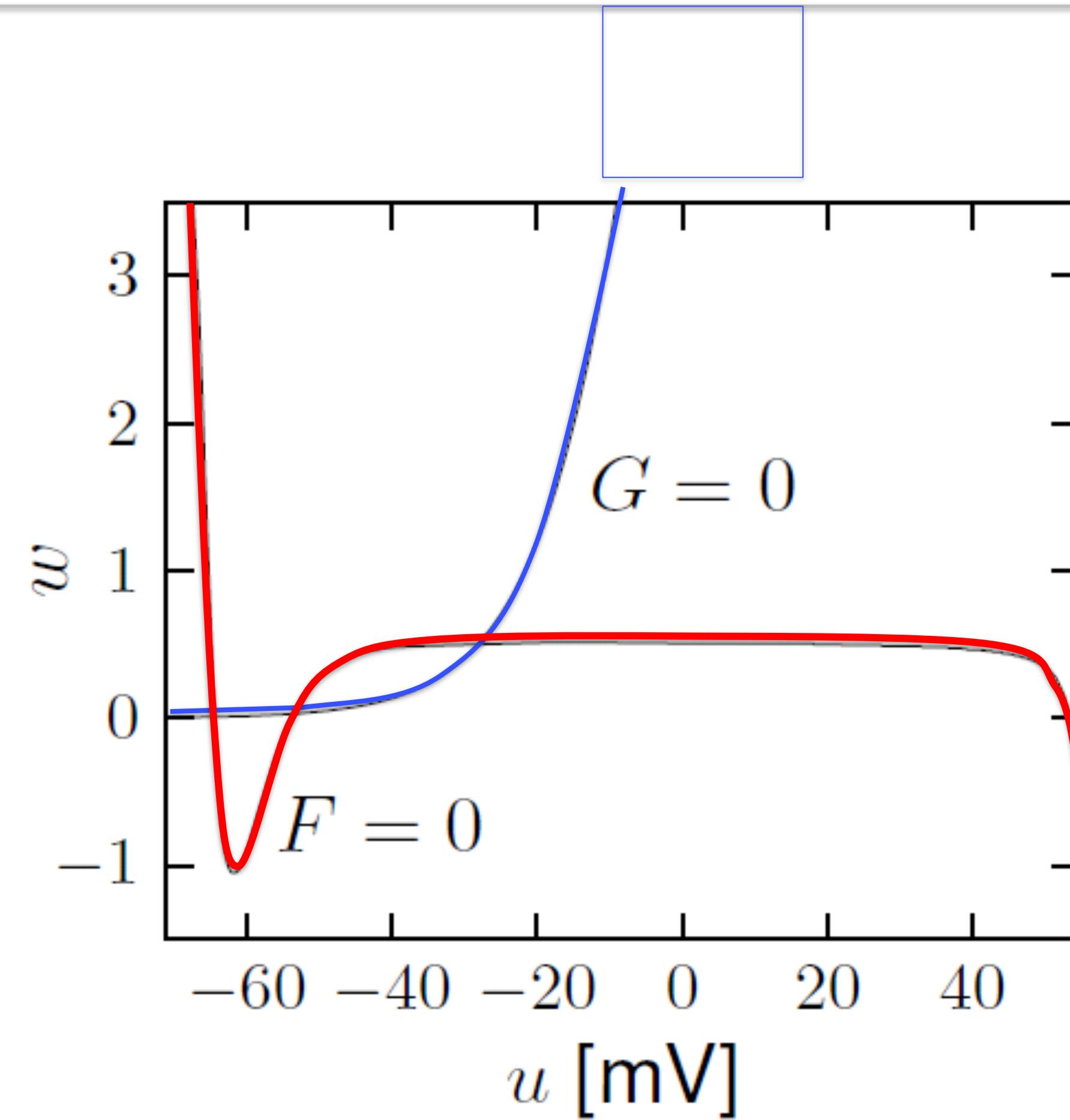
Are there any comments?

3.2. Nullclines of reduced HH model

stimulus
↓

u-nullcline

w-nullcline



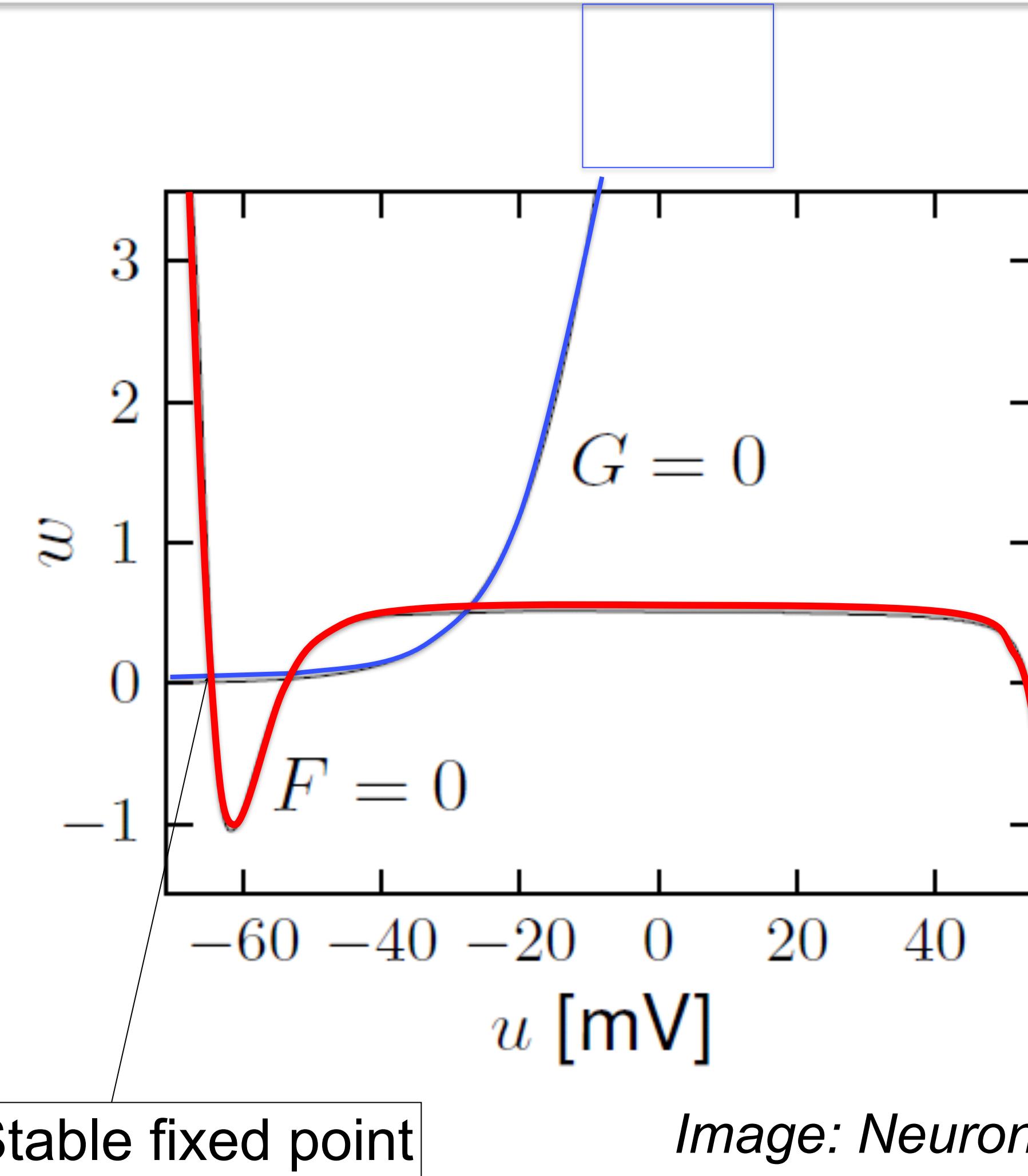
*Image: Neuronal Dynamics,
Gerstner et al.,
Cambridge Univ. Press (2014)*

3.2. Nullclines of reduced HH model

stimulus
↓

u-nullcline

w-nullcline

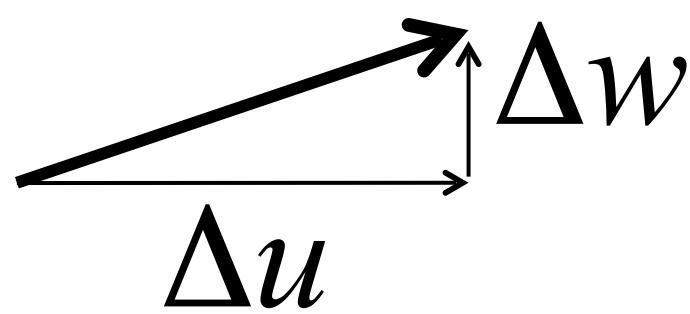
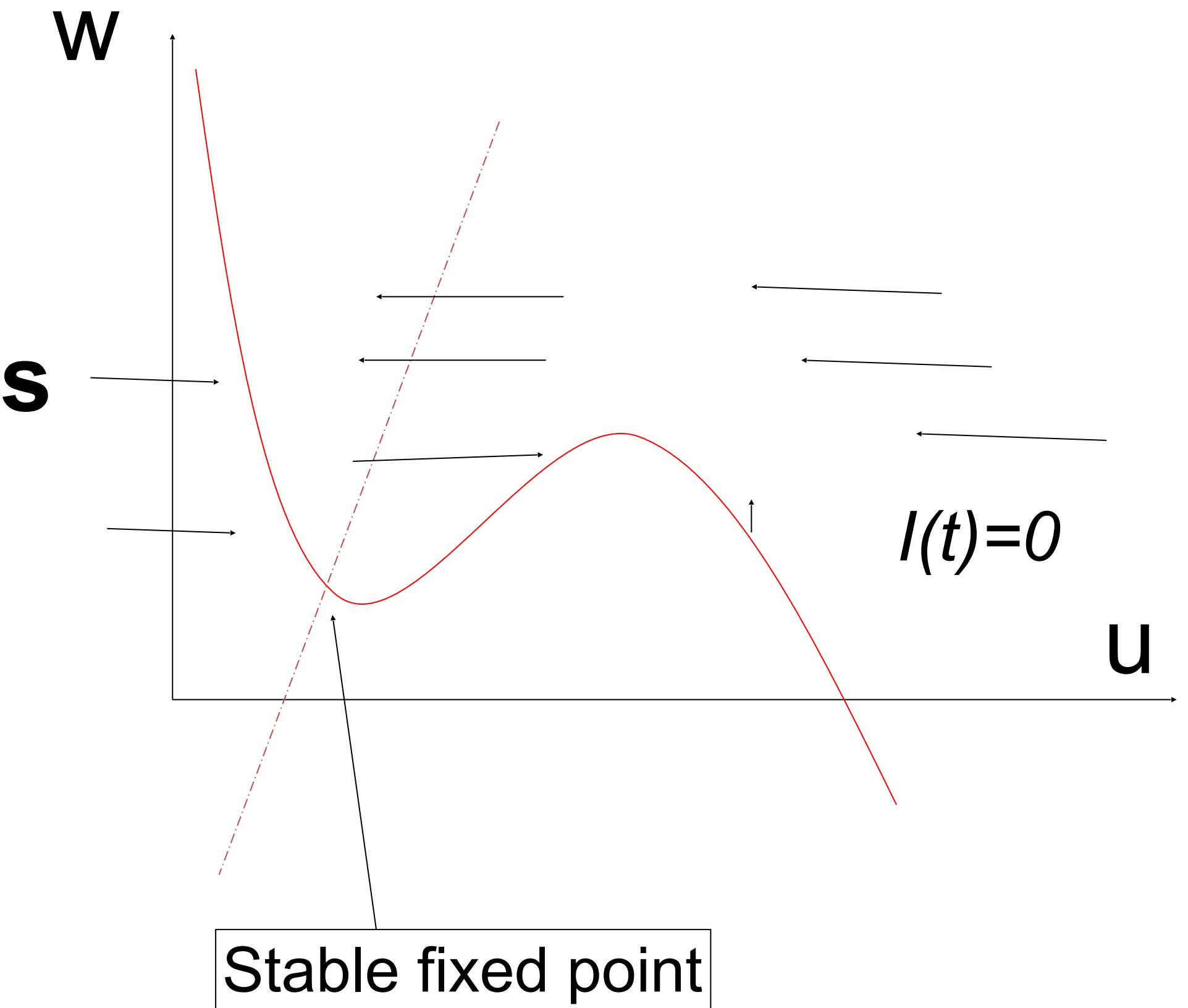


