SCI Digital Bridge:
Hydrogel Approach
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=L Spinal Cord Injury
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= CS5injury with ASIA-B severity

—— Cervical
C1-C7

—— Thoracic
T1-T12

s —— Lumbar

11-L5

—— Sacral

S1-S5
Coccygeal

Fig. 1 - Spinal Cord [4]
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=PrL - State of the art motor restoration

Physical rehabilitation

Regenerative Medicine

BCls

Fig. 2 - Physical rehabilitation [7]
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BCls for motor restoration
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Fig. 3 - BCI for movement schematic [8]
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=P7L  Sensors - State of the art
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Fig. 4 - Types of sensors currently used [9]



=7L  Decoders - State of the art
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Fig. 5 - Comparison between different decoder algorithms [10]
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Effectors - State of the art
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Fig. 6, 7 - Peripheral Nerve Stimulation [11] (Top),
Robotic Hand Orthosis [12] (Bottom)




=7l Effectors - Current limitations

= mechanical incompatibility
= poor contact
= highly invasive

B NX-436 / PROJECT



7. Solution: Conductive Hydrogel

= Body like mechanical property
=  Conform well to the stimulation sites

=  Minimally invasive by injection

S

B

Fig. 8 - Injectable hydrogel [15] Fig. 9 - Hydrogel [16]
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Our approach
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Fig. 10 - Schematic of our approach
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L Sensors - Our approach

Central sulcus

Mastication

Salivation

Fig. 11 - Location of recording electrodes [14] Fig. 12 - Precision Neuroscience MEA
[13]



ePFL - Sensors - Our approach

Fig. 13 - Chosen recording system
[13]



=PFL - Decoder - Our approach

GAP9 microcontrollers (3.7x3.7 mm) [16] have been shown to be able to
run sNNs for on-implant movement decoding [17]
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Fig. 14, 15 - GAP9 chip size comparison [18] (left), current use of these chips (right)
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sNN accuracy (%)

Decoder - Our approach

] . a C . . ﬂ 2
A deep neural network is trained over 40 , - s
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Fig. 16 - Training of sNN [19]



=PFL - Effector - Our approach

Fig. 17 - Effector with
wireless data transmission
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=7l Effectors - Current limitations

= mechanical incompatibility
= poor contact
= highly invasive
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7. Solution: Conductive Hydrogel

= Body like mechanical property
=  Conform well to the stimulation sites

=  Minimally invasive by injection

S

B

Fig. 8 - Injectable hydrogel [15] Fig. 9 - Hydrogel [16]
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=PFL - Desired
Properties

= High conductivity

= Good mechanical properties
= |njectability

=  Biocompatibility
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=PrL - Composition and Conductivity

Fig. 18 - (a—c) SEM images at different
Silver Nanowire Gel magnifications of AQNW aerogels.
(d) XRD pattern of the AgNW aerogels.
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Mechanical Property

Fig. 19 - Compressive stress—strain curves for
Silver Nanowire Gel AgNW aerogel of different densities: (1) 10.7
mg/cm3, (2) 15.2 mg/cm3, and (3) 24.3 mg/cm3
a 25
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=PFL - Mechanical Property

Fig. 20 - Compression curve of Ag NW

Silver Nanowire Gel colloidal gels and Ag NP colloidal gels
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=PrL - Composition and Conductivity

Silver Nanowire Gel

[18] Du et al. (2024)
Composition gelatin, 1D NW
. Fig. 21, 22 -
Conductivity 33 S/m SEM images
. - : of Ag NW
Biocompatibility Good, gelatin colloidal gel
Density not mentioned
Compressive Yield 9.2 kPa
5 Strength
% Compressive Modulus 62.5 kPa




"L Conductive Hydrogel

Fig. 23 - Hydrogel with desired properties [15]
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Conductive
Hydrogel

Adhesion

=  Tissue

= Device
Ag NW colloidal gel

Fig. 24 - Ag NW colloidal gel applied in
deep and irregular wounds [18]

~__Form-fitting electrode (ICAA-C)

4 \ v!i_th robust neural interface

. Gap filled with injectable

; multifunctional hydrogel (ICAA)
lissue e Strong adhesive

e Highly Conductive

® Anti-swelling

Centrifugal
tube

Fig. 25 - Cuff
electrode with
gap filled by
injectable
hydrogel [15]

