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▪ C5 injury with ASIA-B severity

Spinal Cord Injury

Fig. 1 - Spinal Cord [4]N
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▪ Physical rehabilitation

▪ BCIs

▪ Regenerative medicine

State of the art motor restoration

▪ Physical rehabilitation

▪ Regenerative Medicine

▪ BCIs

Fig. 2 - Physical rehabilitation [7]
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BCIs for motor restoration

Fig. 3 - BCI for movement schematic [8]
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Fig. 4 - Types of sensors currently used [9]

Sensors - State of the art
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Fig. 5 - Comparison between different decoder algorithms [10]

Decoders - State of the art
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Effectors - State of the art

▪ Non-invasive stimulation
• FES

▪ Robotic orthoses

▪ Exoskeletons

▪ Invasive Stimulation
• EES
• Peripheral Nerves and Muscles

Fig. 6, 7 - Peripheral Nerve Stimulation [11] (Top), 
Robotic Hand Orthosis [12] (Bottom)N
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▪ mechanical incompatibility
▪ poor contact 
▪ highly invasive

Effectors - Current limitations
N

X
-4

36
 / 

P
R

O
JE

C
T [13] 



▪ Body like mechanical property
▪ Conform well to the stimulation sites
▪ Minimally invasive by injection

Solution: Conductive Hydrogel
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Fig. 8 - Injectable hydrogel [15]                                                                             Fig. 9 - Hydrogel [16]



Our solution

N
X

-4
36

 / 
P

R
O

JE
C

T



▪ Background
• Problems

• Solutions and limitations

▪ Our solution
• Recording
• Stimulation

▪ Conductive hydrogel

▪ Future
• Roadmaps

• Challenges

Outline
N

X
-4

36
 / 

P
R

O
JE

C
T

15



Our approach

Fig. 10 - Schematic of our approach
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Sensors - Our approach

Fig. 11 - Location of recording electrodes [14] Fig. 12 - Precision Neuroscience MEA 
[15]



Sensors - Our approach

Fig. 13 - Chosen recording system 
[13]
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GAP9 microcontrollers (3.7x3.7 mm) [16] have been shown to be able to 
run sNNs for on-implant movement decoding [17]

Decoder - Our approach

Fig. 14, 15 - GAP9 chip size comparison [18] (left), current use of these chips (right)N
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A deep neural network is trained over 40 
sessions

Use of an “updater” instead of constant 
retraining

Decoder - Our approach

Fig. 16 - Training of sNN [19]N
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Effector - Our approach

Fig. 17 - Effector with 
wireless data transmission 

[20]
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Our solution
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▪ mechanical incompatibility
▪ poor contact 
▪ highly invasive

Effectors - Current limitations
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▪ Body like mechanical property
▪ Conform well to the stimulation sites
▪ Minimally invasive by injection

Solution: Conductive Hydrogel
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Fig. 8 - Injectable hydrogel [15]                                                                             Fig. 9 - Hydrogel [16]



▪ High conductivity

▪ Good mechanical properties

▪ Injectability

▪ Biocompatibility

Desired 
Properties
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Silver Nanowire Gel

Composition and Conductivity

[17] Huang et al. (2020) Du et al. (2024)

Composition PDMS, 3D NW gelatin, 1D NW

Conductivity 2.1 × 105 S/m 33 S/m

Biocompatibility Good, PDMS Good, gelatin

Density 24.3 mg/cm3 not mentioned

Compressive Yield 
Strength

5.1 kPa 9.2 kPa

Compressive Modulus 38.7 kPa 62.5 kPa
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Fig. 18 - (a–c) SEM images at different 
magnifications of AgNW aerogels.
(d) XRD pattern of the AgNW aerogels.



Silver Nanowire Gel

Mechanical Property

[17] Huang et al. (2020) Du et al. (2024)

Composition PDMS, 3D NW gelatin, 1D NW

Conductivity 2.1 × 105 S/m 33 S/m

Biocompatibility Good, PDMS Good, gelatin

Density 24.3 mg/cm3 not mentioned

Compressive Yield 
Strength

5.1 kPa 9.2 kPa

Compressive 
Modulus

38.7 kPa 62.5 kPa
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Fig. 19 - Compressive stress–strain curves for 
AgNW aerogel of different densities: (1) 10.7 
mg/cm3, (2) 15.2 mg/cm3, and (3) 24.3 mg/cm3



Silver Nanowire Gel

[18] Du et al. (2024)