*Image: Neuronal Dynamics,
Gerstner et al.,
Cambridge Univ. Press (2014)*

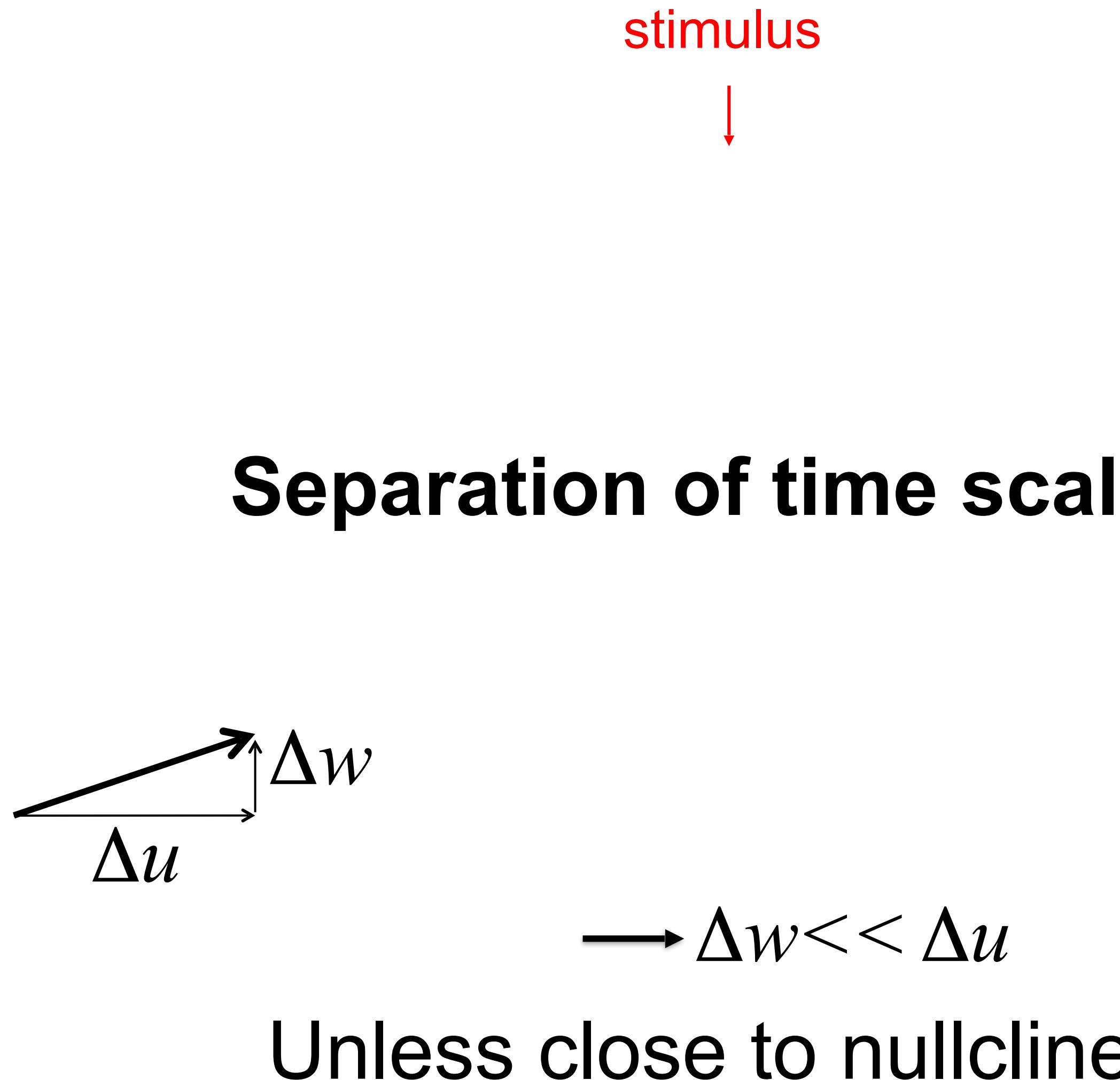
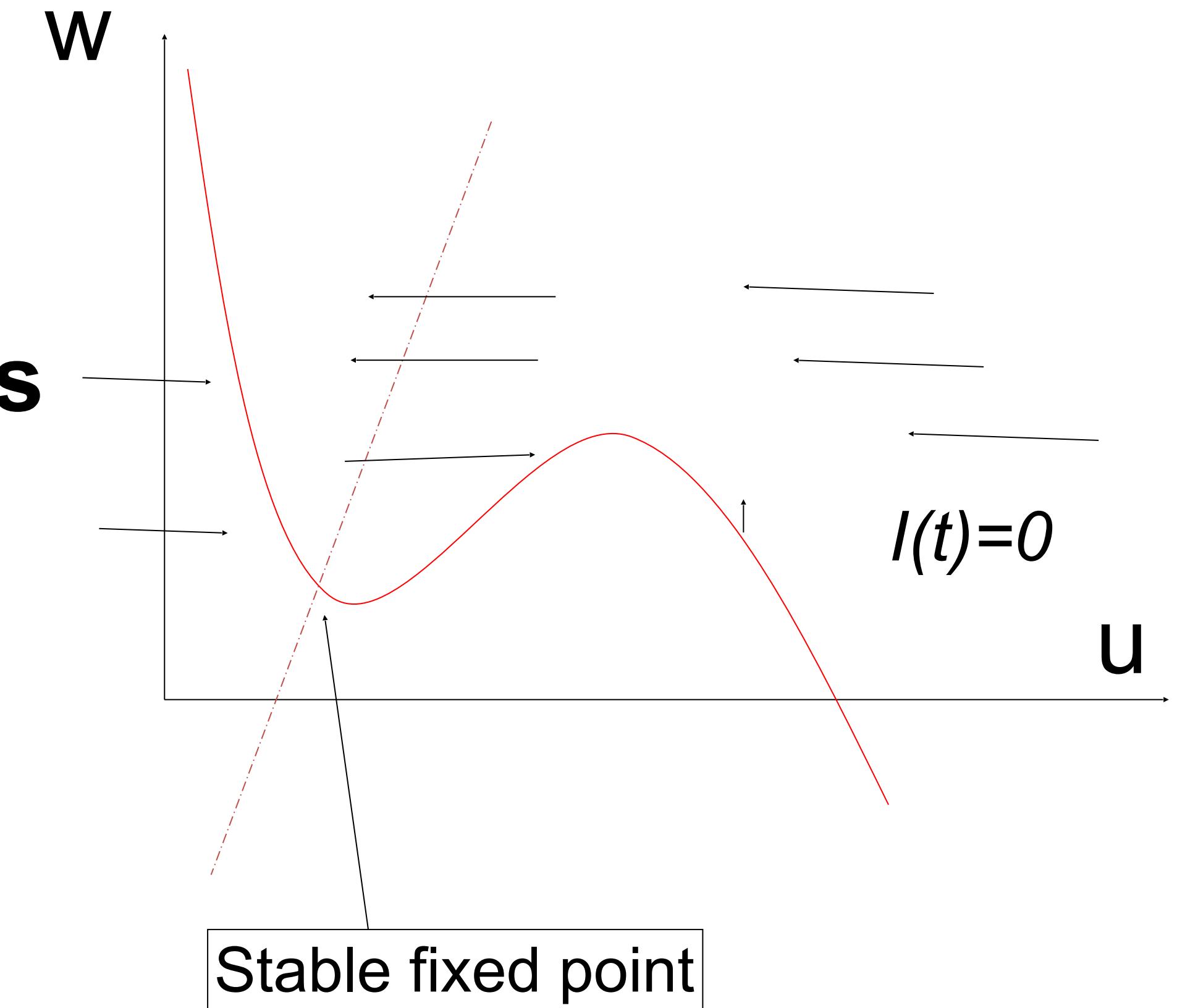
4.1. Second Separation of time scales

stimulus
↓

Separation of time scales



4.1. Second Separation of time scales



4.1. Summary: Separation of time scales

We have seen a first separation of time scales last week to remove the m -variable. Today I have introduced a second separation of time scale: the w -variable is (in reality only a bit) slower than the voltage variable. For mathematical reasons we considered the limit where w is MUCH slower than the voltage variable.

In this limit, the flow arrows are all horizontal – except in the region very close to the u -nullcline.

This condition can be exploited for two interesting stimuli:

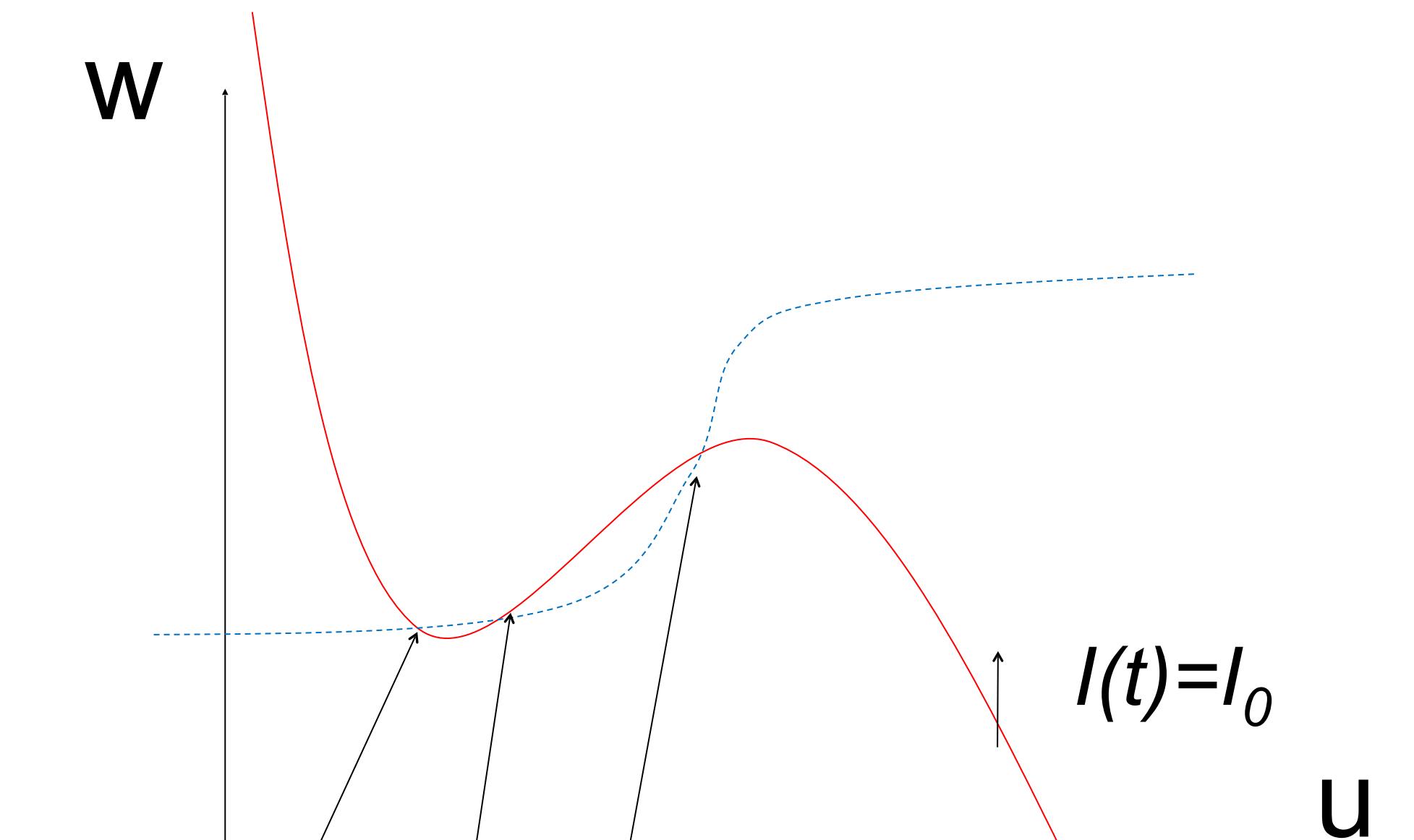
- (i) A constant stimulus strong enough to evoke a limit cycle. In this case the trajectory either jumps or follows the u -nullcline.
- (ii) A pulse stimulus. In this case, the voltage either goes rapidly back to the fixed point or it takes a detour.

We look at both stimulation paradigms again throughout the lecture.

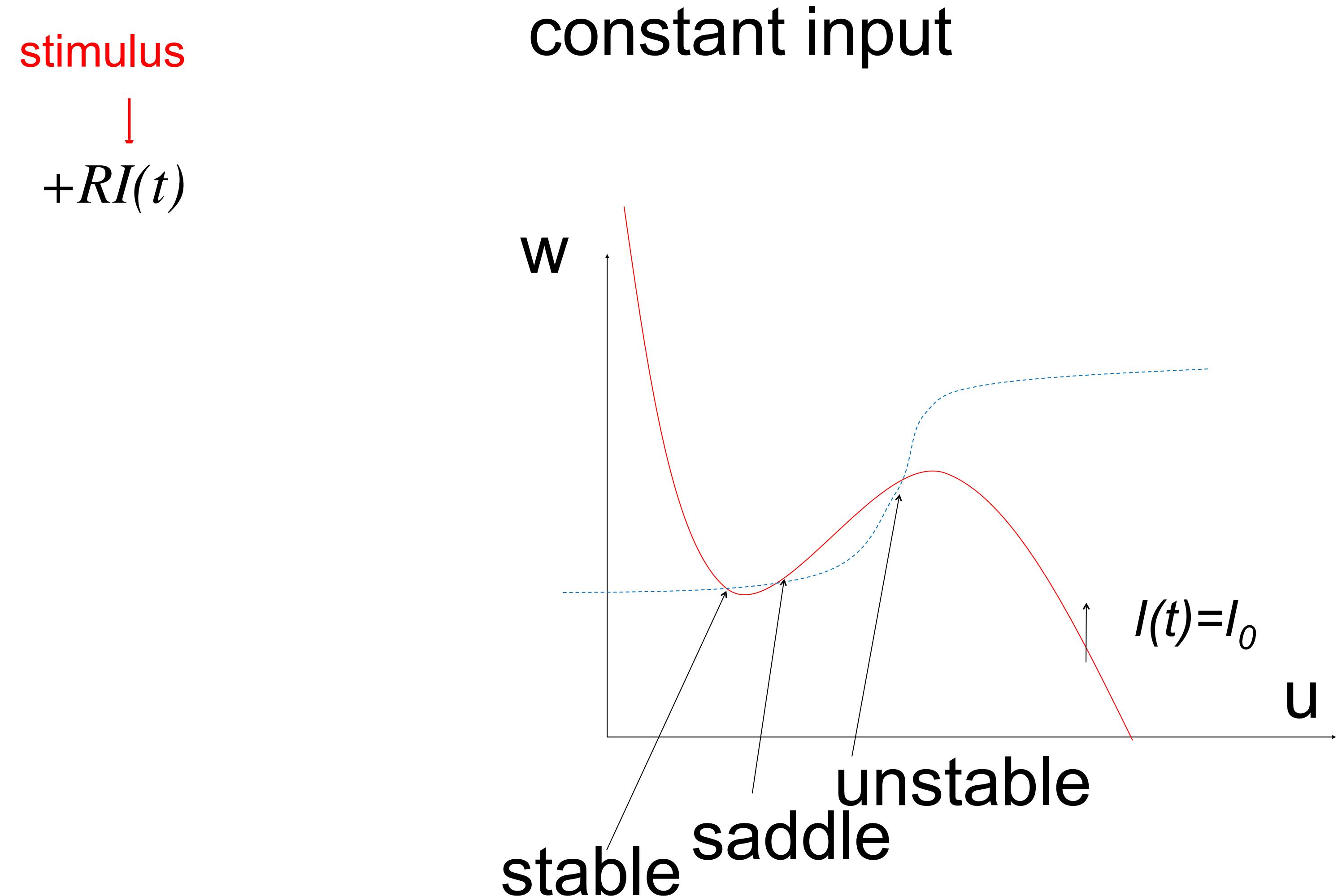
4.2. Type I Neuron Models: saddle-node bifurcation

