GComputational Neuroscience: ==-1=1
Neuronal Dynamics

3.1 From Hodgkin-Huxley to 2D
Week 3 - Reducing detail: - Overview: From 4 to 2 dimensions

Two-dimensional neuron models - MathDetour 1: Exploiting similarities
Wulfram Gerstner - MathDetour 2: Separation of time scales

EPFL, Lausanne, Switzerland 3.2 Phase Plang Analy5|s
- Role of nullclines

3.3 Analysis of a 2D Neuron Model

- constant input vs pulse input
- MathDetour 3: Stability of fixed points

Reading for week 3: - icurons
NEURONAL DYNAMICS
-Ch. 4.1- 4.3

Cambridge Univ. Press E=E |
Lecture 4! of video series (first 100 minutes)

https://lcnwww.epfl.ch/gerstner/NeuronalDynamics-MOOCall.ntmi
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Neuronal Dynamics — 3.1. Reduction of Hodgkin-Huxley model

| | | stimulus
du ~ B/\Na . {K\ o J\ileak - j
C dt = —0OnaM h(u_ENa)_gKn (U_EK)_9|(U_E|)+I(t)
dm  m-—my(u) z,
dt T, (U) Ny(U) Tn )
ﬁ ~ h—h,(u) ho(u) T, (U
dt 7, (U) "u U
@ — n_no(u)
dt 7 (u)
1) dynamics of m are fast - m(t) =my (u(t))

2) dynamics of h and n are similar
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Week 3 - Quiz 3.2-similar dynamics

mll

:Exploiting similarities:

A sufficient condition to replace two gating variables r,s

by a single gating variable w IS

[ ] Both r and s have the same time constant (as a function of u)

[ ] Both r and s have the same activation function

[ ] Both r and s have the same time constant (as a function of u)
AND the same activation function

[ ] Both r and s have the same time constant (as a function of u)

' AND activation functions that are identical after some additive rescaling

:[] Both r and s have the same time constant (as a function of u)

AND activation functions that are identical after some multiplicative

rescaling
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Discussion of exercise 1- Reduction of Hodgkin-Huxley model

| | | stimulus
a K leak

du ~ 3 ~ /4\ ~ — l
C =~ 0uMN(U—E) = 0N (U-E) ~g,(U=E)+ 1 1)

dm m—m,(u) Th

dt 7 (u) No(U) A

dh  h—h,(u) No(U) 7 (U)

E_ 7, (u) U U

d_ﬂ_ n_no(u)

dt 7 (u)

dynamics of m is fast - m(t) =m,(u(t))



Discussion of exercise 1- Reduction of Hodgkin-Huxley model

| | | stimulus
du ~ 3  Na /:\ . Aﬁleak \ j
C =~ 9umh(U=Ey) = gen*(U-E)~g,u-E)+1(®)
d B o() ("
-y ny(u) A
dh  h—h,(u) No(u) 7, (U)
E_ 7, (u) U U
d_ﬂ_ n_no(u)
dt 7 (u)
dynamics of m is fast - m(t) =m,(u(t))

Fast compared to what?




Question of student:

1. 1tis possible to approximate m(t) with
its asymptotic value If m(t) change Is
fast enough w.r.t. the others temporal
changes and In particular the stimulus
change. However it seems to me that
very often the stimulus we use Is either
a pulse or a step (hence
Instantaneous) current. Wouldn't this
mean this approximation Is too bad
most of the time to be useful ?

Answer: Good question that needs a
longer answer:



Neuronal Dynamics - Quiz 3.3.

:' “A- Separation of time scales: |
: We sg?(rt with two equations : Pay attention to I(t):
- G -y : We assume that I(t) is slow
oy : compared to both time
, =—yV+ X +A !
| e ! constants.
[ ]1If ;<< 7, then the system can be :
reduced to | If 1(t) can move rapidly,
l . -
- %:—y+[y+l(t)] + A : choice (1] Is
! not always correct
| 11If 7, << z; then the system can be
reduced to :
rlﬁz—x+x2+A+l(t) :
| ] None of the above Is correct. :
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First part of answer. consider

TlE: —m+1(t)

d
o= Gmw) = fu ()

First part of answer. Consider 7; < 1,
Now divide both sides of the equation by a factor of 10

dm
“1ar

du
(12/10) — = (1/10) fu(W)

= —m + I(t)

We can rewrite the |hs with a new time constant 7, = I—f) ; and then 7, K

7, may no longer hold. Hence, if we compare ‘'speed of change’, we have
to assume that the rhs is of ‘order 1'. Concretely, if f,,,(u) has a value of
200 for some u, then the speed Is rapid even If formally 7, Is ‘large’.