Composition gelatin, 1D NW

Conductivity 33 S/m

Biocompatibility Good, gelatin

Density not mentioned

Compressive Yield 
Strength

9.2 kPa

Compressive Modulus 62.5 kPa
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Mechanical Property

Fig. 20 - Compression curve of Ag NW 
colloidal gels and Ag NP colloidal gels



Silver Nanowire Gel

[18] Du et al. (2024)

Composition gelatin, 1D NW

Conductivity 33 S/m

Biocompatibility Good, gelatin

Density not mentioned

Compressive Yield 
Strength

9.2 kPa

Compressive Modulus 62.5 kPa
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Composition and Conductivity

Fig. 21, 22 - 
SEM images 
of Ag NW 
colloidal gel



Conductive Hydrogel
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Fig. 23 - Hydrogel with desired properties [15]



Adhesion

▪ Tissue
▪ Device

Conductive 
Hydrogel
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Fig. 24 - Ag NW colloidal gel applied in 
deep and irregular wounds [18]

Fig. 26 - Ag 
NW colloidal 
gel adhered 
two pigskins 
together and 
pulled up a 

weight of  50 g 
and a 

centrifugal 
tube [18]

Fig. 25 - Cuff 
electrode with 
gap filled by 
injectable 
hydrogel [15]



Local Retention
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Fig. 27 - a) Fabrication of Ag NP colloidal gel and Ag NW colloidal gel
b) Local retention of Ag NP colloidal gel and Ag NW colloidal gel [18]



Injectability: Shear thinning
▪ Pros: easy for manipulation
▪ Cons: prone to mechanically instability

Conductive 
Hydrogel
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[19]

Fig. 28 - a) Shear 
stress as a function 
of shear rate [19]
b) Viscosity versus 
shear rate [19]
c) Viscosity and 
shear-thinning 
behavior of Ag NW 
colloidal gels [18]



Injectability: In situ gelation
▪ Pros

• Perfect injectability

• Good mechanical property after gelation

▪ Cons

• Control and timing of the gelation

• Intermediate chemicals

Conductive 
Hydrogel
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Fig. 29 - The process of forming AgNW wet gel [17]



Ideal hydrogel
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▪ Conductivity (Huang et al., 2020 & Du et al., 2024) : 
• Dense silver nanowires (AgNWs)

▪ Local Retention (Du et al., 2024) :
• Polydopamine (PDA)-coated AgNWs

▪ Injectability:
• In Situ Gelation (Yang et al., 2024) - Tannic acid modulation
• Shear-Thinning (Jin et al., 2023) - Phenylborate-mediated 

crosslinking

▪ High Compressive Yield Strength (Du et al., 2024):
• Dense 3D AgNWs



▪ Trade-off

Stimulation

▪ Solution
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peripheral nerve stimulation muscular stimulation

Higher selectivityLess Fatigue

Natural

Fig. 30 - Wrist 
and hand 
movements 
[20]



Location of Stimulation: wrist
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Fig. 31 - Nerves of the arm [21]



Location of Stimulation: fingers
Finger Flexors Finger Extensors
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Fig. 32 - Finger flexor and extensor muscles [24]



Location of Stimulation: fingers
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Fig. 33 - Example of implanted neuroprosthesis [34]



Future
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Roadmap: Peripheral Nerve Stimulation
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No wire cuff electrodes

[15]
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No wire cuff electrodes

Current steering FEM

Roadmap: Peripheral Nerve Stimulation

[15]

[26]
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No wire cuff electrodes

Current steering FEM

Roadmap: Peripheral Nerve Stimulation

[15]

[26]

[27]



N
X

-4
36

 / 
P

R
O

JE
C

T

No wire cuff electrodes

Current steering FEM

Current Steering

Roadmap: Peripheral Nerve Stimulation

[15]

[28]
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No wire cuff electrodes

Current steering FEM

Current Steering

3D patterned hydrogel

Roadmap: Peripheral Nerve Stimulation

[15]
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No wire cuff electrodes

Current steering FEM

Current Steering

3D patterned hydrogel

Roadmap: Peripheral Nerve Stimulation

[15] [28]
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Motor point 
stimulation

Roadmap: Neuromuscular Stimulation

[29]

[30]
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Motor point stimulation

Intramuscular 
Stimulation

Roadmap: Neuromuscular Stimulation
[31] [32]
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Motor point stimulation

Intramuscular 
Stimulation

Roadmap: Neuromuscular Stimulation

[31] [32]

[30][29]



Tunnel Surgery
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Fig. 16 - Schematic of the surgery [33]
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▪ Long term use

▪ Temperature rise

▪ Peripheral nerve stimulation

Challenges
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