stimulus
constant input

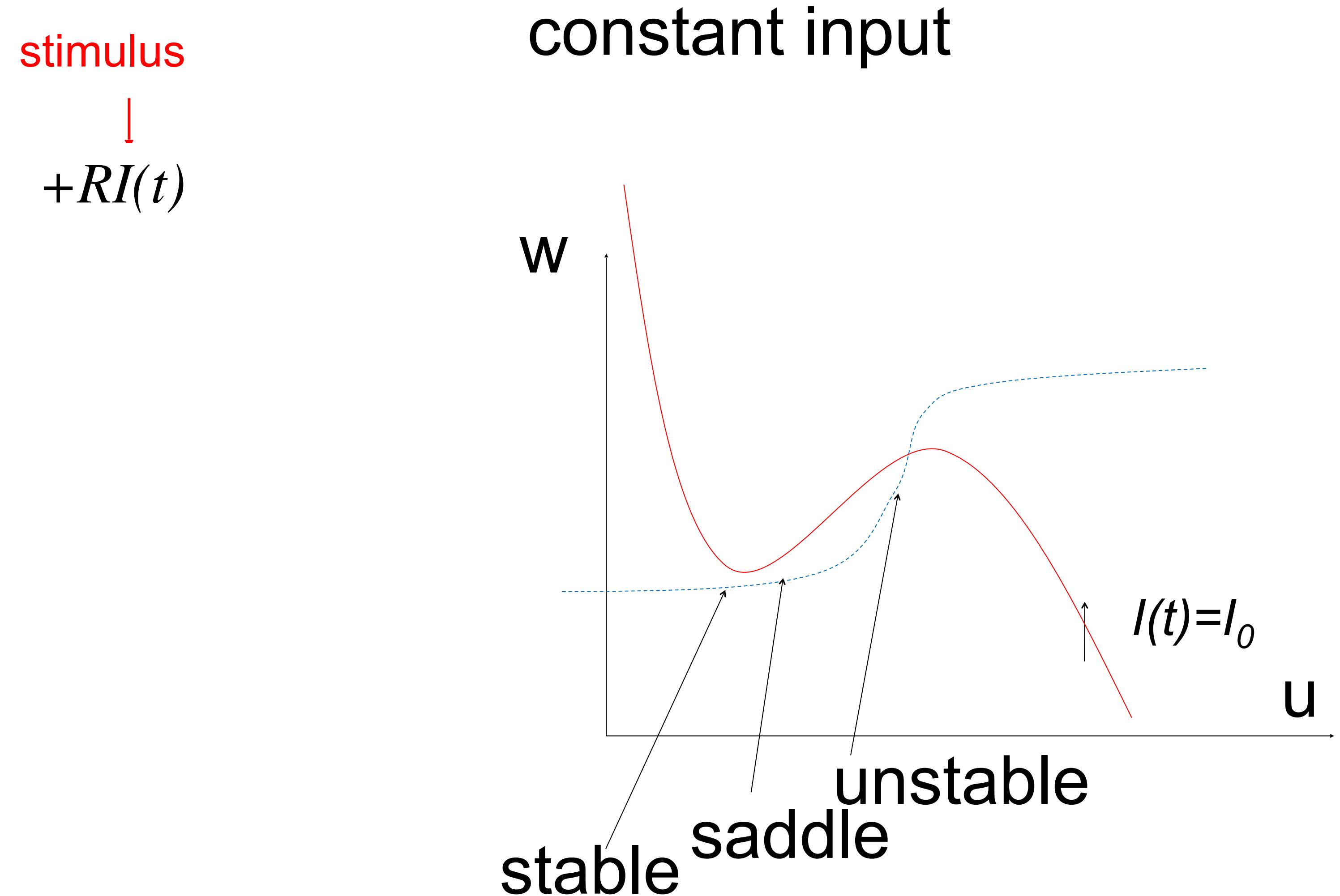
↓
 $+RI(t)$



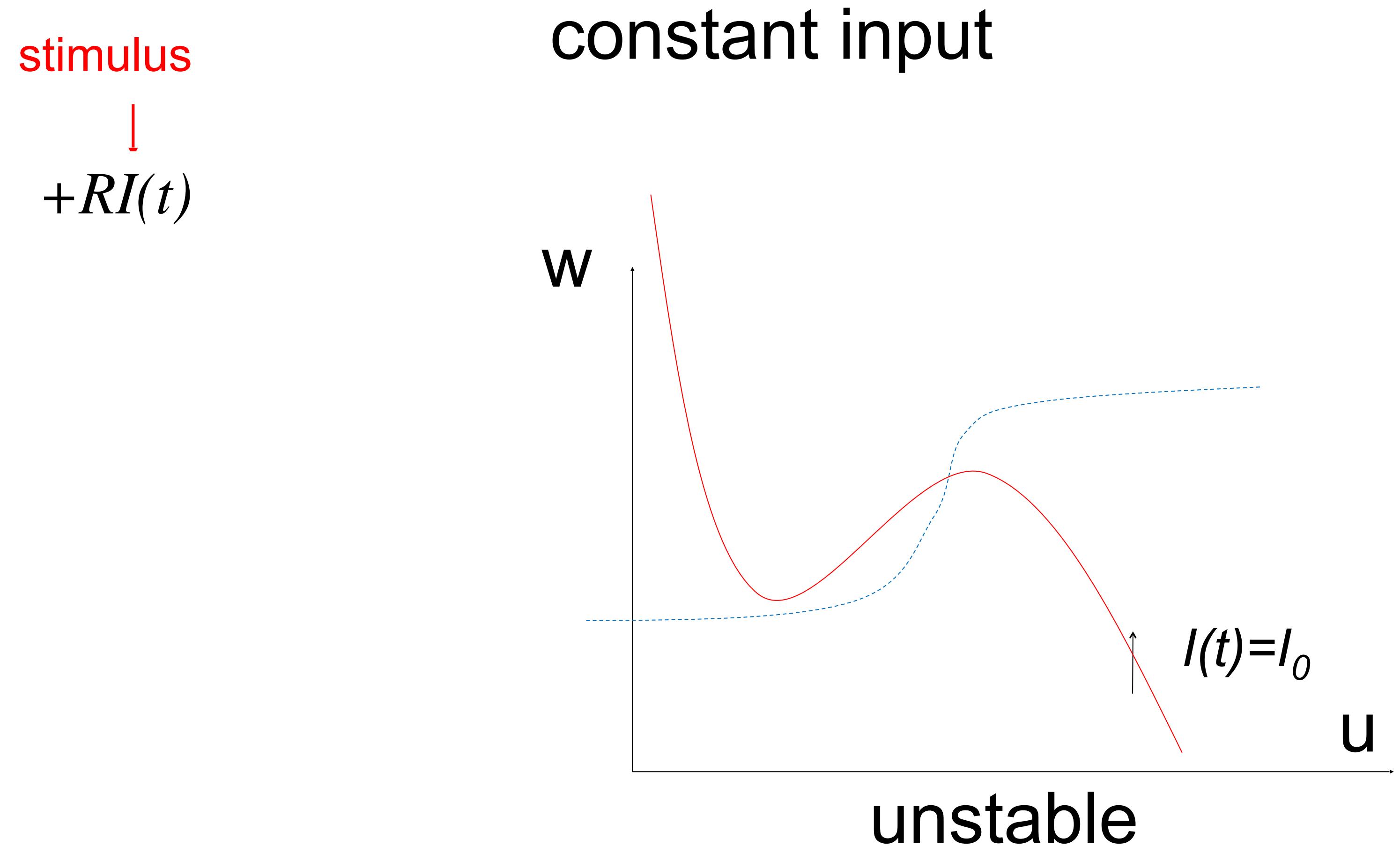
4.2. Type I Neuron Models: saddle-node bifurcation



4.2. Type I Neuron Models: saddle-node bifurcation



4.2. Type I Neuron Models: saddle-node bifurcation



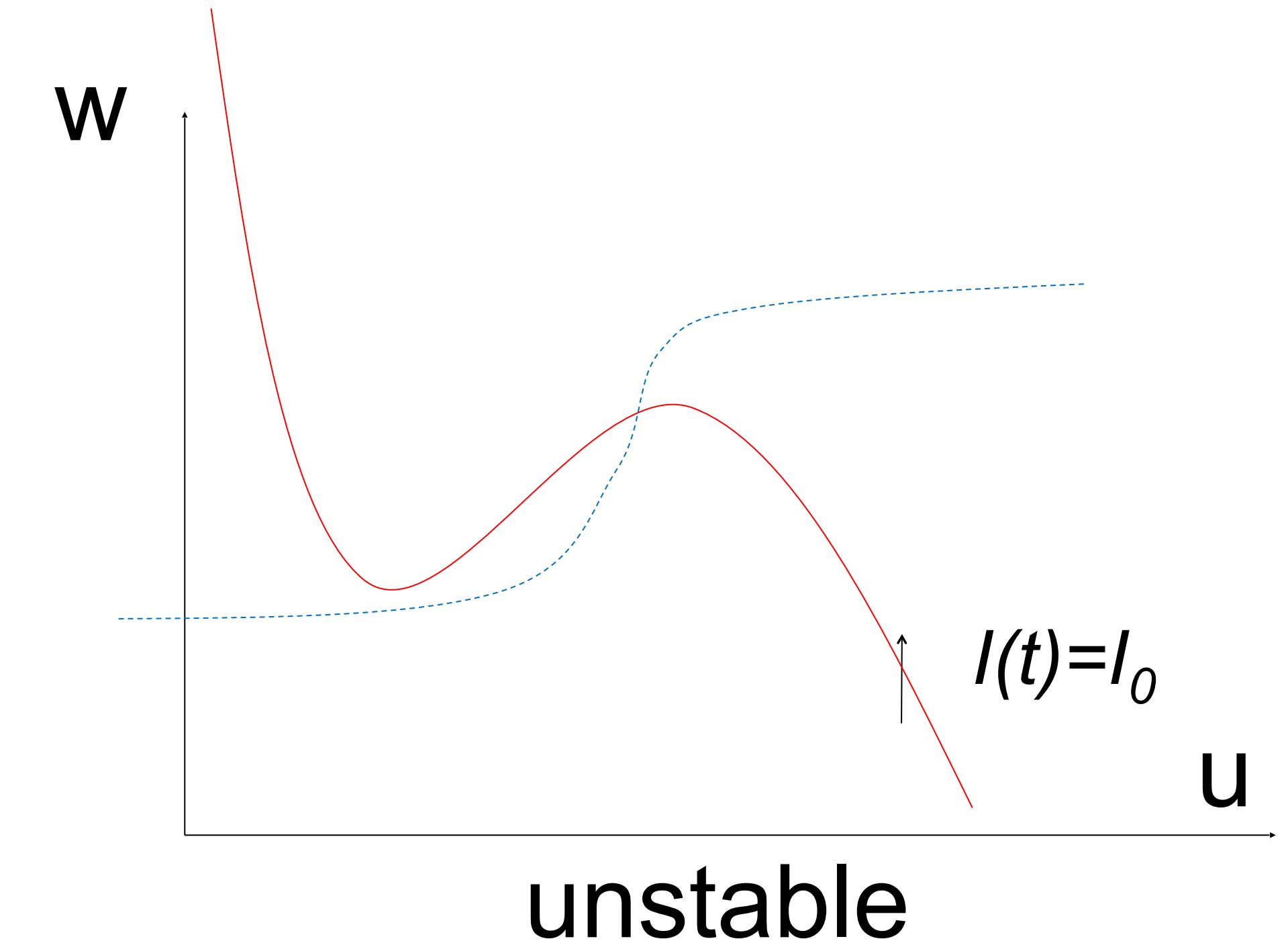
4.2. Type I Neuron Models: saddle-node bifurcation

stimulus

$+RI(t)$

- flow arrows,
- ghost/ruins

constant input



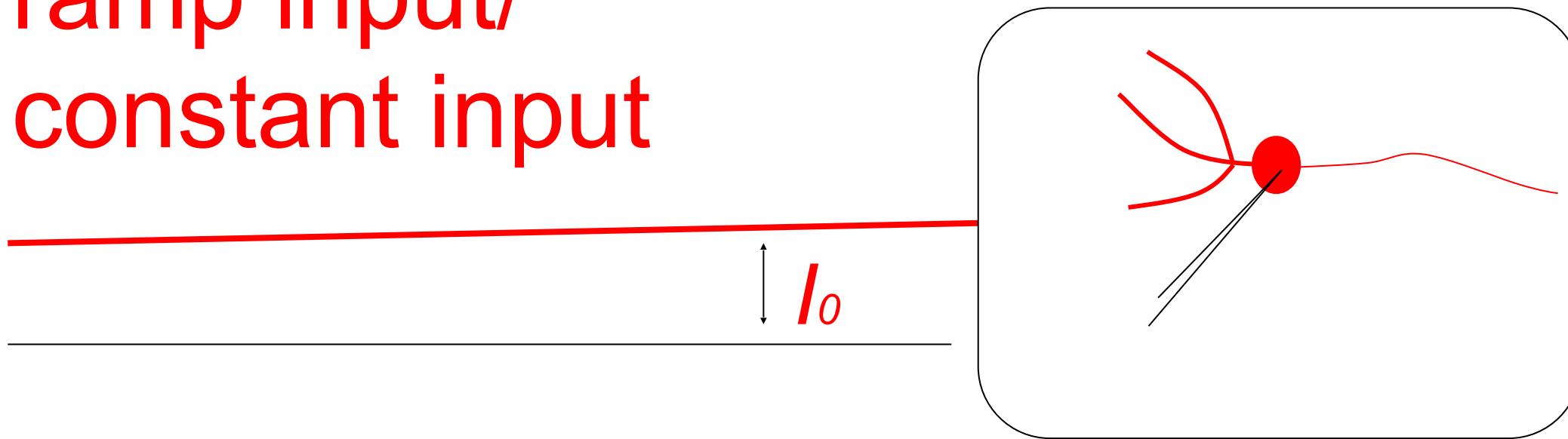
4.2. Type I and II Neuron Models

2-dimensional equation

stimulus

ramp input/
constant input

neuron



Enables graphical analysis!

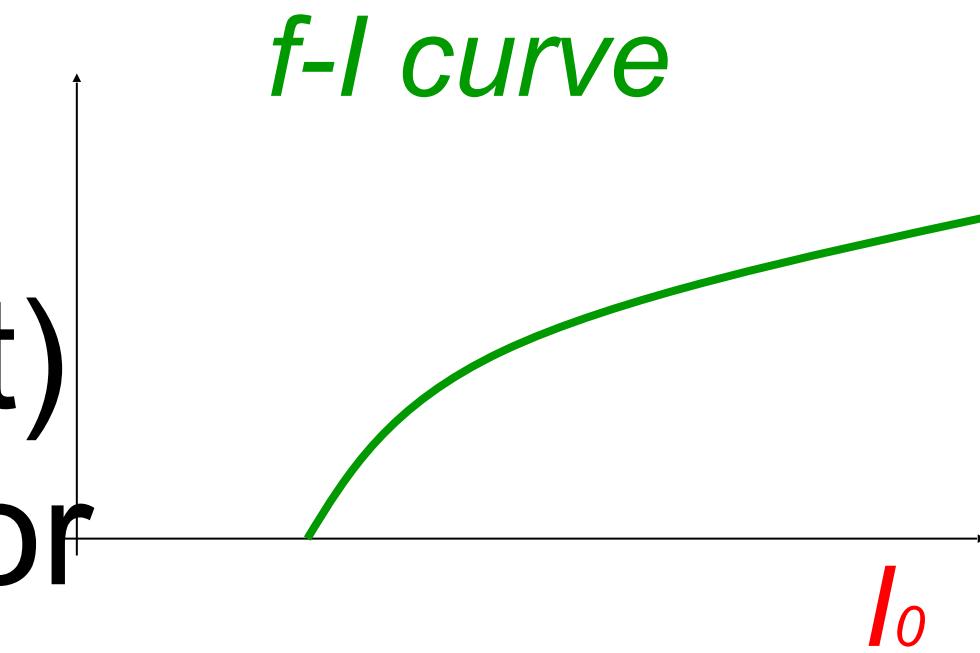
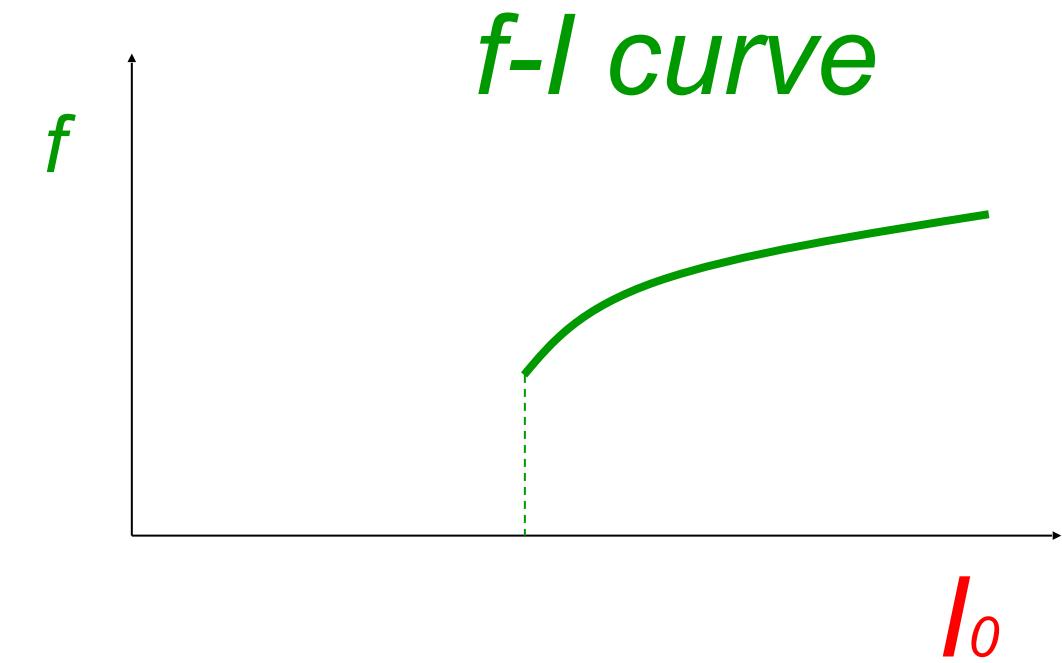
Constant input

→ repetitive firing (or not)

→ limit cycle (or

not)

Type I and type II models



Neuronal Dynamics – Quiz 4.1.

