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Parkinson’s disease (PD) is a complex progressive neurodegenerative disease 
characterized by tremor, rigidity, and bradykinesia, with postural instability appearing in 

some patients as the disease progresses [1].



3Stages of PD by Hoehn and Yahr
Stage 1: Symptoms are present on one side only (unilateral);

Stage 2: Symptoms are present on both sides but no impairment of balance;

Stage 3: Balance impairment and mild to moderate disease progression; 

Stage 4: Severe disability, but still able to walk or stand unassisted;

Stage 5: Needing a wheelchair or bedridden unless assisted [2].

https://www.verywellhealth.com/facts-about-parkinsons-disease-5200700
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PD statistics
▪ PD is the second most common neurodegenerative disease after Alzheimer’s 

disease;

▪ Nearly 90,000 people in the U.S. are diagnosed with PD each year. More than 10 
million people worldwide are living with PD.

▪ Approximately 0.5–1% patients are in the age of 65–69 , rising to 1–3% among 
persons 80 years of age and older;

▪ Men are 1.5 times more likely to have Parkinson's disease than women.

▪ With an aging population, both the prevalence and incidence of PD are expected to 
increase by more than 30% by 2030 [1]. 
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Basal ganglia circuit
Schema is based on the 
classical model of basal 
ganglia [3].
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Imbalanced activity between the two pathways
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L-DOPA limitations

2 4 6

Time effect (hours)
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– early PD
– mild PD
– advanced PD [4]

On-effect
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15Deep Brain Stimulation
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Deep Brain Stimulation limitations

▪ Higher chance of confusing a Parkinsonian disorder (such as multiple system 
atrophy) within the first 5 years of diagnosis [5];

▪ Inability to place the DBS electrode properly due to the brain anatomy;

▪ Possibility of an infection, hemorrhage, and even mortality during the surgery [6];

▪ Post-operative side effects such as confusion, delirium, and cognitive decline can 
be found. Any of these conditions may lead to hospitalization following DBS [6];

▪ High workload of hospitals and surgeons and growing number of patients.
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Temporal Interference (TI)
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▪ Non-invasive brain stimulation technique ;

▪ Target deep brain regions;

▪ Uses two high-frequency alternating currents with 
a slight difference to create an envelop amplitude 
that oscillates in the low-frequency;

▪ Provide subthreshold neuromodulation rather than 
direct activation of neurons [8-9];

General schema of the TI frequencies overlap [7]
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Aim of the study
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▪ Investigate TI mechanism of action
▪ Comparing EEG biomarkers of STN stimulation via 

means of TI and DBS
▪ Investigate the long term effects of TI 
▪ Investigate feasibility of TI to treat early stage PD

▪ We do not expect long term improvements, we would 
like not to see a fast decline in benefit from stimulation

STN-
DBS

STN-
TI

Sham

Short-
term

Long-
term

EEG
MDS-

UPDRS



Hypothesis
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▪ TI is able to disrupt pathological frequencies even being a 
subthreshold stimulation [10][12]

▪ STN stimulation via TI results in measurable EEG activity [11][12][13]

[10] C. Yang et al (2024) 

[11] J. Dale et al (2020) 
[12] Vieira P.G., Krause M.R. (2024)
[13] Ying et al 2022



Group Design 21

DBS group of 
early PD 
patients

Sham group

30s ramp up and 
30s ramp down

High frequency 
tACs

tTI stimulation 
group
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Double-blinded, randomized, 
sham-controlled protocol,
conducted by the World 
Medical Association's 
Declaration of Helsinki.

Daily 30-min sessions over 6 
weeks

Three groups of 25 patients
each

MDS-UPDRS before and 
after each session

EEG recording during the 
sessions

Self report of effects during 
the day

Our Experimental
Paradigm
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Methodology 23
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▪ Head model FEM simulation of electrode placement and current 
injected
▪ Target of 0.65 V/m interfering electric field in STN [10,12,18]

▪ Resting state stimulation with 1.3kHz and 1.43kHz to generate an 
envelope of 130Hz [10,13]
▪ Similar parameters of current DBS STN stimulation protocols
▪ During "medication ON" phase, one hour after ingestion

▪ EEG recording concurrent with stimulation, to gain insights on 
mechanism of action and possible ways to optimise parameter 
space

[12] Vieira P.G., Krause (2024) M.R. 

[10] Yang C. (2024) 
[13] Ying et al 2022
[18] Francis et al 2003



Participants selection
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Inclusion Criteria [10] :

▪ Diagnosed with idiopathic PD with 
onset at age 40 or later.