Second part of answer. Consider 7; < T,

dm
TlE — —m+1(t)
TZ% = f,(u)=—Ww+m)+cexp[(u+m-—139)/A]

Schematic plot of f,,(u)

\nfl’i

e

m =0

Assume a short current pulse of amplitude 3.5 and duration 7, /4.
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du
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Schematic plot of f,,(u)

\nfl’i
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m =0

\/_1

ot
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Assume a short current pulse of amplitude 3.5 and duration 7, /4.
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TZ% = f,(u)=—Ww+m)+cexp[(u+m-—139)/A]
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\nfl’i
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Second part of answer. Consider 7; < T,

am
Tlﬁz_m‘l‘l(t)
d
o= fu(@) = —(u+m) + cexpl(u+m—9) /A]

Assume a short current pulse /(¢) of amplitude 3.5 and duration 7, /4.

- A naive application of the separation of time scales would predict explosion
of u(t).

- However, If we consider that during the application of /(z) the variable m

never goes above 7/8, then we conclude that the voltage trajectory will
stay In the stable regime and return to zero.

Conclusion: It Is wise to consider short current pulses as delta pulse that lead
to a new Initial condition. In this example, m jumps by 7/8.



~ Week3- Summary31

In order to reduce the HH model from 4 to 2 equations we have to simplify. We
use two different mathematical methods.

1. Separation of time scale.

If the time scale of two variables Is different by a factor 10 or a hundred, we
can assume that the faster one of the two variables has already converged to
its ‘'momentary stable state’ on the slow time scale. Thus, we can remove the
fast variable. We use the separation of time scale to remove the variable m.

2. Exploit similarities.

If two variables evolve on the same time scale, they have, Iif we are lucky,
some similar temporal evolution. We can reduce the two variables to one
dimension by turning the coordinate system such that the first dimension is the
one where the two variables evolve ‘together’. The simplification consists in
suppressing the second variable. This is similar to PCA where you would also
only keep the first component. However, we need to do this such that also the
DYNAMICS stays approximately correct, after reduction to 1 dimension.

We use this trick to compress h and n into a single variable w.



3.2. Nuliclines of reduced Himodel

stimulus
du "
r—=F(u,w)+RI(t)
dt
dw =
r, — =G(U,w) N
dt
T
u-nulicline L pVE=0 { t
60 —40 —20 0 20 40
. uw [mV]
w-nullcline

Image: Neuronal Dynamics,
Gerstner et al.,
Cambridge Univ. Press (2014)



3.2. Nuliclines of reduced Himodel

aw _
dt
stimulus | | | | | |
3 H —~
du "
r— = F(u,w)+RI(t) )L )
at G =0
dw = 1k _
r, — =G(U,w) - -
dt \
0 7 du )
| | - dt
u-nullcline Ve =0 {
| | | | | |
—60 —40 =20 0 20 40
. uw [mV]
w-nullcline
Stable fixed point Image: Neuronal Dynamics,

Gerstner et al.,
Cambridge Univ. Press (2014)



Week 3— 0uizda Take 1 minute

A. u-Nullclines
[ ] On the u-nullcline, arrows are always vertical
[ ] On the u-nullcline, arrows point always vertically upward stimulus
[ ] On the u-nullcline, arrows are always horizontal
du
B. w-Nullclines o F(u,w) +RI(t)
[ ] On the w-nullcline, arrows are always vertical
[ ] On the w-nullcline, arrows are always horizontal dw e
[ ] On the w-nullcline, arrows point always to the left Cw E - (u W)
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Question of student.

2. | understand how the change at any given point of either
of the nullclines has to be orthogonal to its corresponding
variable direction. | didn't understand how we can propagate
this outside the locality of the nullclines.

Basic answer: the sign of the component of the flow arrow In
X-direction can only change at points with dx/dt = 0.

The sign of the component of the flow arrow In y-direction
can only change at points with dy/dt = 0.

But these condition tell us that changes are only possible on
the nullclines.



~ Week3- Summary32

Once we are In two dimensions we can use phase plane analysis. Two
important concepts are the ‘nullclines’; and the local direction of the ‘flow'.

Intersections of the two nullclines correspond to fixed points. It Is a bit of
work to decide whether a fixed point is stable or not. However, iIn some
cases (such as a saddle point) stability Is visible directly from the graph.