A. 2-dimensional neuron model with (supercritical) saddle-node-onto-limit cycle bifurcation

- The neuron model is of type II, because there is a jump in the f-I curve
- The neuron model is of type I, because the f-I curve is continuous
- The neuron model is of type I, if the limit cycle passes through a regime where the flow is very slow.

B. Threshold in a 2-dimensional neuron model with subcritical Hopf bifurcation

- The neuron model is of type II, because there is a jump in the f-I curve
- The neuron model is of type I, because the f-I curve is continuous
- in the regime below the Hopf bifurcation, bistability between regular firing and rest state is possible.

Neuronal Dynamics – Quiz 4.1.

A. 2-dimensional neuron model with (supercritical) saddle-node-onto-limit cycle bifurcation

- [] The neuron model is of type II, because there is a jump in the f-I curve
- [x] The neuron model is of type I, because the f-I curve is continuous
- [x] The neuron model is of type I, if the limit cycle passes through a regime where the flow is very slow.

B. Threshold in a 2-dimensional neuron model with subcritical Hopf bifurcation

- [] The neuron model is of type II, because there is a jump in the f-I curve
- [] The neuron model is of type I, because the f-I curve is continuous
- [] in the regime below the Hopf bifurcation, bistability between regular firing and rest state is possible.

Neuronal Dynamics – Quiz 4.1.

A. 2-dimensional neuron model with (supercritical) saddle-node-onto-limit cycle bifurcation

- [] The neuron model is of type II, because there is a jump in the f-I curve
- [x] The neuron model is of type I, because the f-I curve is continuous
- [x] The neuron model is of type I, if the limit cycle passes through a regime where the flow is very slow.

B. Threshold in a 2-dimensional neuron model with subcritical Hopf bifurcation

- [x] The neuron model is of type II, because there is a jump in the f-I curve
- [] The neuron model is of type I, because the f-I curve is continuous
- [] in the regime below the Hopf bifurcation, bistability between regular firing and rest state is possible.

Neuronal Dynamics – Quiz 4.1.

A. 2-dimensional neuron model with (supercritical) saddle-node-onto-limit cycle bifurcation

- [] The neuron model is of type II, because there is a jump in the f-I curve
- [x] The neuron model is of type I, because the f-I curve is continuous
- [x] The neuron model is of type I, if the limit cycle passes through a regime where the flow is very slow.

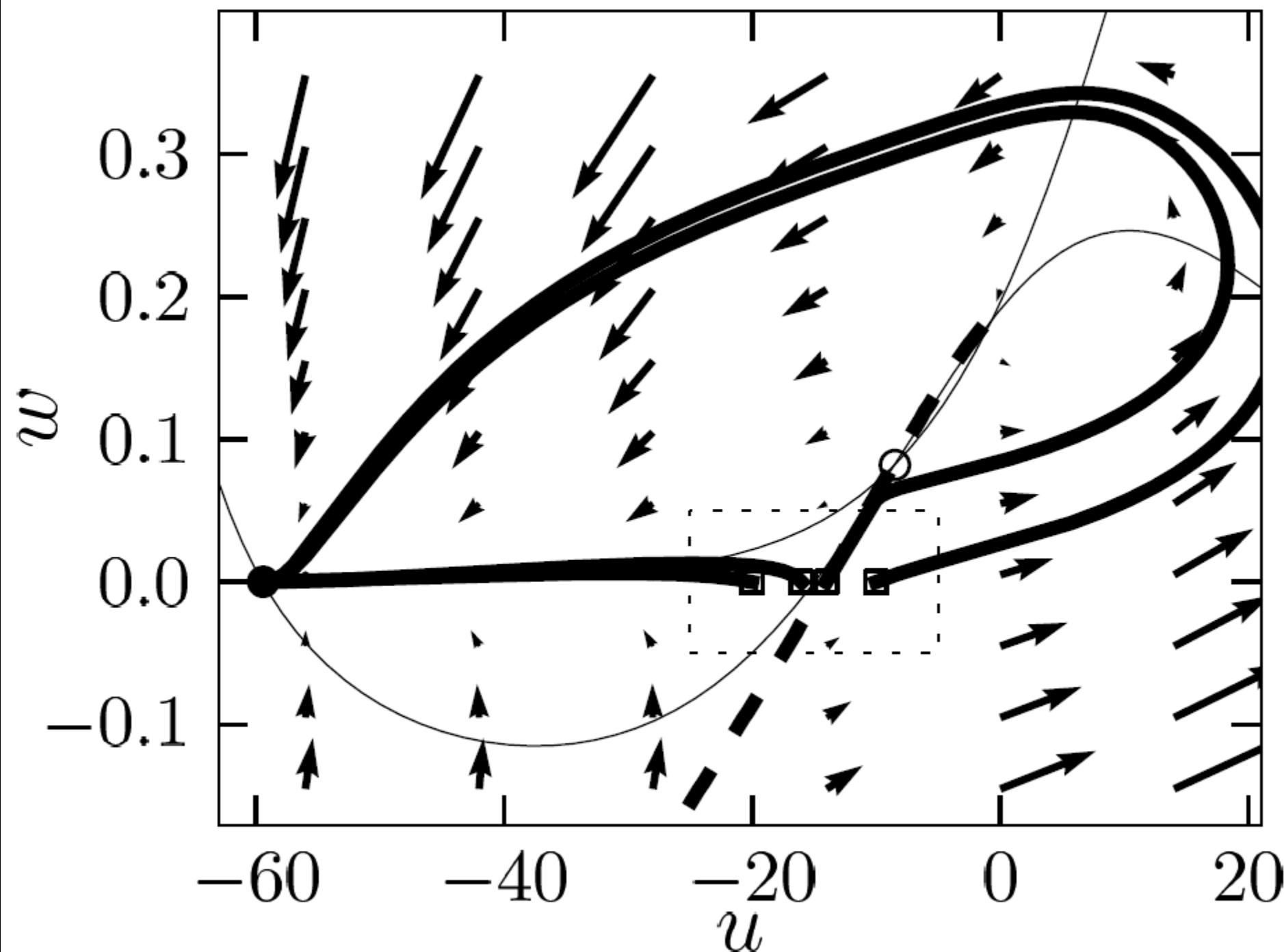
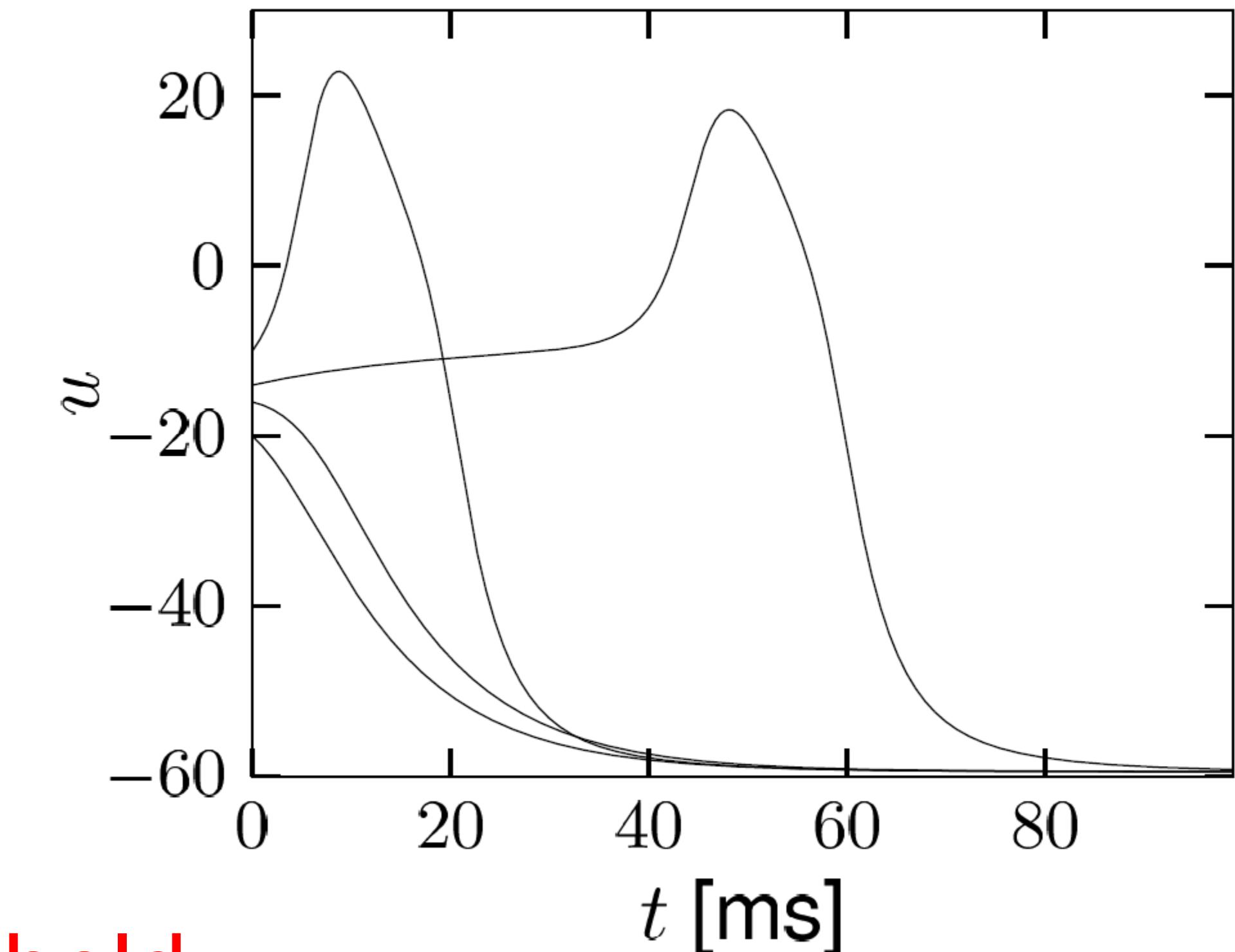
B. Threshold in a 2-dimensional neuron model with subcritical Hopf bifurcation

- [x] The neuron model is of type II, because there is a jump in the f-I curve
- [] The neuron model is of type I, because the f-I curve is continuous
- [] in the regime below the Hopf bifurcation, bistability between regular firing and rest state is possible.

4.2. Summary: Limit cycles and neuron models

- 1) In 2 dimensions we have a powerful theorem: if we can find a bounding box around an unstable fixed such that all flow arrows point inside the box, then there must be a limit cycle.
- 2) We can change the stability of the fixed point(s) by a constant input.
- 3) The limit cycle MAY appear at the moment when the fixed point loses stability. In this case it would often be a limit cycle of small amplitude in the neighborhood of the fixed point.
- 4) But we can also observe bistability between the stable fixed point and a limit cycle.
- 5) Neuron models can be classified according to the bifurcation type that makes a limit cycle appear. Type 1 neuron models have a smooth f-I curve and are always linked to a saddle-node-onto limit cycle bifurcation.
- 6) Type 2 models can have various origins; an example is the subcritical Hopf-bifurcation

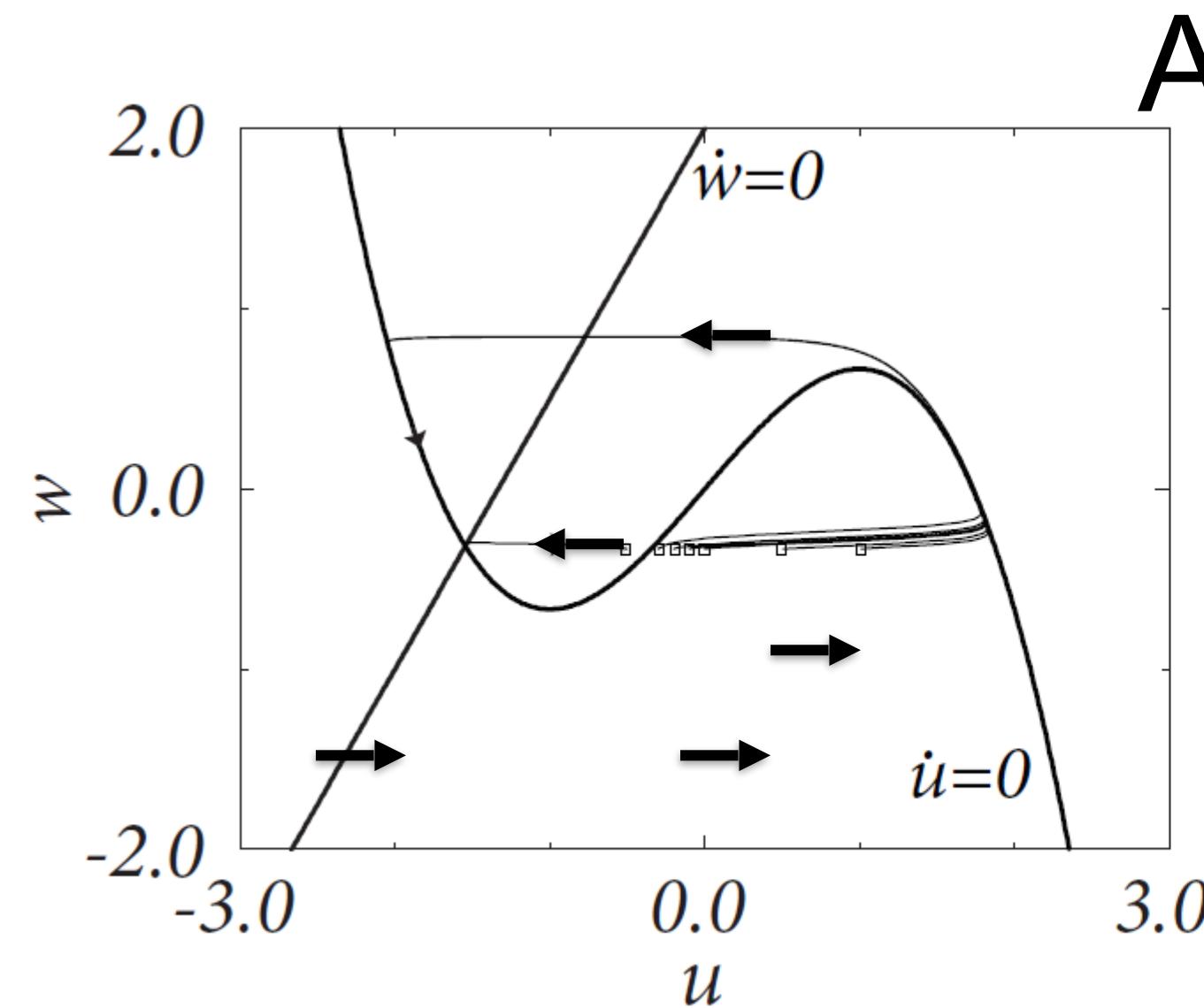
4.3 Type I model: Delayed spike initiation for Pulse input



