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—PEL intro

What are the potential benefits of multimodal

Imaging combined with neuromodulation?
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Recording of brain activity simultaneously
- focally and at the network level

- adds to mechanistic understanding

- safety monitoring

- state dependent close-loop applications

Online interference with brain activity
- causal understanding
- network vs. local effects

- state dependent close-loop applications
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What are the disadvantages and challenges of

multimodal imaging combined with neuromodulation?
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Challenges

- temporal, spatial resolution

- safety

- artefacts

- feasibility

- accessibility, clinical translation

- cost



“PFL intro

INVASIVE NON-INVASIVE
[ Neurosensing/ Neuro-monitoring } & >
E IIREADII : T 1 - =

» T

é . . oo e . %ﬁemion =
: Monitors electrical/BOLD activity in e S N7
: the central nervous system >
: W eCoG, iEEG EEG, MEG, fMRI
§ Neuromodulation
i "WRITE" 2

i Targets and improves functions such as motor, attention,
:memory, decision-making, self-regulation either
:electrically, magnetically or via ultrasound

DBS TMS, tES, TUS ,
Combinatory (bidirectional) E i
: "READ + WRITE" 230 %)
Monitors and reacts to brain states with prosthetics, /
-robotics, brain stimulation .
BCI, BBI,



=pEL TMS-fMRI Al
// ,L; L

WHITE: TMS coil (stimulation) ™

-436




“PTL NIBS and Neuroimaging

TMS-EEG TMS-fMRI
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EEG TMS NBS
Early and Late Response in the
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EEG TMS NBS
Early and Late Response in the

Stimulated Regions.
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=pPEL TMS - fMRI

NEUROMOD!
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TMS - fMRI

Enorm
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=pEL Visual field defects
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=pEL Visuo-attentional training
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EPFL The motion processing hierarchy
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=PrL How to promote inter-areal communication?

Inter-regional Phase-Amplitude Coupling (PAC)

reflects unidirectional coupling
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=prEL Hypothesis

promoting bottom-up direction of
information flow should facilitate
motion detection, and in turn, boost
visual field recovery
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Experimental design

A BLOCK 1

Baseline measurements

Perimetry &
clinical tests
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EEG
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A. Daily motion discrimination performances

Baseline corrected-NDR
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V1-MT PAC
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EPFL Does V1 reactivity predict recovery?
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Does V1 reactivity predict recovery?
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Does V1 reactivity predict recovery?

Group results
(HighTMS>LowTMS)

Lesion side




EPFL Does V1 reactivity predict recovery?

Group results Covariate analysis
(HighTMS>LowTMS) (Changes in motion
discrimination)

Lesion side
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ePFL / Phase-Amplitude ™
Coupling V1-MT

2
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= The pathway and direction-
dependent tACS protocol improves
motion processing in the blind
field

« Changes in bi-directional cross-
frequency V1-MT interactions

» More efficient pathway-dependent
processing
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Coupling V1-MT
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Coupling V1-MT - "
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motion processing in the blind
field

« Changes in bi-directional cross-
frequency V1-MT interactions

* More efficient pathway-dependent
processing

Perilesional V1
reactivity

= and enlarges visual field borders

= was predicted by more perilesional
V1 activity in response to TMS at
baseline
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Correlates with MEP amplitude;
decreased by VGSC blockers (CBZ)

\ Decreased by AMPAR antagonist (PER )
Early local TMS-evoked
Eec  reactivity

&

TMS

Decreased by VGSC blockers (CBZ, LTG)

P25 P7 O/ /

e“\.\s‘,\\e'e Increased by GABABR agonist (BAC)
P« 3 W
Pral) s‘m.“;\a\e

=% Local (M1) N100 /

N Decreased by positive modulators of
M GABAARs (ALP, DZP) and inhibitors of
Increased by positive modulators "phere| presynaptic excitatory transmitter release
of GABAARs (ALP, DZP, ZLP) and (BRV, LEV)

NMDAR antagonist (DMO);
decreased by a5-GABAAR
antagonist (544819)
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Nx-436
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“PTL TMS-EEG
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TMS-EEG - Example

Clinical
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Ragazzoni et al., PLOS One, 2013




