
Week 3 – Reducing detail:

Two-dimensional neuron models
Wulfram Gerstner

EPFL, Lausanne, Switzerland

3.1 From Hodgkin-Huxley to 2D  

       - Overview: From 4 to 2 dimensions

         - MathDetour 1: Exploiting similarities

         - MathDetour 2: Separation of time scales

3.2 Phase Plane Analysis
      - Role of nullclines

3.3 Analysis of  a 2D Neuron Model

       - constant input vs pulse input
         - MathDetour 3: Stability of fixed points

3.4 TypeI and II Neuron Models

               next week!

Reading for week 3:

NEURONAL DYNAMICS

- Ch. 4.1- 4.3 

Cambridge Univ. Press

Computational Neuroscience: 

Neuronal Dynamics

Lecture 4! of video series (first 100 minutes)
https://lcnwww.epfl.ch/gerstner/NeuronalDynamics-MOOCall.html



Week 3 – Quiz 3.1.

A - A biophysical point neuron 

model

with 3 ion channels, 

each with activation and inactivation, 

has a total number of equations  

equal to  

[ ] 3  or  

[ ] 4 or  

[ ] 6 or  

[ ] 7 or

[ ] 8 or more    
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Week 3 – Quiz 3.2-similar dynamics

Exploiting similarities:

A sufficient condition to replace two gating variables r,s

by a single gating variable w is

[ ] Both r and s have the same time constant (as a function of u)

[ ] Both r and s have the same activation function

[ ] Both r and s have the same time constant (as a function of u)

AND the same activation function

[ ] Both r and s have the same time constant (as a function of u)

AND activation functions that are identical after some additive rescaling

[ ] Both r and s have the same time constant (as a function of u)

AND activation functions that are identical after some multiplicative

rescaling
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Discussion of exercise 1 – Reduction of Hodgkin-Huxley model

Fast compared to what?



Question of student:

1. it is possible to approximate m(t) with 

its asymptotic value if m(t) change is 

fast enough w.r.t. the others temporal 

changes and in particular the stimulus 

change. However it seems to me that 

very often the stimulus we use is either 

a pulse or a step (hence 

instantaneous) current. Wouldn't this 

mean this approximation is too bad 

most of the time to be useful ? 

Answer: Good question that needs a 

longer answer:



Neuronal Dynamics – Quiz 3.3.
A- Separation of time scales:

We start with two equations

[  ] If              then the system can be 

reduced to 

[  ] If              then the system can be 

reduced to 

[  ] None of the above is correct.
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constants.
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𝜏1
𝑑𝑚

𝑑𝑡
= −𝑚 + 𝐼(𝑡)

𝜏2
𝑑𝑢

𝑑𝑡
= 𝐺 𝑚, 𝑢 = 𝑓𝑚(𝑢)

First part of answer.  consider

𝜏1
𝑑𝑚

𝑑𝑡
= −𝑚 + 𝐼(𝑡)

( 𝜏2/10)
𝑑𝑢

𝑑𝑡
= (1/10) 𝑓𝑚(𝑢)

First part of answer. Consider 𝜏1 ≪ 𝜏2
Now divide both sides of the equation by a factor of 10

We can rewrite the lhs with a new time constant ǁ𝜏2 =
𝜏2

10
; and then  𝜏1 ≪

𝜏2 may no longer hold. Hence, if we compare ‘speed of change’, we have 

to assume that the rhs is of ‘order 1’. Concretely, if 𝑓𝑚(𝑢) has a value of 

200 for some u, then the speed is rapid even if formally 𝜏2 is ‘large’. 



𝜏1
𝑑𝑚

𝑑𝑡
= −𝑚 + 𝐼(𝑡)

𝜏2
𝑑𝑢

𝑑𝑡
= 𝑓𝑚 𝑢 = − 𝑢 +𝑚 + 𝑐 exp[(𝑢 + 𝑚 − 𝜗) /Δ]

Second part of answer.  Consider 𝜏1 ≪ 𝜏2

Schematic plot of 𝒇𝒎 𝒖 𝑚 = 0
𝑚 = 2

1-1

Assume a short current pulse of amplitude 3.5   and duration 𝜏1/4.
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𝜏1
𝑑𝑚

𝑑𝑡
= −𝑚 + 𝐼(𝑡)

𝜏2
𝑑𝑢

𝑑𝑡
= 𝑓𝑚 𝑢 = − 𝑢 +𝑚 + 𝑐 exp[(𝑢 + 𝑚 − 𝜗) /Δ]

Second part of answer.  Consider 𝜏1 ≪ 𝜏2

Assume a short current pulse I(t) of amplitude 3.5   and duration 𝜏1/4.
- A naïve application of the separation of time scales would predict explosion

of u(t). 

- However, if we consider that during the application of I(t)   the variable m 

never goes above 7/8, then we conclude that the voltage trajectory will 

stay in the stable regime and return to zero.