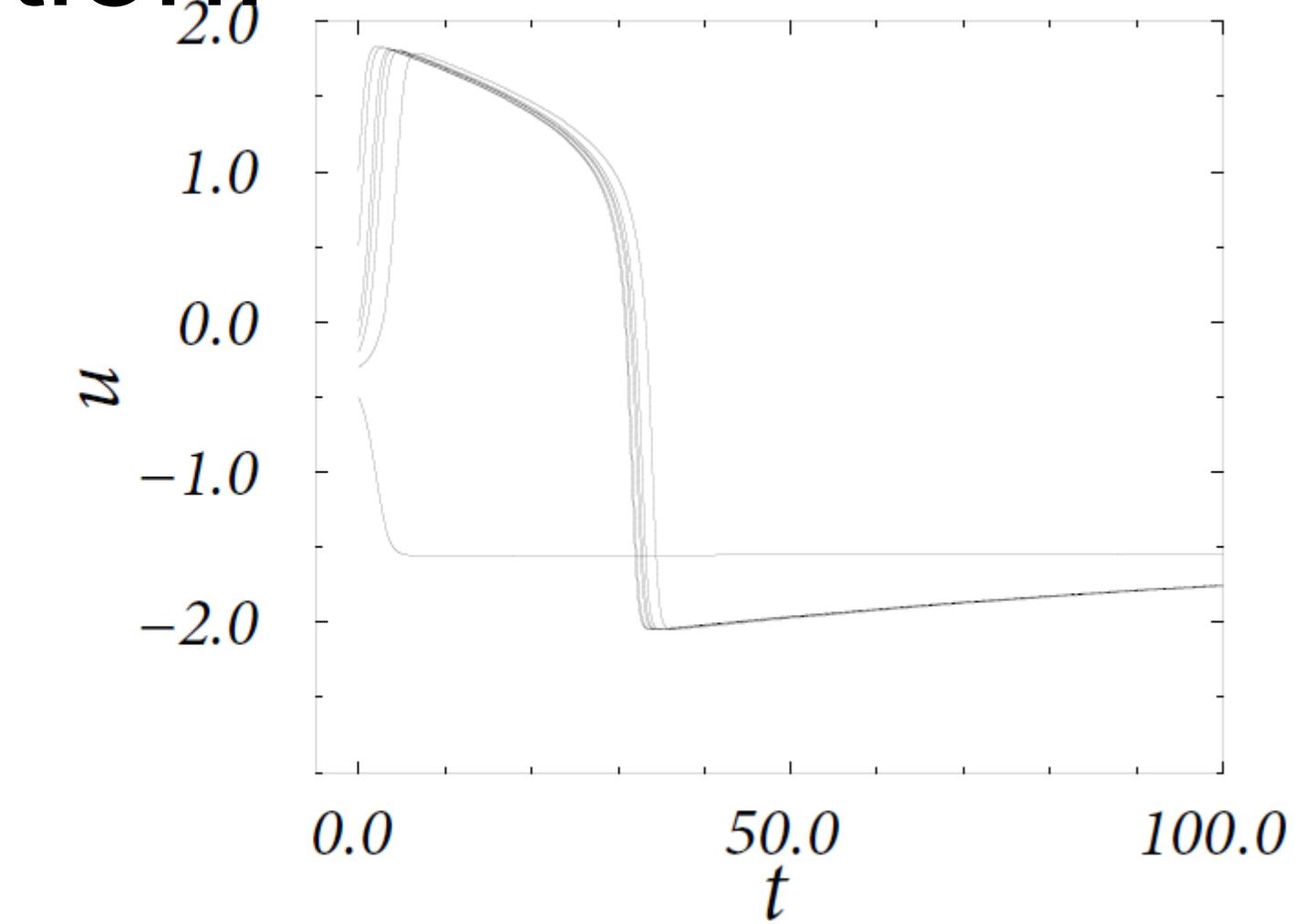
- Stable manifold plays role of threshold for pulse input
- Delayed spike initiation close to 'Threshold' (for pulse input)

*Image: Neuronal Dynamics,
Gerstner et al.,
Cambridge Univ. Press (2014)*

4.3 FitzHugh-Nagumo model: Threshold for Pulse input



Assumption:



Middle branch of u -nullcline
plays role of
'Threshold' (for pulse input)

*Image: Neuronal Dynamics,
Gerstner et al.,
Cambridge Univ. Press (2014)*

Week 4– Quiz 4.2.

A. Threshold in a 2-dimensional neuron model with saddle-node bifurcation

- [] The voltage threshold for repetitive firing is always the same as the voltage threshold for pulse input.
- [] in the regime below the saddle-node bifurcation, the voltage threshold for **repetitive firing** is given by the stable manifold of the saddle.
- [] in the regime below the saddle-node bifurcation, the voltage threshold for **action potential firing in response to a short pulse input** is given by the stable manifold of the saddle point.

Week 4– Quiz 4.2.

A. Threshold in a 2-dimensional neuron model with saddle-node bifurcation

[] [] The voltage threshold for repetitive firing is always the same as the voltage threshold for pulse input.

[] in the regime below the saddle-node bifurcation, the voltage threshold for **repetitive firing** is given by the stable manifold of the saddle.

[] in the regime below the saddle-node bifurcation, the voltage threshold for **action potential firing in response to a short pulse input** is given by the stable manifold of the saddle point.

Week 4– Quiz 4.2.

A. Threshold in a 2-dimensional neuron model with saddle-node bifurcation

- [] [] The voltage threshold for repetitive firing is always the same as the voltage threshold for pulse input.
- [] [] in the regime below the saddle-node bifurcation, the voltage threshold for **repetitive firing** is given by the stable manifold of the saddle.
- [x] [] in the regime below the saddle-node bifurcation, the voltage threshold for **action potential firing in response to a short pulse input** is given by the stable manifold of the saddle point.

Week 4– Quiz 4.3.

B. Threshold in a 2-dimensional neuron model with subcritical Hopf bifurcation

- [] in the regime below the Hopf bifurcation, the voltage threshold for firing of an isolated action potential firing in response to a short pulse input is the middle branch of the u -nullcline.
- [] in the regime below the bifurcation, a voltage threshold for firing of an isolated action potential f in response to a short pulse input exists only if

Week 4– Quiz 4.3.

B. Threshold in a 2-dimensional neuron model with subcritical Hopf bifurcation

- [] in the regime below the Hopf bifurcation, the voltage threshold for firing of an isolated action potential firing in response to a short pulse input is the middle branch of the u -nullcline.
- [] in the regime below the bifurcation, a voltage threshold for firing of an isolated action potential f in response to a short pulse input exists only if

4.3. Summary: Pulse input and thresholds

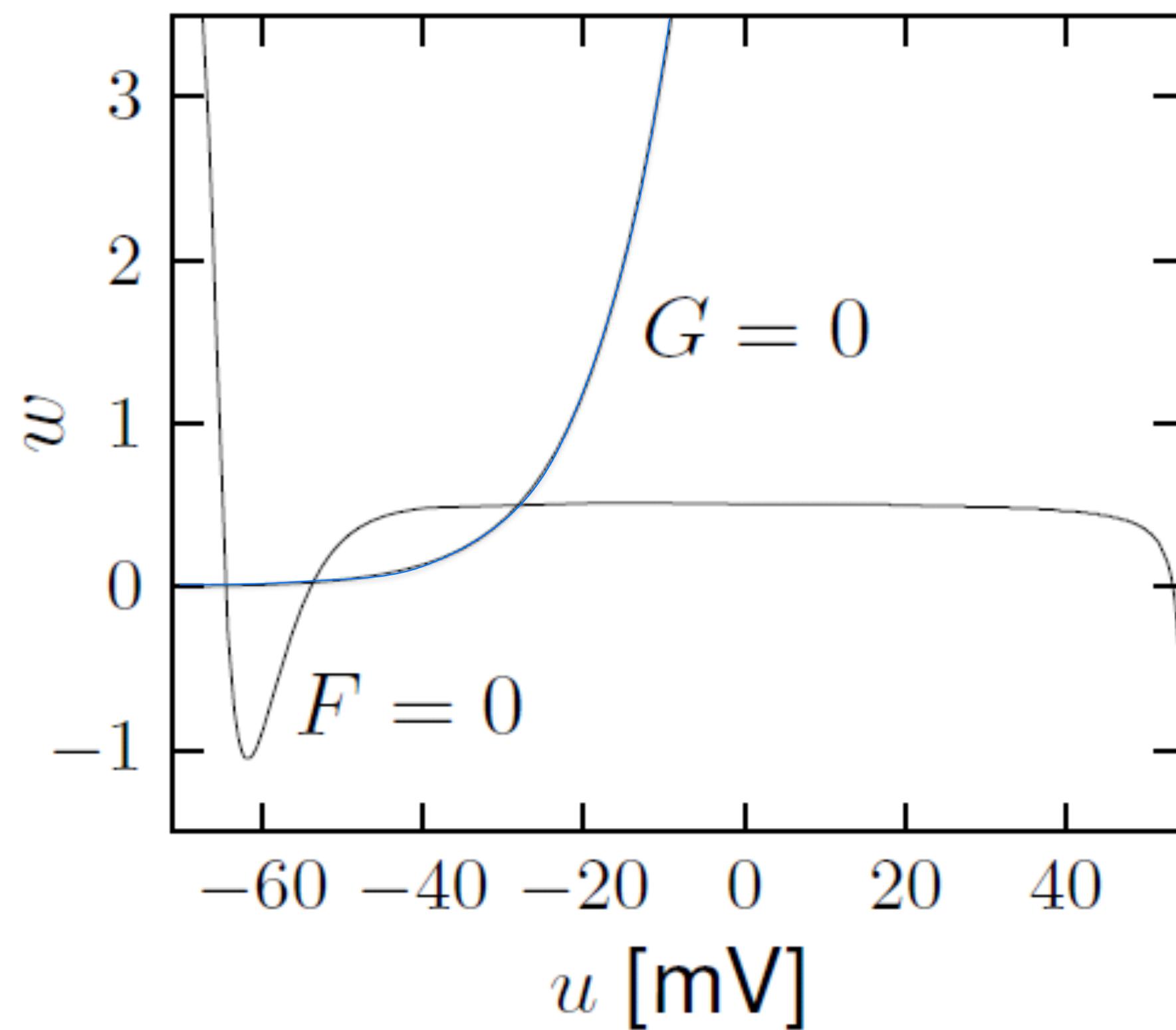
Neuron models with Saddle-node-onto limit cycle bifurcation have

- a smooth f-I curve
- a well-defined threshold for pulse input: either an AP occurs or not.
- Transition from subthreshold to superthreshold happens via an AP with very large delay.

Neuron models with subcritical Hopf-bifurcation have

- a non-smooth f-I curve
- not a well-defined threshold: there is a small regime where an AP transforms smoothly into non-AP
- However, together with a separation of time scale, the middle branch of the u -nullcline acts as a voltage threshold.

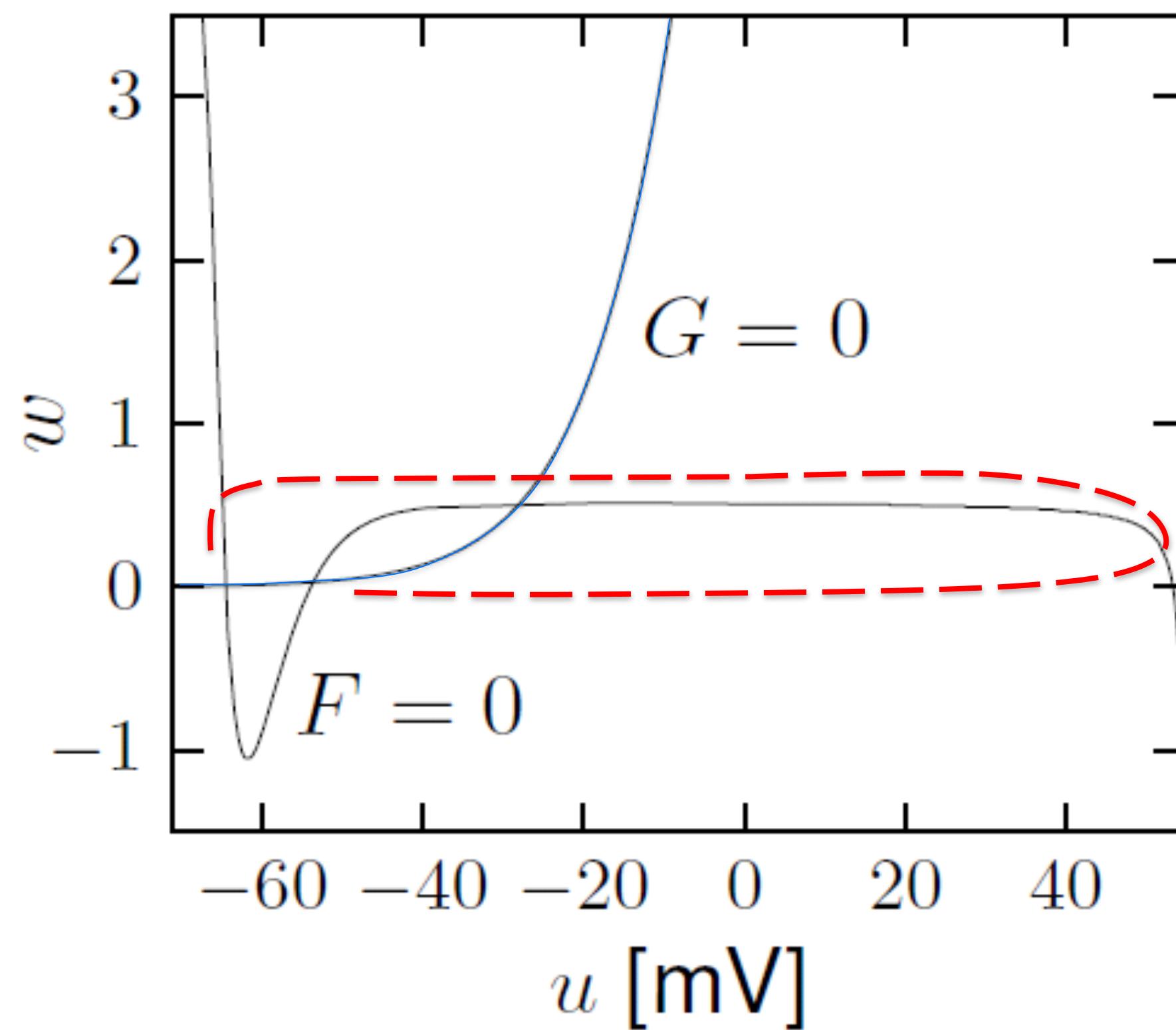
4.4. 2D model, after spike initiation



2-dimensional equation

Separation of time scales:
 w is constant (if not firing)