—PEL TMS-EEG - Example of application Stroke

Animal Models NX-43

- Tonic Hyperinhibition
- Low excitability

Friedhelm C. H

-> Beneficial for

preventing excitotoxicity Hyperexcitability

- Decrease of tonic inhibition

-> Beneficial for plasticity

+
Inhibition 4 beneficial

v

Cortical GABAergic @
system activity

Stroke
I

Disinhibition beneficial

«

Carmichael, 2012
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TMS-EEG

m patients, N=60
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TMS-EEG

differentiated response

20583

Tscherpel e al., 2020 Acute stroke

Stroke Patients A

simple response

100 0 150 350 ms

S — Chronic stroke Bai ez al., 2023
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-30 EE—— S— 50
w

T4 t =60 ms

Chronlc Stroke Bigoni et al., 2023

Friedhelm C. H



CPFL TMS-EEG - Stroke
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“PFL TMS-EEG - Stroke

Early local TMS-evoked
EEcl® activity

'l

Lm;al
Comparable to animal work

+
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TMS-EEG —Aal

Nx-436

Contents lists available at ScienceDirect

Clinical Neurophysiology

journal homepage: www.elsevier.com/locate/clinph

Review

Clinical utility and prospective of TMS-EEG 1)

Check for
updiles

Sara Tremblay *™*, Nigel C. Rogasch <, Isabella Premoli ¢, Daniel M. Blumberger ?,

Silvia Casarotto €, Robert Chen’, Vincenzo Di Lazzaro #, Faranak Farzan ", Fabio Ferrarelli’,
Paul B. Fitzgerald*~, Jeanette Hui?, Risto J. Ilmoniemi, Vasilios K. Kimiskidis ™,

Dimitris Kugiumtzis ", Pantelis Lioumis “, Alvaro Pascual-Leone °, Maria Concetta Pellicciari®,
Tarek Rajji %, Gregor Thut “, Reza Zomorrodi®, Ulf Ziemann', Zafiris ]J. Daskalakis *



L tTIS-fMRI

M
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nature neuroscience

Article https://doi.org/10.1038/541593-023-01457-7

Noninvasive theta-burst stimulation of the
human striatum enhances striatal activity
and motor skill learning

Wessel, Beanato et al. 2023
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Putamen Caudate - HF control
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Stimulation effects are specific to the subregion
already involved in the task

Wessel, Beanato et al. Nature Neuroscience (2023)
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= How does striatal tTIS modulate neuromodulator levels in the putamen?
= How does this differ when performing a motor learning task?

Cortex

Striatum Thalamus

Inputs from SN \\\
.

s 8 ° GPe
° ..
e
~ SN Inhibits Activates
7N D2 Receptor D1 Receptor
N eceptor p
> Excitatory synapse
GP »—— Inhibitory synapse
—— Direct pathway
facilitates movement

——— Indirect pathway
inhibits movement

STN



“P=L tTIS-MR Spectroscopy

= Majority of neurons in Putamen are GABAergic
« Medium spiny projection neurons
 GABAergic Interneurons

Putamen
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= Record functional MR spectroscopy of the Putamen at 7T
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“P=L tTIS-MR Spectroscopy

Nx-436

Theta-burst

tTIS / HF
control

10 mins 20 mins 30 mins




“P=L tTIS-MR Spectroscopy

= Sequential finger tapping task to motor learning

Theta-burst
tTIS / HF

MRS control

5 mins / \ 25 mins 30 mins

Task Rest
60 sec 15 sec
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High-pass filter s
stimulator

Low-pass filter EEG amplifier



—PEL Transcranial Temporal Interference Stimulation (tTIS)
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Electric field modeling with striatal montage
Maximilian J. Wessel, Elena Beanato et al. 2023

Temporal Interference (TI) Stimulation uses two electric fields at
frequencies f1 and 2 to stimulate the brain at the difference
frequency (|f1-f2|=Af), which lies within the range of brain activity,
non-invasively.

‘Pulsed Temporal Interference’ uses two electric fields at
frequencies, f1 and f2, and periodically switch a particular field to
f2+ Afin a timed, pulsed manner (i.e. in bursts).

Each electric field is generated by a constant current sources




“P=L Transcranial Temporal Interference Stimulation (tTIS)

What is the current hypothesis of how tTIS modulates brain activity?