Conclusion: it is wise to consider short current pulses as delta pulse that lead 

to a new initial condition. In this example, m jumps by 7/8.



Week 3 – Summary 3.1
In order to reduce the HH model from 4 to 2 equations we have to simplify. We 

use two different mathematical methods.

1. Separation of time scale.

If the time scale of two variables is different by a factor 10 or a hundred, we 

can assume that the faster one of the two variables has already converged to 

its ‘momentary stable state’ on the slow time scale.  Thus, we can remove the 

fast variable. We use the separation of time scale to remove the variable m.

2. Exploit similarities.

If two variables evolve on the same time scale, they have, if we are lucky, 

some similar temporal evolution. We can reduce the two variables to one 

dimension by turning the coordinate system such that the first dimension is the 

one where the two variables evolve ‘together’. The simplification consists in 

suppressing the second variable. This is similar to PCA where you would also 

only keep the first component. However, we need to do this such that also the 

DYNAMICS stays approximately correct, after reduction to 1 dimension. 

We use this trick to compress h and n into a single variable w.
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Week 3 – Quiz 3.4

A.  u-Nullclines

[ ] On the u-nullcline, arrows are always vertical

[ ] On the u-nullcline, arrows point always vertically upward

[ ] On the u-nullcline, arrows are always horizontal

B. w-Nullclines

[ ] On the w-nullcline, arrows are always vertical

[ ] On the w-nullcline, arrows are always horizontal

[ ] On the w-nullcline, arrows point always to the left

Take 1 minute
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Question of student.

2. I understand how the change at any given point of either 

of the nullclines has to be orthogonal to its corresponding 

variable direction. I didn't understand how we can propagate 

this outside the locality of the nullclines.

Basic answer: the sign of the component of the flow arrow in 

x-direction can only change at points with dx/dt = 0.  

The sign of the component of the flow arrow in y-direction 

can only change at points with dy/dt = 0.

But these condition tell us that changes are only possible on 

the nullclines.



Week 3 – Summary 3.2

Once we are in two dimensions we can use phase plane analysis. Two 

important concepts are the ‘nullclines’; and the local direction of the ‘flow’.

Intersections of the two nullclines correspond to fixed points. It is a bit of 

work to decide whether a fixed point is stable or not. However, in some 

cases (such as a saddle point) stability is visible directly from the graph.

Stability of a fixed point is determined by linearizing around the fixed point. 

Since we are in 2 dimensions, linearization yields a 2x2 matrix. The 

eigenvalues determine the stability (See exercise 2.1).

The FitzHuhg Nagumo model is a particularly simple 2-dimensional model. 

The reduction of the full Hodgkin-Huxley model yields a more complicated 

picture in the phase plane.



3.3.  Analysis of a 2D neuron model

- Pulse input

- Constant input

2-dimensional equation

( , ) ( )
du

F u w RI t
dt

 = +

stimulus

),( wuG
dt

dw
w =

2 important input scenarios

Enables graphical analysis!
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Week 3 – Summary 3.3

Phase plane analysis of neuron models is particularly interesting 

because the input I only enters into the first variable (voltage u).

As a consequence of this observation, we can discuss two important 

input scenarios as follows:

1. Constant input. In this case the u-nullcline is shifted vertically.

2. Pulse input. In this case the u-nullcline is not shifted, but the pulse 

causes a horizontal shift of the initial condition.

If constant input is applied (or very slowly ramped upward) the number 

of fixed points or their stability can change.

If we can find a bounding box (with arrows pointing inside) around an 

unstable fixed point and no other fixed points are inside the box, then 

there must exist a limit cycle.
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Question of student :  3. Why is the downswing so fast?

Neuronal Dynamics – 2.4. Threshold in HH model

-we said upswing is fast because of fast m. More precisely,

  the dynamics of m leads to an explosion-like instability 

- We said downswing triggered by dynamics of h and n.

THEN, WHY IS THE DOWNSWING FAST? 

→ Use insights of our 2dim system! Watch videos for next week!
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3.3.  FitzHugh-Nagumo Model : Constant input

Image: 

Neuronal Dynamics, 

Gerstner et al.,

Cambridge (2014)constant input:  limit cycle, 

fast downswing!

FN model with 
0 1 00.9; 1.0; 2b b RI= = =

I0

f
f-I curve



3.3.  Analysis of a 2D neuron model

Time constants:
- Describe approach to

stable fixed point

- Describe exponential

growth around unstable fixed point

2-dimensional equation

𝜏𝑢
𝑑𝑢

𝑑𝑡
= 𝐹(𝑢,𝑤) + 𝑅𝐼(𝑡)

stimulus

),( wuG
dt

dw
w =

Week 4:

Suppose
Then arrows nearly horizontal.

(second separation of time scales) 

𝜏𝑢 ≪ 𝜏𝑤
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