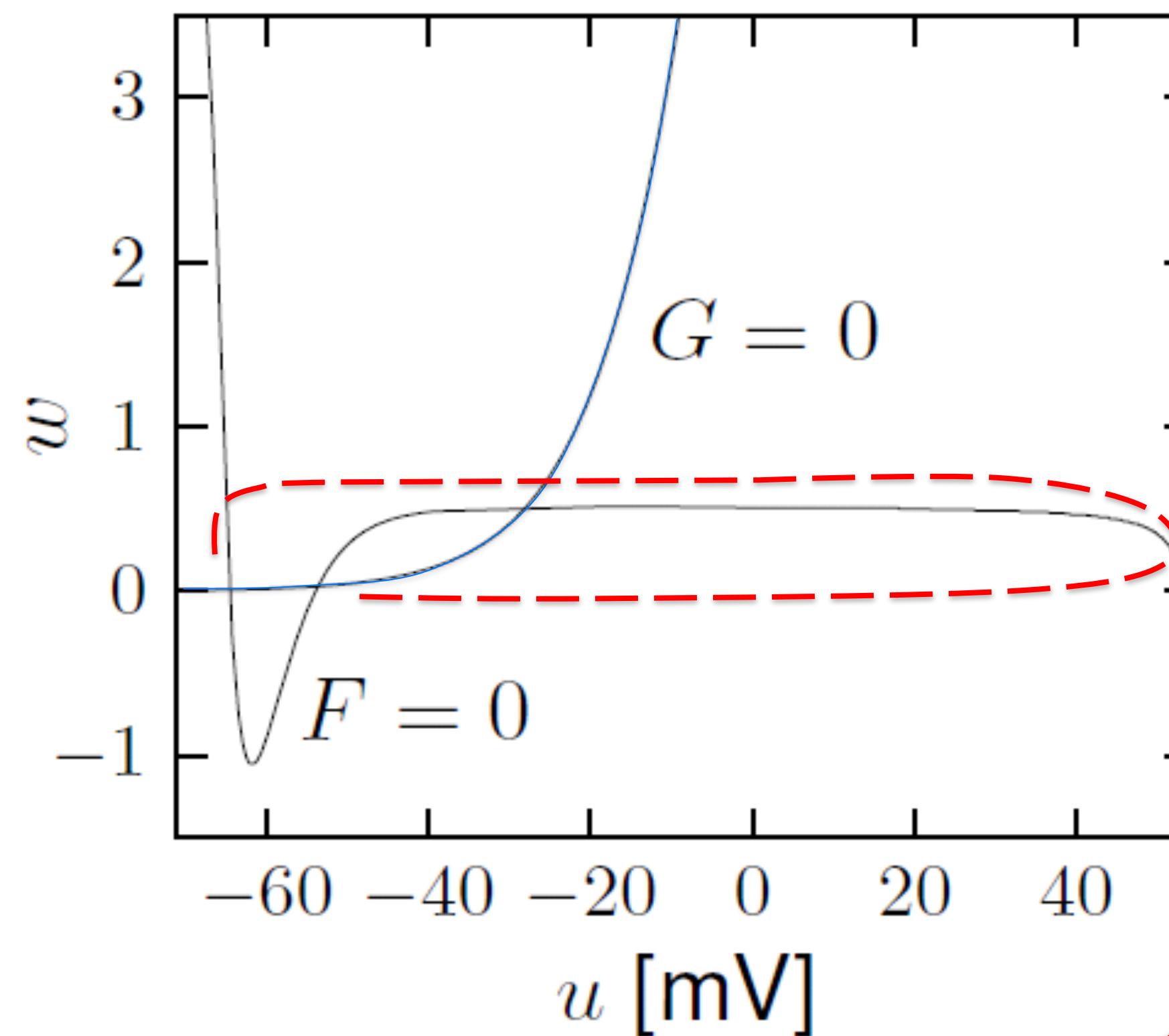
4.4. 2D model, after spike initiation



2-dimensional equation

Separation of time scales:
 w is constant (if not firing)

4.4. 2D model, after spike initiation

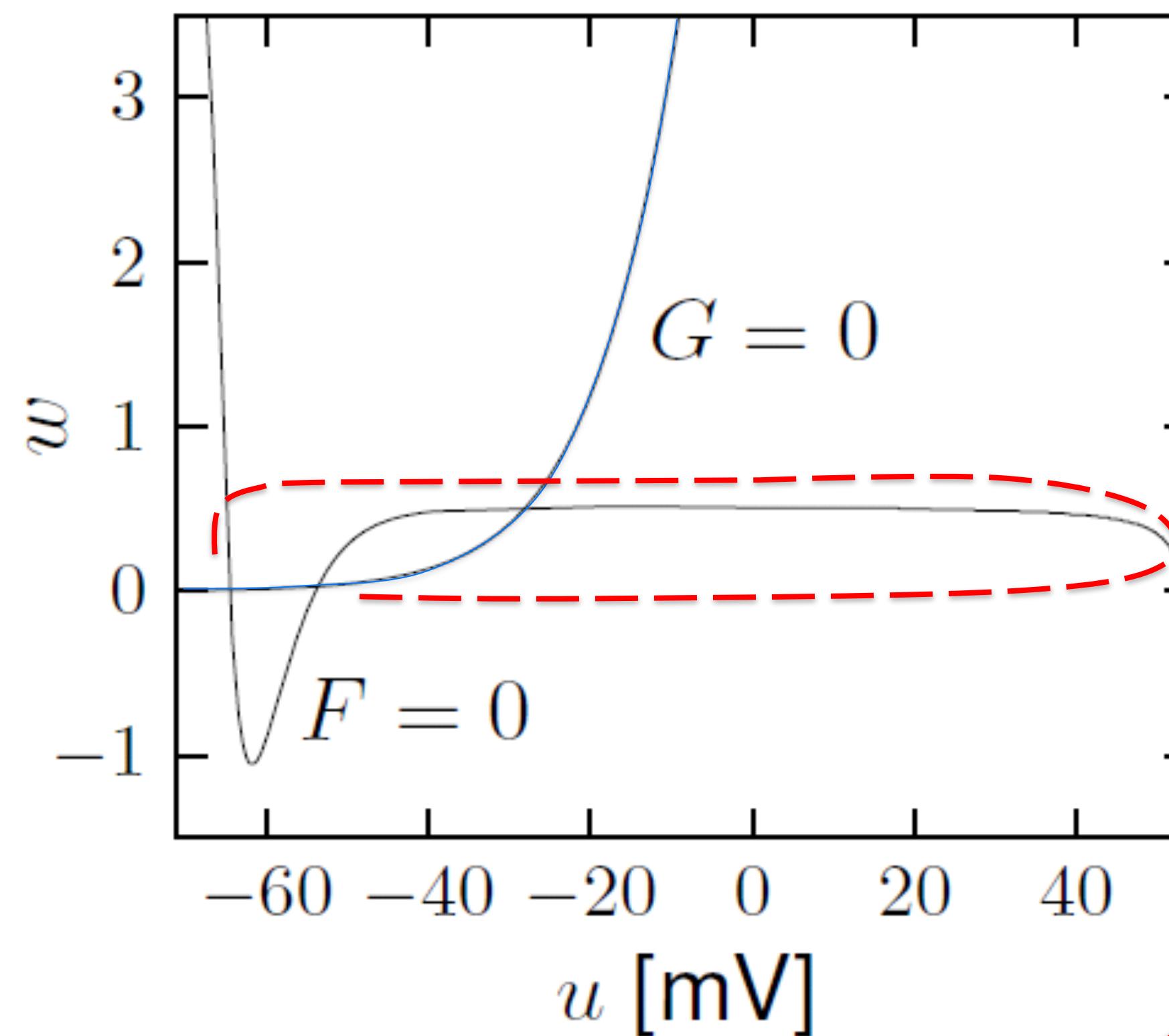


2-dimensional equation

Separation of time scales:
 w is constant (if not firing)

Relevant during spike
and immediately
after downswing of AP

4.4. 2D model, after spike initiation



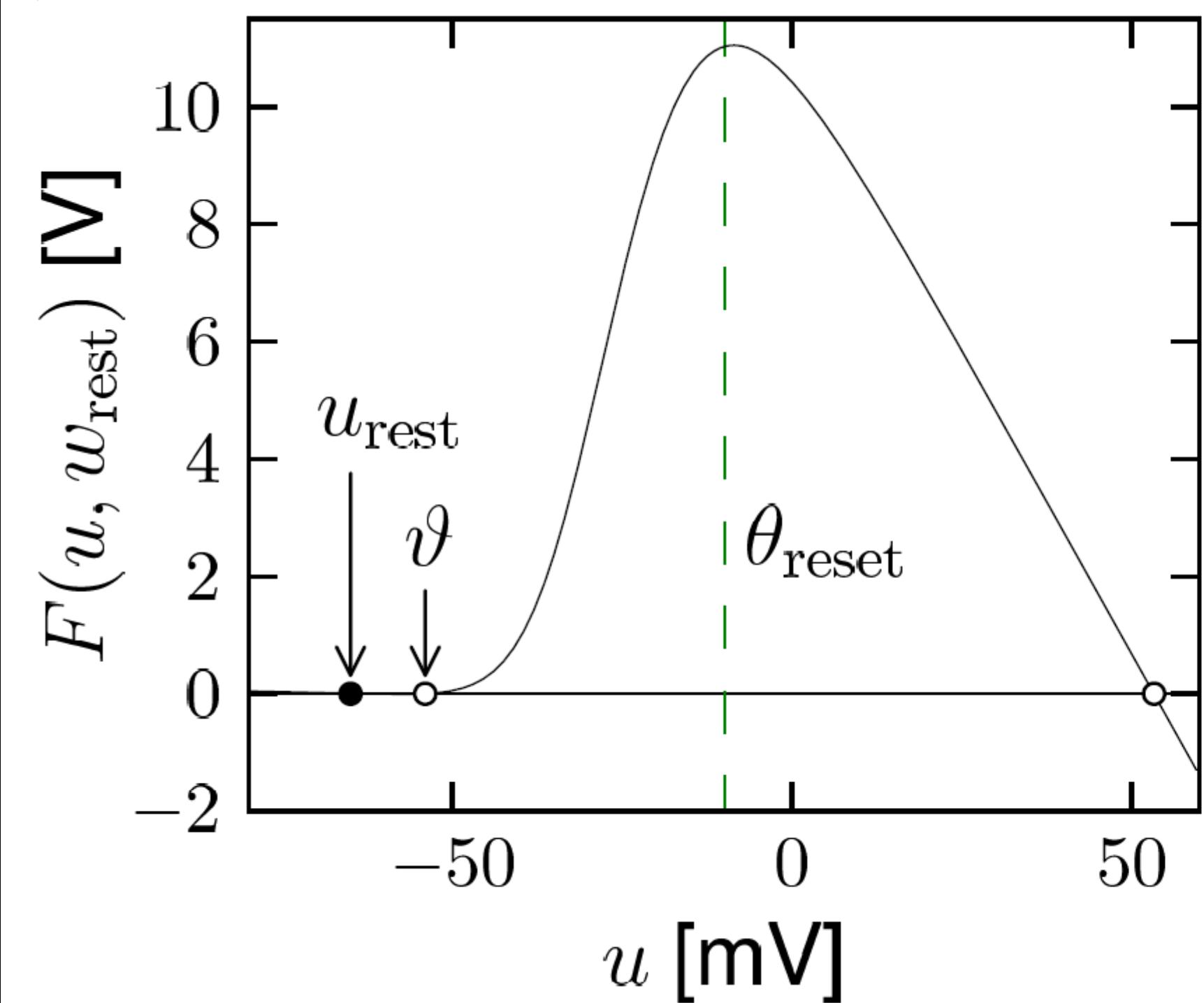
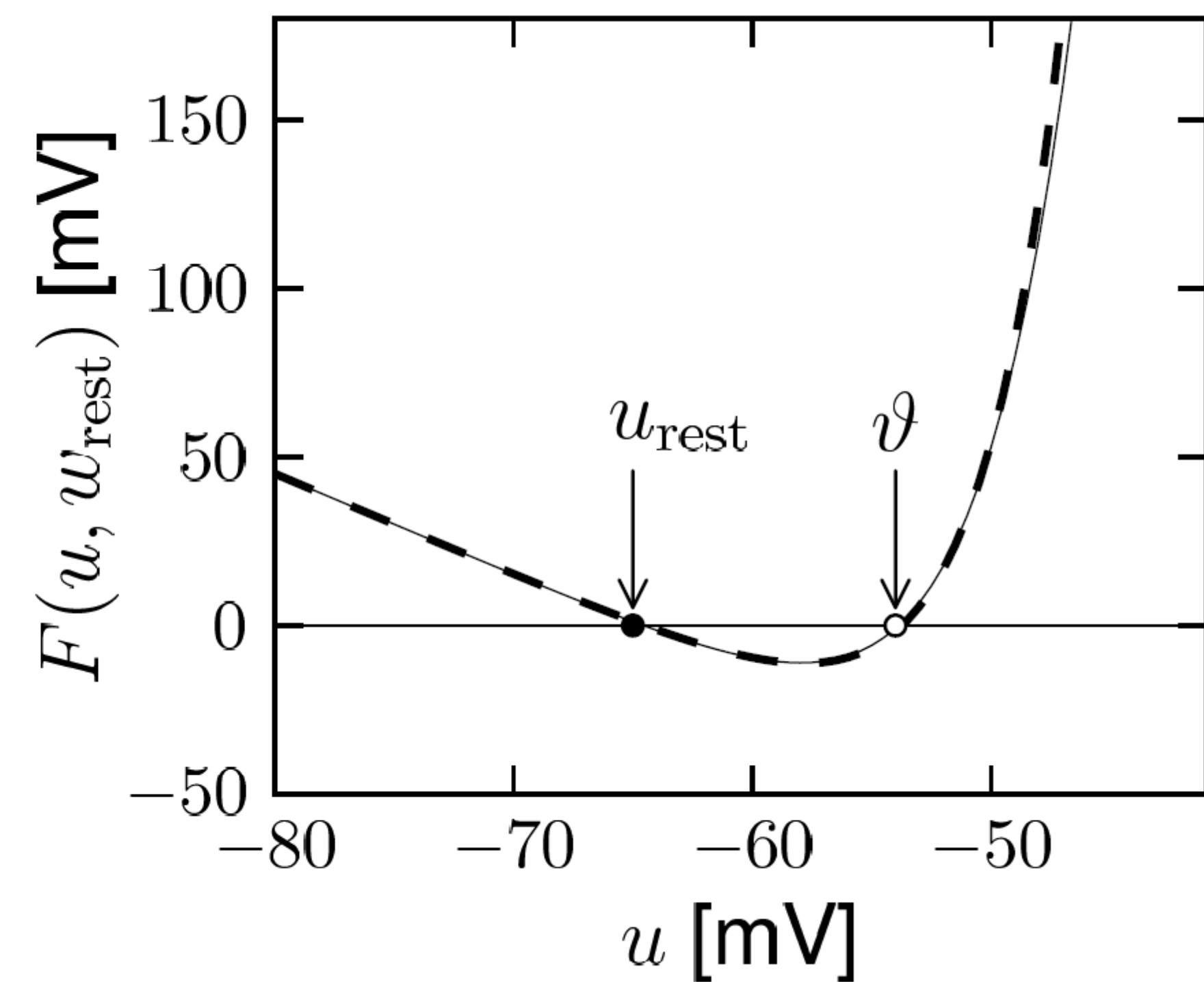
Relevant during spike
and immediately
after downswing of AP