▪ Responsive to levodopa medication, 
showing at least a 30% reduction in 
MDS-UPDRS-III scores after 
medication.

▪ Total MDS-UPDRS-III score ≥20.
▪ Hoehn and Yahr (H&Y) stages 

between 1.5 and 2.5.
▪ Regular intake of PD medication for at

least 4 weeks before the study. 

[10] Yang et al, 2024
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Exclusion Criteria [10] :

▪ Presence of other neurologic diseases affecting
the study (e.g., epilepsy).

▪ Orthopedic conditions affecting motor symptoms.
▪ History of taking antipsychotic drugs, 

antidepressants, or other drugs affecting
dopamine levels.

▪ Severe psychiatric disorders, such as depression
or psychosis.

▪ History of electroconvulsive therapy.
▪ Doctor-diagnosed cardiovascular risk factors

Participants selection

[10] Yang et al, 2024
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How many? 26

G*power

▪ It ensures appropriate power to detect medium effects
▪ It accounts for drop-outs
▪ It allows comparison across groups at different time points
▪ Accounts for within group variability
▪ Effect size measured with Cohen’s d set to 0.5 (medium size)
▪ Alpha level set at 0.05
▪ Power level set at 0.8

25 per groupWhy? 

B
e
a

tr
ic

e
 C

a
m

p
o
 



TI-EEG
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They work at different frequency ranges in the cortical
level

[14] Alania et al, 2023

Why?

• Better understanding of the 
mechanism underlying STN-TI

• Comparing DBS and TI cortical 
activity

Problem:

• Nonlinear artefacts in the stimulation and 
recording hardware at beat frequency and its 
harmonics [11]

Custom-made front-end filters in the 
current source output and EEG input
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TI-EEG
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They work at different frequency ranges in the cortical
level

This ensures the nonlinear artefact at 
the modulation frequency is below EEG 
noise level

Set up configuration:

• Passive HPF after TI stimulator
• Active LPF before EEG

Problem:

• Nonlinear artefacts in the stimulation and 
recording hardware at beat frequency and its 
harmonics

Custom-made front-end filters in the 
current source output and EEG input

[14] Alania et al, 2023
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DBS-EEG 
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DBS-EEG 
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DBS-EEG 
31

▪ DBS pulses usually induce high amplitude 
artefacts on EEG recordings, monopolar 
stimulation that induces artefacts up to 
30 ms. [12]

▪ Low-pass filtering (e.g. with a 50 Hz cutoff ) is 
usually sufficient to remove the DBS artefact 
and its harmonics when DBS is applied at high 
frequency, e.g. 130 Hz.

[15] Sun et al, 2014
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Expected cortical activity
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[16] Kibleur et al, 2018

STN stimulation significantly reduces pathological beta 
power in both the STN and motor cortex.

STN-DBS may enhance gamma oscillations, reflecting improved 
cortical synchronization and motor control

PD patients typically show reduced resting-state alpha power, 
associated with disrupted cortical networks. STN-DBS might
partially restore alpha rhythms in some cortical regions, 
reflecting improved baseline network stability and sensorimotor
integration [13]
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33Innovation

▪ One study published targetting GPi, 
while we target STN

▪ Not only behavioral data but also EEG 
(mechanisms, biomarkers)

▪ Comparison of DBS and TI EEGs to 
compare cortical oscillations

▪ Long term assessment of TI 
(online/offline effects)

▪ Assessing long-term complications via 
recording patient’s diaries

STN-DBS is generally associated with greater 
reductions in motor symptoms as measured by the 

Unified Parkinson’s Disease Rating Scale (UPDRS) 
compared to GPi-DBS. [14]

[17] Wong et al, 2020
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Limitations
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▪ Only one set of 
parameters→
different envelope
frequencies, 
amplitudes, and carrier 
frequencies

▪ Non-personalized
solution

Possible variations
▪ TI stimulation with more 

couples of electrodes [19]
o Robustness of filters will 

be assessed by a pilot 
study

o In presence of unexpected 
artefacts, the experiment 
will be conducted with only 
two pairs of electrodes

▪ T1 MRI acquisition for 
personalized FEM simulation 
and accurate parameter tuning
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[19] Acerbo et al, 2024



Open Questions & Developments
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▪ Offline effects of TI?

▪ Will there be adverse effects on using TI every day for 
a long time?

▪ Basis for implementing TI home-based or 
subcutanoeus electrodes

▪ If any biomarkers have been found-> closed loop 
applications
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Thanks for the attention! 
Any questions?
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