Stabllity of a fixed point Is determined by linearizing around the fixed point.
Since we are In 2 dimensions, linearization yields a 2x2 matrix. The
eigenvalues determine the stability (See exercise 2.1).

The FitzHuhg Nagumo model is a particularly simple 2-dimensional model.
The reduction of the full Hodgkin-Huxley model yields a more complicated
picture In the phase plane.



gL F = = T T 3 | | !
u=0] —_ T w=0[_ B
]‘_-—:-- - - - - — ;I 1F —_
Sor “ N S
. | -\ — 0 - -
S R >
S A {lhs :
T, = = = _9 l l l l
-3 -2 -1 0 1 2 3 0 50 100 150 200
u [mV] t [ms]

2 Important input scenarios
- Pulse Input
- Constant input

2-dimensional equa

du

—=F(Uu,w
T (U, w)

dw

—=0G(u,w
f = Gu,w)

tion

stimulus

RI (t)

Enables graphical analysis!



Neuronal Dynamics - Quiz 3.9.

‘A. Short current pulses. In a 2-dimensional neuron model, the effect of a delta
| current pulse can be analyzed

I[] By moving the u-nullcline vertically upward or downward

I[ | By moving the w-nullcline vertically upward or downward

I[ ] As a potential change in the stability or number of the fixed point(s)

I[ ] As a new Initial condition

.[] By following the flow of arrows In the appropriate phase plane diagram

l

:B. Constant current. In a 2-dimensional neuron model, the effect of a constant
: current can be analyzed

| ] By moving the u-nullcline vertically upward or downward

| ] By moving the w-nullcline vertically upward or downward

| ] As a potential change In the stability or number of the fixed point(s)

| | By following the flow of arrows In the appropriate phase plane diagram
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B. Constant current. In a 2-dimensional neuron model, the effect of a constant
current can be analyzed

| ] By moving the u-nullcline vertically upward or downward

| ] By moving the w-nullcline vertically upward or downward

| ] As a potential change In the stability or number of the fixed point(s)

| ] By following the flow of arrows in the appropriate phase plane diagram
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Week 3 - Summary 3.3

Phase plane analysis of neuron models is particularly interesting
because the input | only enters into the first variable (voltage u).

As a conseguence of this observation, we can discuss two important

INnput scenarios as follows:

1. Constant input. In this case the u-nulicline Is shifted vertically.

2. Pulse input. In this case the u-nullcline is not shifted, but the pulse
causes a horizontal shift of the initial condition.

If constant input Is applied (or very slowly ramped upward) the number
of fixed points or their stability can change.

If we can find a bounding box (with arrows pointing inside) around an
unstable fixed point and no other fixed points are inside the box, then
there must exist a limit cycle.
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Neuronal Dynamics - 2.4. TIII‘esIIOI(I In Hi model

pulse Input
H(t)

inside

° Ka

/—%—.Na

outside
lon channels lon pump

Question of student : 3. Why Is the downswing so fast?

-we said upswing Is fast because of fast m. More precisely,
the dynamics of m leads to an explosion-like instability

- We said downswing triggered by dynamics of h and n.

THEN, WHY IS THE DOWNSWING FAST?

- Use Insights of our 2dim system! Watch videos for next week!
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3.3. FHitzHugh-Nagumo Model : Gonstant mnut

) N el S S S e st | | | |
w=0 <= = |w=0 D

2+ «—
1 _ , _ e ;'1— \ \
Sor L ) S .
3

T — - - 0+ 1
—1 — > —> — > \— —1 — B
) atdih ettt 2 --
— T, | — —— 1 B | l l |
-3 -2 -1 0 1 2 3 0 50 100 150 200
u [mV] t [ms]
_ _ _ Image:
FN model with b, =0.9;b, =1.0;RI, =2 . £ curve Neuronal Dynamics,
_ o f Gerstner et al.,
constant input: limit cycle, / Cambridge (2014)
fast downswing! s

lo



2-dimensional equation

3F L _4-7(-) — T T Z}T B 3 | ! | stimulus
b oL T T 21 - du |
) L = 1L _ TuE:F(u;W)'FRI(t)
N S
N | dw
b7 L I T LT iy 1 - =6u,w
—Tr . = T\ _9 (\F | l l | W dt ( )
-3 —2 -1 0 1 2 3 0 o0 100 150 200
| u [mV] t [ms]
Time constants: Week 4
- Describe approach to Suppose Ty K Ty

stable fixed point
- Describe exponential
growth around unstable fixed point

Then arrows nearly horizontal.
(second separation of time scales)
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