2-dimensional equation

Separation of time scales:
 w is constant (if not firing)

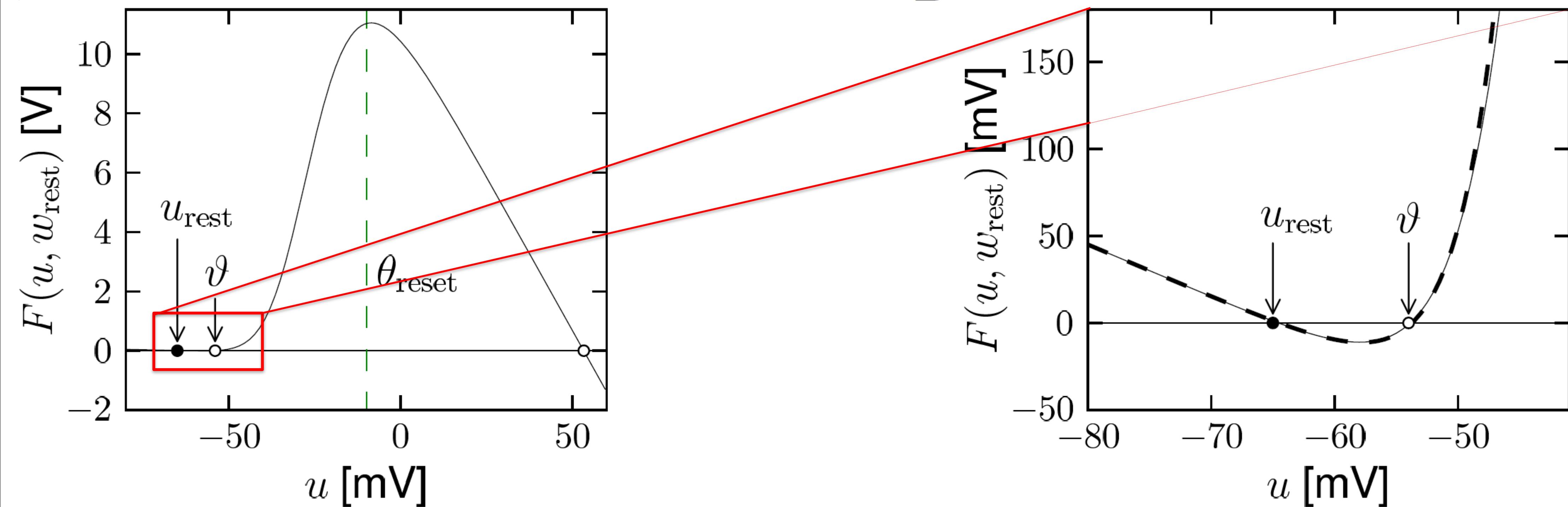
Integrate-and-fire:
threshold+reset for AP

4.4. Spike initiation: Nonlinear Integrate-and-Fire Model



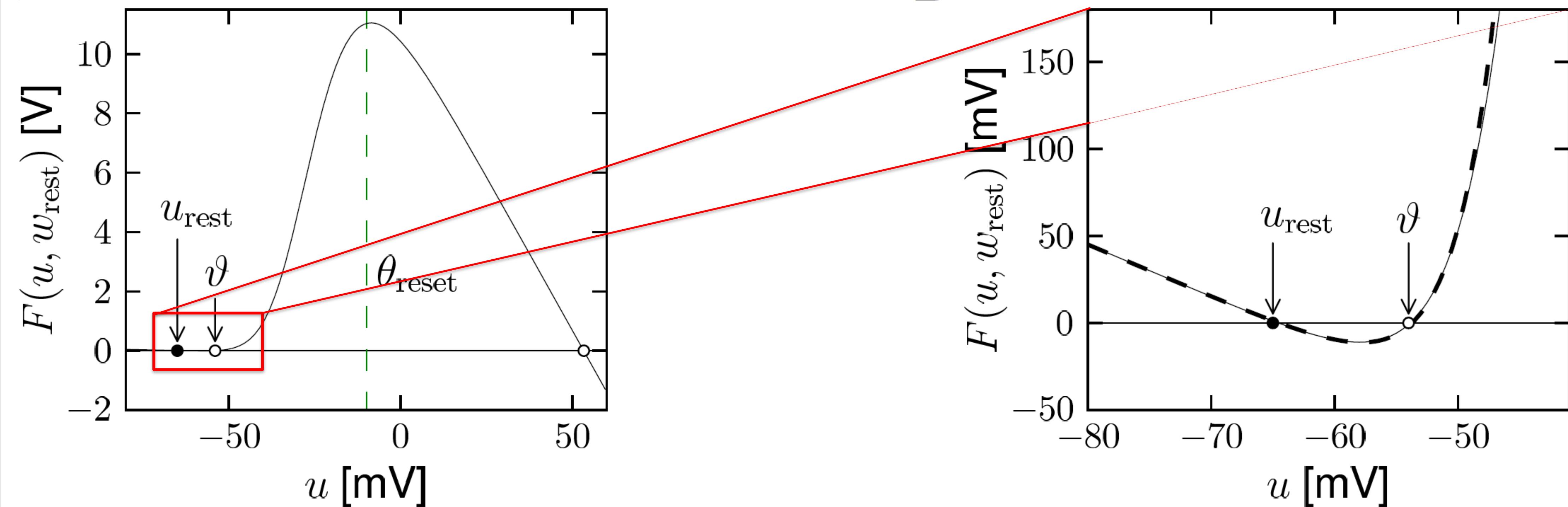
*Image: Neuronal Dynamics,
Gerstner et al.,
Cambridge Univ. Press (2014)*

4.4. Spike initiation: Nonlinear Integrate-and-Fire Model



*Image: Neuronal Dynamics,
Gerstner et al.,
Cambridge Univ. Press (2014)*

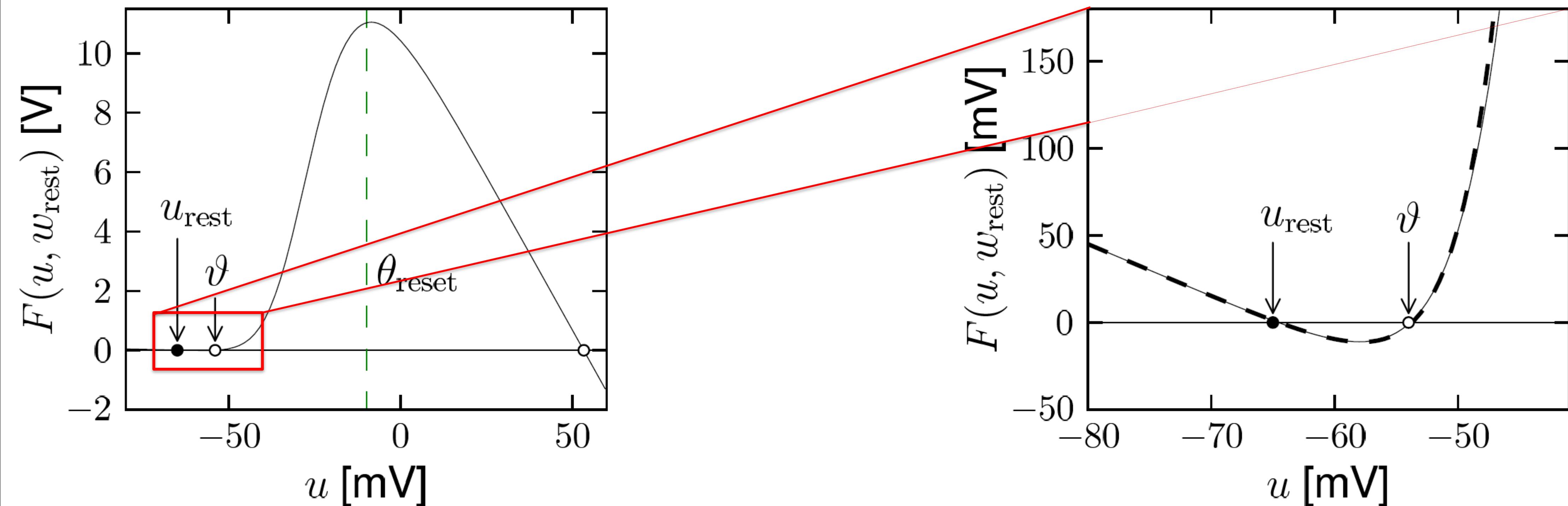
4.4. Spike initiation: Nonlinear Integrate-and-Fire Model



→ Nonlinear I&F (see week 1!)

*Image: Neuronal Dynamics,
Gerstner et al.,
Cambridge Univ. Press (2014)*

4.4. Spike initiation: Nonlinear Integrate-and-Fire Model



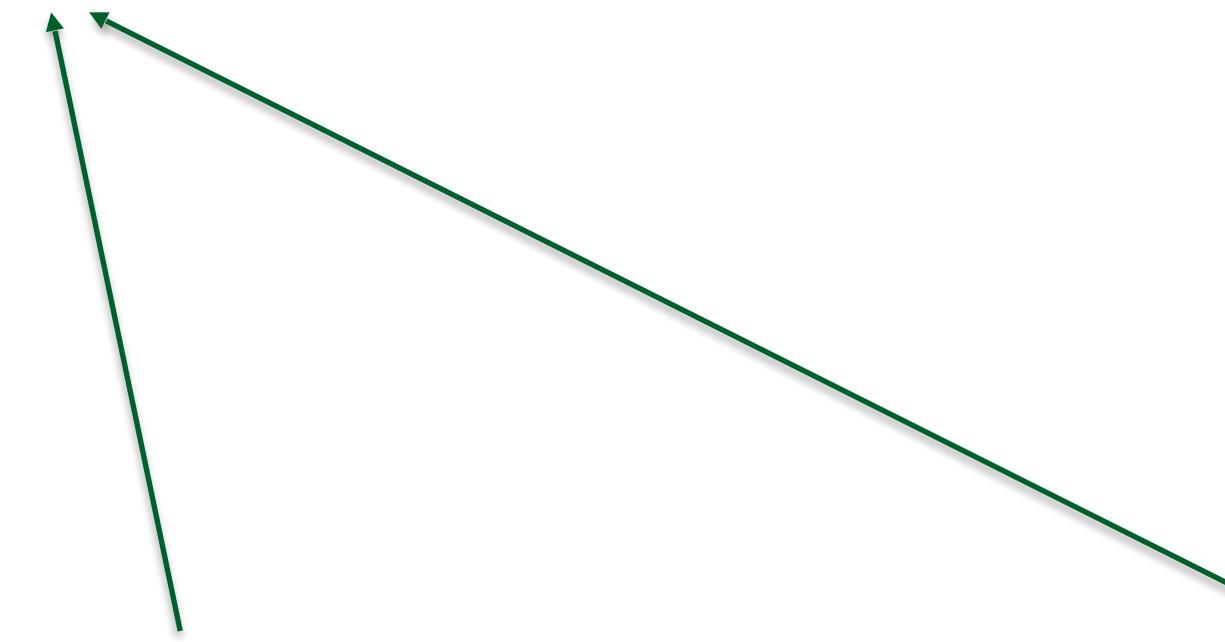
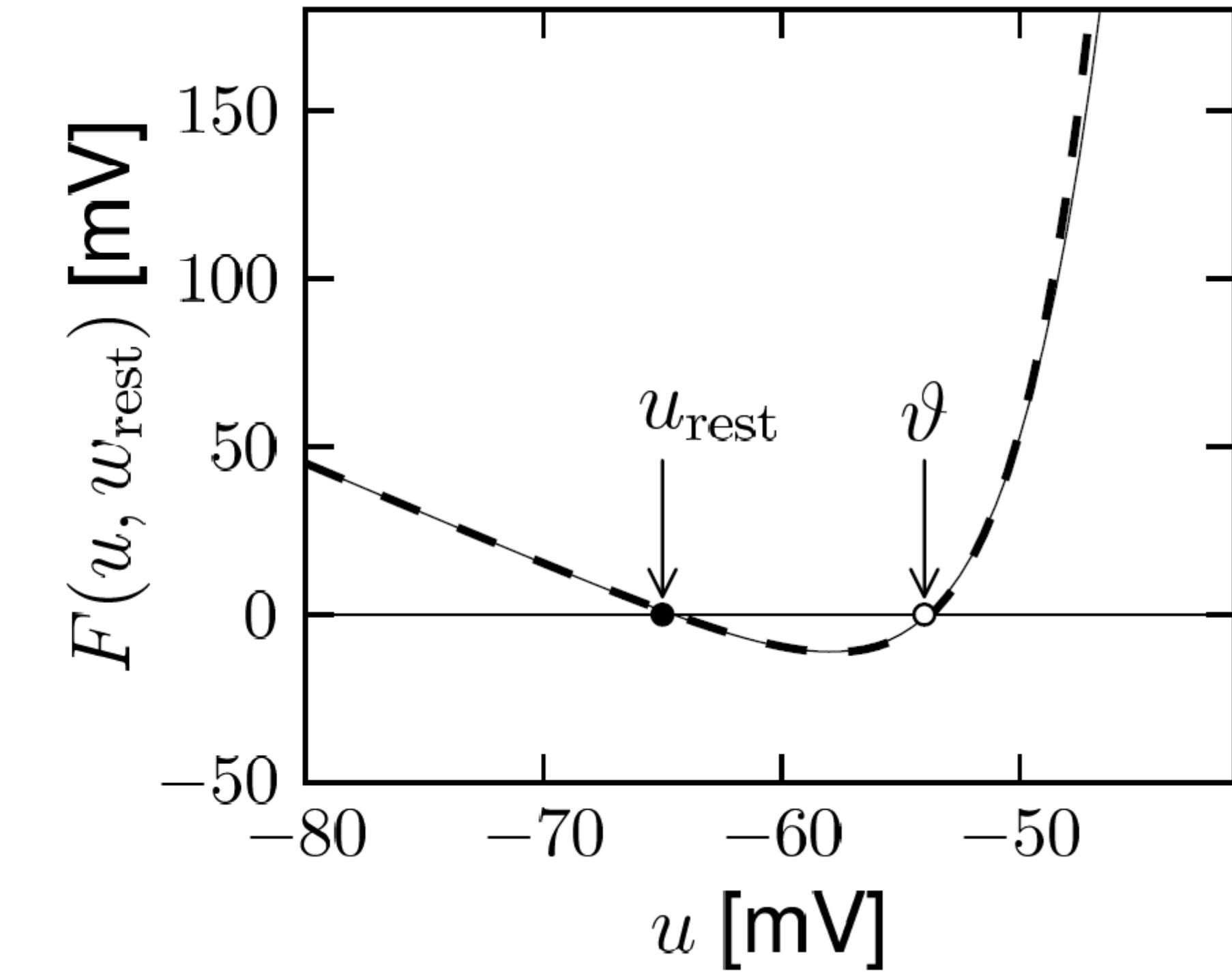
→ Nonlinear I&F (see week 1!)