Subthreshold stimulation that requires behavioral co-activation of the brain area of focus (rs- fMRI vs. task-based fMRI)

(Wessel, Beanato et al. 2023, Violante et al. 2023)

Disruptive effect on the underlying network oscillation pattern when applied in a continuous and not in a pulsed-stimulation pattern (it
is not phase locked to the underlying oscillatory rhythm or the continuous stimulation masks the underlying network activity

(Vassiliadis et al. 2024, Viera et al. 2024, Chenhao Yang et al. 2024)

At a cellular level, neuron can mix the high carrier frequencies and produces non-linear mixed products — new frequencies -

(Mirzakhalili et al. 2020 )

Neuron is mixing exogenous and endogenous subthreshold membrane potential oscillations to create new oscillatory frequencies
(Kinetics of voltage-gated sodium channels are non-linear)

(Luff et al. 2024)

Nx-436



tTIS - EEG concurrent recording

Frequencies (Mz)

E 3
DFT Amplitude
t/._r ) A i 'ﬁ“ M A |‘“' I F'
Tl stimulation 4 / / N 1]
— - — TR
VIUVUTI
\ EEG activity [ N
IMD2 fif2 HD IMD2 HD
(F1-F2) 2f1 (F1-F2) 22

Concurrent TI-EEG recording:

Advantages
Continuous EEG recording during and after tTIS:

* Mechanistic understudying of tTIS effects on brain circuits with high temporal resolution
* Reveal sustained effects of tTIS during and after the experiment

Technical challenges
tTIS creates voltage potential that is above the limits of commercially available EEG amplifiers: non-linear system

EEG recording will be distorted by non-linear artefacts, as a result of the tTIS
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tTIS - EEG concurrent recording

iTBS

Signal 1

Signal 2

+

HVZ/Hz (dB)

UV3/Hz (dB)

Intermittent theta burst stimulation pattern
Maximilian J. Wessel, Elena Beanato et al. 2023

Example of stimulation artefacts

500 1000 1500 2000 2500
Frequency (Hz)

EEG

10 20 30 40 50
Frequency (Hz)

Red arrows: Carrier Tl frequencies (2kHz, 2.1kHz), Tl stimulation artefact at SHz (FFT)
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Lack of Linearity ~AaiR

D) - 4%

Nx-436
Stimulation artefacts can be approximated by Taylor expansion:

Is an infinite sum of terms which represent an approximation of a function around a specific point on the function.

It allows any function (including non-linear ones, as long asitis infinitely differentiable) to be represented as the sum of terms
scaled by the function’s derivatives at a specific point (with approximation accuracy reducing the further one gets from the
specified point)

A Maclaurin Series is the same thing as a Taylor Series but with the specified point around which to approximate defined as
zero:

oC (n)
f(0) + Oz+ z? + m‘+...zzf (O)xn

Linear

Non-Linear




“PEL tTIS - EEG concurrent recording

Example of stimulation artefacts with continuous Tl stimulation, beat frequency at 20Hz

EEG
75
50 -
251
o
8
N 0
Iz
3 -25
-50 4
~754
500 1000 1500 2000 2500
Frequency (Hz)
EEG
>
40 5ms
20
Tl stimulation, beat frequency 20Hz (enveloppe graphical representation)
s 0
a
z
= -20
S
—-40
T T T T T T T
20 40 60 80 100 120 140

Frequency (Hz)

Carrier Tl frequencies (2kHz, 2.02kHz)
Red arrows: Tl stimulation artefact at 20Hz and its harmonics (FFT)
Green arrows: Tl stimulation artefact at 30Hz (mixing with power line noise)



“PFL tTIS - EEG concurrent recording, Hardware filter solution

Ve
Computer for TI
stimulation +DAQ
carrier waveforms
generation

.