Fig. 26 - Ag
NW colloidal
gel adhered
two pigskins
together and
pulled up a
weight of 50 g
and a
centrifugal
tube [18]



=PFL | ocal Retention

Anionic Cationic Anionic
PDA-Ag NP Gelatin NP PDA-Ag NW

(- Electrostatic « Electrostatic

© o © Interactions @ . © Interactions >
- - “
¢ © e ©

Ag NP colloidal gel Ag NW colloidal gel

X Unsatisfied local retention v Satisfied local retention
X Mechanically weak v Mechanically strong

Fig. 27 - a) Fabrication of Ag NP colloidal gel and Ag NW colloidal gel @ Ag NP colloidal gel
b) Local retention of Ag NP colloidal gel and Ag NW colloidal gel [18] © Ag NW colloidal gel
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Conductive
Hydrogel

Injectability: Shear thinning
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Cons: prone to mechanically instability
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=PFL - Conductive
Hydrogel

Injectability: /In situ gelation

= Pros
Dilute Dilute

» Perfect injectability (Ag' suspension) siiiposaain, |
» Good mechanical property after gelation

= Cons :
« Control and timing of the gelation

* |ntermediate chemicals
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Fig. 29 - The process of forming AgNW wet gel [17] i Ag::v"‘s‘;;’g:;:ion ] A':‘,’:v";‘::l



=PfL - ]deal hydrogel

Conductivity (Huang et al., 2020 & Du et al., 2024):

* Dense silver nanowires (AgNWSs)

Local Retention (Du et al., 2024):
* Polydopamine (PDA)-coated AgNWs

Injectability:
* In Situ Gelation (Yang et al., 2024) - Tannic acid modulation

* Shear-Thinning (Jin et al., 2023) - Phenylborate-mediated
crosslinking

High Compressive Yield Strength (Du et al., 2024):
* Dense 3D AgNWs
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Stimulation

= Trade-off
peripheral nerve stimulation muscular stimulation
Natural
Less Fatigue Higher selectivity
|
A Fig. 30 - Wrist
_ and hand
' t
Solution (\ _______ Eg}lemen S

Extension
(," . 2

Radial Deviation Ulnar Deviation Pronation Supination
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Location of Stimulation: wrist
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Fig. 31 - Nerves of the arm [21]
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=L | ocation of Stimulation: fingers

Finger Flexors Finger Extensors
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Fig. 32 - Finger flexor and extensor muscles [24]



=L | ocation of Stimulation: fingers
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Fig. 33 - Example of implanted neuroprosthesis [34]
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=PFL. - Roadmap: Peripheral Nerve Stimulation

No wire cuff electrodes

N ——
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=PFL. - Roadmap: Peripheral Nerve Stimulation

Image
.. Segmentation §
A g :
o) :«2 o
No wire cuff electrodes (8) Nerve: HleSoogicel Section !

(b) Nerve Finite Element Model

“__Form-fitting electrode (ICAA-C)
'+ with robust neural interface

Epineurium

Current steering FEM

N\~ Gap filled with injectable
multifunctional hydrogel (ICAA)

tissue o Strong adhesive L 00 (g
e Highly Conductive gt 5 0km

® Anti-swelling (Parylene C)
Exposed End
(CNT)

[15] “

B NX-436 / PROJECT



=PFL. Roadmap: Peripheral Nerve Stimulation

[26]
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=PFL. - Roadmap: Peripheral Nerve Stimulation
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No wire cuff electrodes

Source Electrode

Ground Electrode

Roadmap: Peripheral |
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Roadmap: Peripheral Nerve Stimulation

No wire cuff electrodes
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Roadmap: Neuromuscular Stimulation
EMG (Electromyography)
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Roadmap: Neuromuscular Stimulation

[31] [32]
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Early tissue
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=" Roadmap: Neuromuscular Stimulation
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=L Tunnel Surgery

SUBCUT FAT

LOOSE AREOLAR  TEMPORAL BR,
TEMPORALIS M TISSUE FACIAL NERVE

Fig. 16 - Schematic of the surgery [33]
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=L Challenges

= Long term use

= Temperature rise

Peripheral nerve stimulation
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