*Image: Neuronal Dynamics,
Gerstner et al.,
Cambridge Univ. Press (2014)*

During spike initiation, the 2D models with separation of time scales can be reduced to a 1D model equivalent to nonlinear integrate-and-fire

4.3. Exponential Integrate-and-Fire Model

Exponential integrate-and-fire model
(EIF)



*Image: Neuronal Dynamics,
Gerstner et al.,
Cambridge Univ. Press (2014)*

→ Nonlinear I&F (see week 1!)

4.4 Extension to Adaptive Exponential I&F

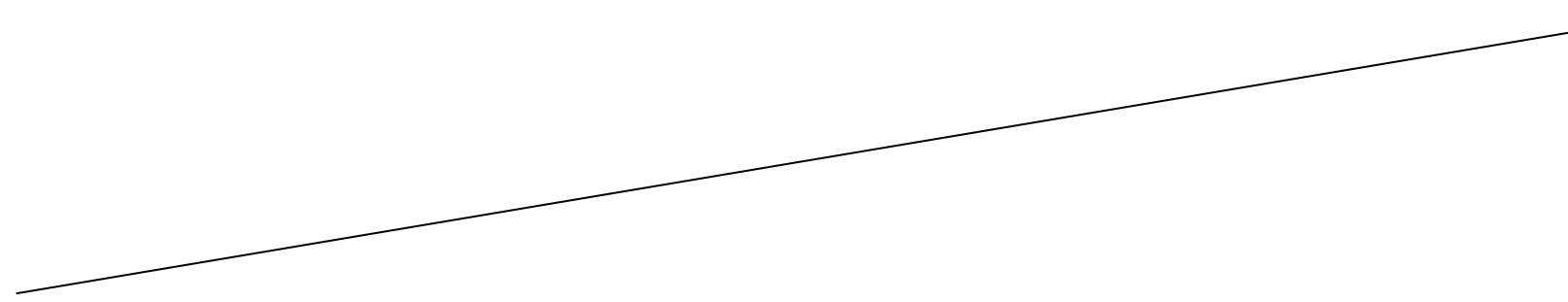
Add adaptation variables:

$$+RI(t)$$

4.4 Extension to Adaptive Exponential I&F

Add adaptation variables:

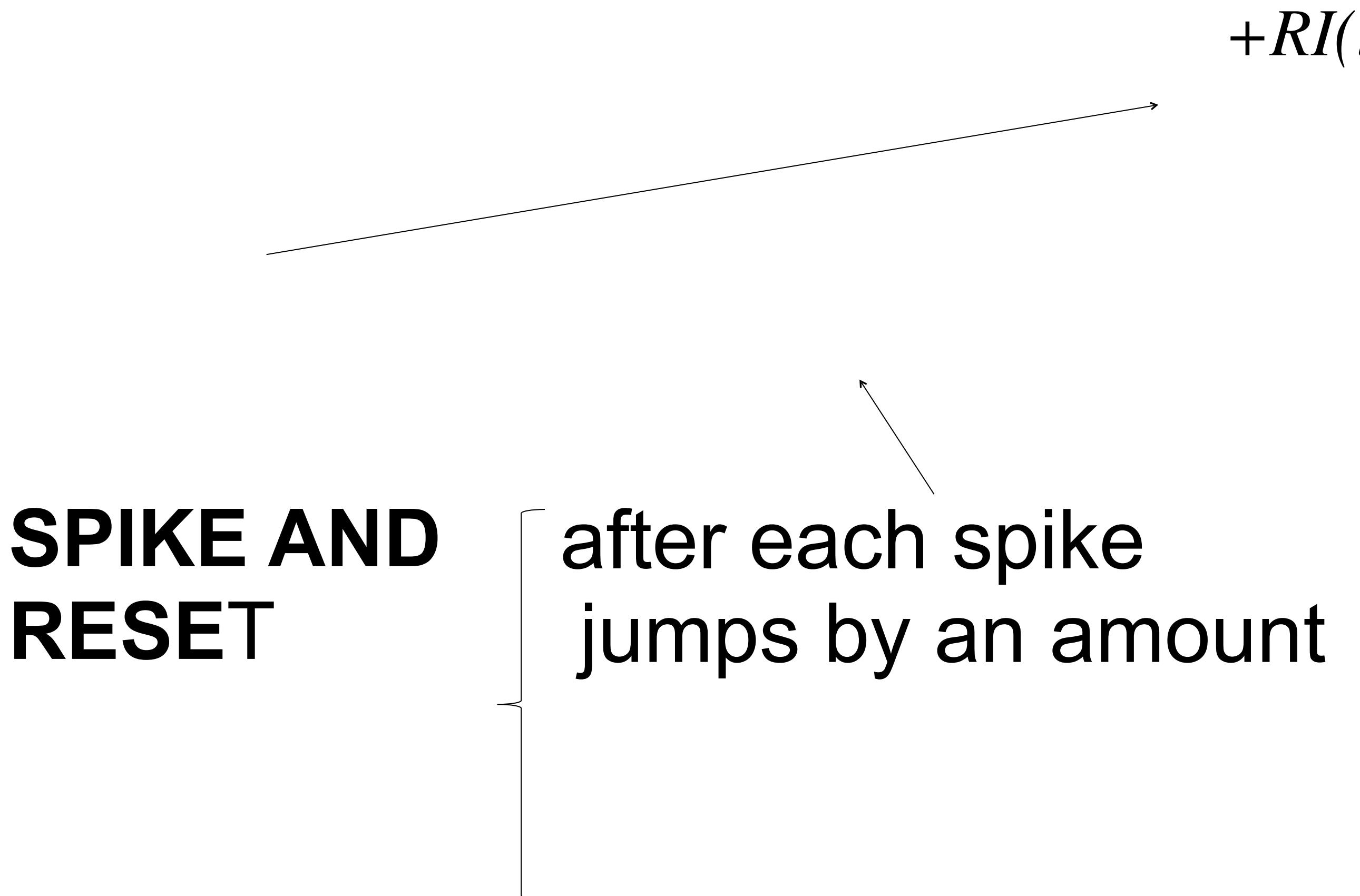
$$+RI(t)$$



after each spike
jumps by an amount

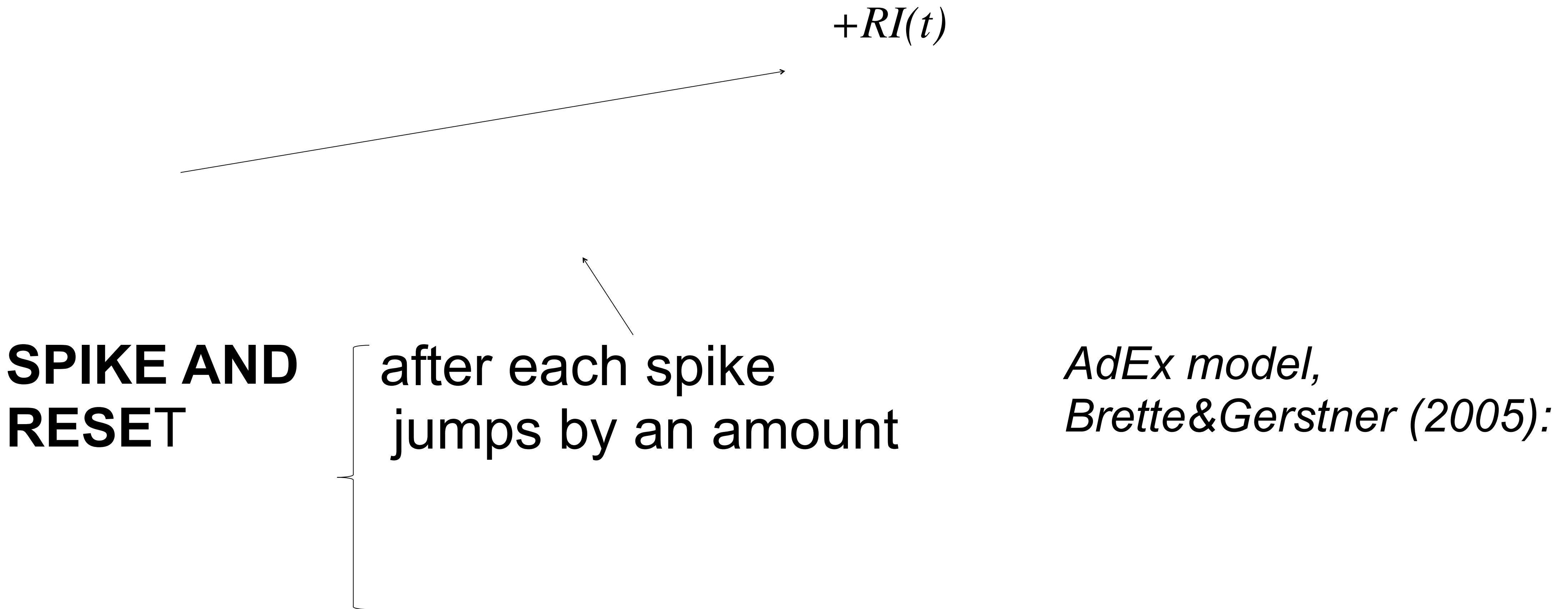
4.4 Extension to Adaptive Exponential I&F

Add adaptation variables:



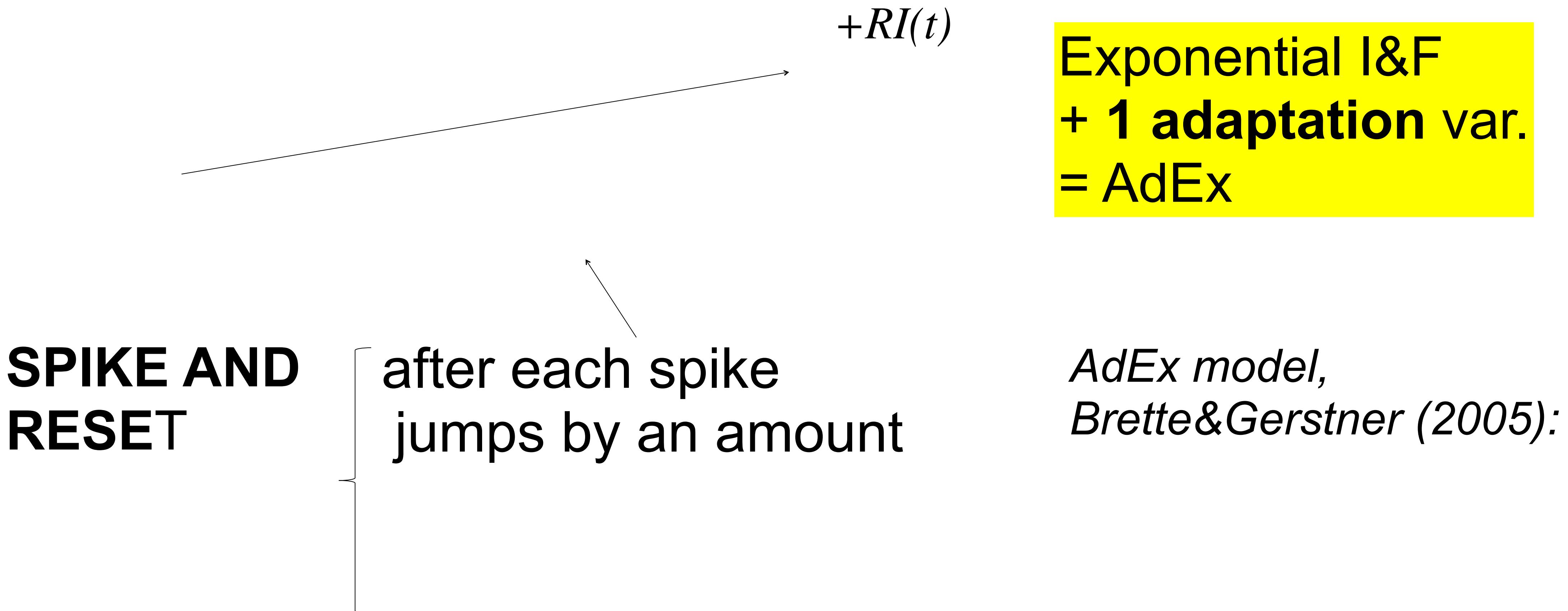
4.4 Extension to Adaptive Exponential I&F

Add adaptation variables:



4.4 Extension to Adaptive Exponential I&F

Add adaptation variables:



4.4. Summary: from HH to generalized integrate-and-fire

- The **reduction of the Hodgkin-Huxley (HH) model** from 4 to 2 dimensions generates nonlinear nullclines with several intersections.
- If we zoom in on the two left-most intersections the u -nullcline looks similar to a superposition of a linear and an exponential term
- Between (rare) spike events, the w -variable has always time to go back to resting potential. Hence during spike-initiation we can consider the w -variable as constant.
- This gives rise to the **exponential integrate-and-fire model**
- **Adaptation** means that for constant input the interspike intervals increase over time
- The standard HH-model shows no (or very little) adaptation
- More complicated Hodgkin-Huxley type models would have additional variables (describing other ion channels) that cause adaptation
- In integrate-and-fire models, these additional adaptation variables can often be approximated by a linear dynamics for new variables w_k

Computational Neuroscience: Neuronal Dynamics

EPFL

Part I: Single Neurons, deterministic. Week 1-4

**Week 1: A first simple neuron model/
neurons and mathematics**

**Week 2: Hodgkin-Huxley models and
biophysical modeling**

**Week 3: Two-dimensional models and
phase plane analysis**

**Week 4: Two-dimensional models,
type I and type II models
transition to IF models**

LEARNING OUTCOMES

- Solve linear one-dimensional differential equations
- Analyze two-dimensional models in the phase plane
- Develop a simplified model by separation of time scales
- Analyze connected networks in the mean-field limit
- Formulate stochastic models of biological phenomena
- Formalize biological facts into math
- Prove stability and convergence
- Apply model concepts in simulations
- Predict outcome of dynamics
- Describe neuronal phenomena

Computational Neuroscience: Neuronal Dynamics

EPFL

Part I: Single Neurons, deterministic. Week 1-4

**Week 1: A first simple neuron model/
neurons and mathematics**

**Week 2: Hodgkin-Huxley models and
biophysical modeling**

**Week 3: Two-dimensional models and
phase plane analysis**

**Week 4: Two-dimensional models,
type I and type II models
transition to IF models**

LEARNING OUTCOMES

- Solve linear one-dimensional differential equations
- Analyze two-dimensional models in the phase plane
- Develop a simplified model by separation of time scales
- Analyze connected networks in the mean-field limit
- Formulate stochastic models of biological phenomena
- Formalize biological facts into math
- Prove stability and convergence
- Apply model concepts in simulations
- Predict outcome of dynamics
- Describe neuronal phenomena