Id Y
Currem wu rce

= _/ \

( )T | Passive
High pass filter

Curren: snume

™ e ~

\
» EEG Amplifier

e
Active low-pass |
fitter |

|

J \ J

TI-EEG set up configuration:
Passive high-pass filter: allows only the high carrier frequencies to pass, after the Tl stimulators

Active low-pass filter: allows only the frequencies below 100Hz to pass, eliminating the carrier frequencies before reaching the EEG amplifier



=PEL tTIS - EEG concurrent recording, Hardware filter solution

Hardware filters, tTIS 2kHz, Beat frequency 20Hz

EEG recording with hardware filters, no artefacts for all the EEG channels

EEG

Without hardware filters:

WV2/Hz (dB)

EEG

Jilth
i
A e
WAL

WV?/Hz (dB)

500 1000 1500 2000 2500
Frequency (Hz) =50

500 1000 1500 2000 2500
Frequency (Hz)

uVZ/Hz (dB)

2’0 4b 6‘0 8‘0 I(IJO léO 140
Frequency (Hz)
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Nx-436

Applications with tTIS-EEG recording and possible technological developments:
Closed-loop application based on neurofeedback and/or behavioral performance:
Optimize tTIS (beat frequency, pattern) based on cortical output EEG activity

Deliver pulsed-pattern stimulation, locked to endogenous cortical EEG activity

Enhance or disturb reinforcement learning, closed-loop with changes in cortical EEG recording

A W DN PF

Modeling striatal SEEG activity in correlation with EEG cortical activity:
adjust online envelope focus, beat frequency to endogenous rhythm, for example in Parkinson s disease

5. Phase-locking tTIS

Apply Tl Record EEG

Closed-loop
TI-EEG
Device
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Nx-436

Applications with tTIS-EEG recording:

Hippocampus Tl stimulation and EEG cortical output:
Alzheimer’s disease (AD):
» Establish physiological rhythm patterns in DMN and FPN

+ Cortical biomarkers of response to Tl stimulation

Striatum Tl stimulation and EEG cortical output:
Parkinson’s disease (PD):
+ Establish physiological rhythm patterns in cortico-basal ganglia loop, targeting pathological beta activity

+ PD apathetic patients and targeting altered EEG alpha and theta oscillations
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Lesion-Network Mapping and Brain Stimulation Therapy

Volition
(Darby et al.,

Anxiety

i PNAS 2018)
Ps
Pain
(Kim* Taylor*
etal., Ann
Neurol 2022)
Mania
(Cotovio et al.,
1 Clin Invest
2020)
Depression
(Siddiqi et al., Nature
Human Behaviour 2021)

Addiction

(Joutsa* Moussawi* Siddiqi* 2
et al., Nature Medicine, 2022) Emotion

regulation

(Jiang et al., e
Biol Psych,
2023)

Siddigi &Fox 2023

Nx-436




—PEL Lesion-Network Mapping and Brain Stimulation Therapy

www.nature.com/neuro/March 2024 Vol.27No.3 NX “ 36
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—PEL Lesion-Network Mapping and Brain Stimulation Therapy
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Retrospective validation:
estimating unseen outcomes
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Step 1: Identify a network target

Meta-analysis of structural and/
or functional neuroimaging data
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(Modified with permission from Taylor et al,, 2023)
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Lesion network mapping
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(Modified with permission from Siddiqi et al., 2021)

Network
target

TMS network mapping
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Step 2: Optimize the efficacy

Step 2a: Individualize the network target
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Time (s)

. (Modified with
Functional permission from
connectivity Weigand et al.,, 2018)
MRI-guided
targeting
Electric field
modeling
Electrophysiology-
guided targeting

Step 3: Modulate the network target

Step 2a: Individualize the network target

Example
iTBS wave

- Stimulation features
» Signal amplitude

Example « Total burst time
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« Bursting frequency
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(Modified with permission from Siddiqi et al., 2021)
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Step 2b: Optimize the conditions

Task-based
optimization

Psychological
optimization

Pharmacotherapeutic
optimization

Step 3a:
Noninvasive
modulation

Transcranial

magnetic

stimulation

(rTMS, iTBS) Step 3b:
Invasive but

5 reversible

modulation

Deep brain

stimulation Step 3c:
Invasive and
permanent
modulation

- High-intensity
Transcranial

£ focused
el_ectrlca.l ultrasound
stimulation
(tDCS, tACS) Intracranial
electrical
stimulation

Focused
ultrasound
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—PEL Take Home Messages

Recording of brain activity simultaneously Challenges 2
- focally and at the network level - safety %
- adds to mechanistic understanding - artefacts
- safety monitoring - feasibility
- state dependent close-loop applications - accessibility, clinical translation
- cost
Online interference with brain activity Selection of method
- causal understanding - local vs network activity
- network vs. local effects - oscillatory vs. activation

- state dependent close-loop applications - artefact profile
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