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Measuring Behavior with 

deep learning



Niell, Tolias, Mathis

Mathis & Mathis 2020 

Current Opinion in Neurobiology

Various behavioral assays in systems neuroscience
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Rapid Learning in animals: from few-shot to updating of internal model-based learning.
 (a) Adapted from Rosenberg et al. 2021 
(b) Adapted from El-Gaby et al. 2024: Task design: animals learned to navigate between 4 sequential goals on a 3×3 spatial grid-maze. 
Reward locations changed across tasks but the abstract structure, 4 rewards arranged in an ABCD loop, remained the same.
 (c) Adapted from Mathis et al.  (7):

Various behavioral assays in systems neuroscience

Mathis 2025; arXiv



Gunnar Johansson -- Video by James Maas, (Cornell University, 1971) https://www.youtube.com/watch?v=1F5ICP9SYLU
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NeuroSoft, Lacour Lab EPFL

E. Muybridge, 1887 (zoopraxiscope)

Ota et al. 2015 Sci Reports

Measuring movement

Moraud et al. 2016 Neuron
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Hausmann, Vargas, Mathis, Mathis 
Current Opinion in Neurobiology 2021 

2014 

Deep learning to 
human pose
(Markerless)

1978 

David Marr

2010

Black & Donoghue
(marker based)

2018

Markerless pose
to animals

1887 

Muybridge
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Schematic Overview of Markerless Motion Capture, aka Pose Estimation
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•animals have highly different bodies​ 

(i.e., can’t leverage a skeleton or pose 

prior across all species)

•not practical for individuals to label 

>10,000 frames for training (i.e., human 

benchmark dataset sizes)

•fast real-time video analysis 

•Multi-animal tracking​, where animals 

can look truly identical

•Robust, plug-N-play solutions?

Challenges for pose estimation

 in the laboratory

Jojo Schultz

Brandt et al 2021

Mathis & Mathis 2020 
Current Opinion in Neurobiology
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Deep learning in the laboratory: leveraging transfer learning

DeepPose
DeeperCut

OpenPose
Conv. PoseMachines

…
HRNet

Predictorimage pose

train A lot of labeled 

images (>10^6 joints!)

deep neural networks

Andrew Ng

DATA hungry algorithms… how to bring this to the lab? 

Transfer Learning: take a trained network and ask it to learn a new task 

catConvNets (such as ResNet-50, etc)

Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, 

Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, 
Alexander C. Berg and Li Fei-Fei. (* = equal contribution) ImageNet Large Scale 

Visual Recognition Challenge. International Journal of Computer Vision, 2015.

…
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High performance pose estimation using transfer learning

cat

ConvNets 
(such as ResNet-50, EfficientNet)

Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, 

Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, 
Alexander C. Berg and Li Fei-Fei. (* = equal contribution) ImageNet Large Scale 

Visual Recognition Challenge. International Journal of Computer Vision, 2015.

ImageNet-based transfer learning Image 
Classification

Keypoint
Detection

Dense 
Segmentation
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• Minimal labeled training data 
is required to reach human 

level accuracy

A. Mathis et al. Nature Neurosci, 2018

Measuring Movement: DeepLabCut for efficient 
markerless tracking of keypoints with deep learning

• Generalizes to new animals
• Network confidence readout 
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Data augmentation during training

Key Features:
• Data augmentation

• Model architecture
• Optimization

Mathis, Schneider, 
Lauer & Mathis, 2020 

Neuron
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Data Augmentation matters: how to get the most out of your data!
(code and videos in the Primer)

Mathis, Schneider, Lauer & Mathis 2020 
Neuron
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Multi-Task Deep Convolutional Network

• Minimize the combined loss; segmentation + vector field

• Transfer learning (ConvNet pre-trained on object recognition)

• Perform augmentation during training

Detection (scoremap)

Cross entropy loss

deconvolution 

layers (3 per 

bodypart) Location Refinement

Smooth L1 loss
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NN Primer: Convolutions

Basic convolution (“same”) Strided convolution

https://github.com/vdumoulin/conv_arithmetic

Strided deconvolution
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Top-down Approach (TD)

object detector pose detector

+ more accurate in less crowded scenes
- ambiguous individuals in the same bounding box

Li et al., CVPR 2019

Multi-instance pose estimation
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Bottom-up Approach (BU)

pose detector grouping

+ no need for detector
+ more accurate in crowded scenes
- grouping key points is a difficult problem (that often no 

longer relies on visual information)
- lack of precision
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Multi-instance pose estimation



Nature Methods 2022

Multi-animal pose estimation & identification

Murthy lab, Harvard Dulac lab, Harvard Lauder lab, HarvardFeng lab, MIT
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Videos courtesy of 
Prof. Valentina Di Santo (now U of Stockholm) and George Lauer, Harvard University
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Multi-animal pose estimation & identification
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Multi-animal pose estimation & identification



Hybrid approach leveraging the strengths of TD and BU approaches to overcome the 
detection information bottleneck and ambiguity

Bottom-Up Conditioned Top-Down Approach (BUCTD)

BU

detector

Stage1: Object and pose detection Stage2: Conditional Top-down (CTD) pose 
estimation

- get predicted pose from BU/single-stage pose estimator
- compute the individual bbox from pose

Zhou*, Stoffl*, M.W. Mathis, A. Mathis, ICCV 2023
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SOTA on CrowdPose, OCHuman and four animal datasets

Zhou*, Stoffl*, M.W. Mathis, A. Mathis, ICCV 202322

Bottom-Up Conditioned Top-Down Approach (BUCTD)



An animal pose benchmark (horses) for robustness
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Principle: more powerful architectures generalize better! 24



Horse-C: an animal pose 
estimation corruption

 benchmark for robustness

Horse-C aimed to contrast the 

domain shift inherent in the Horse-

10 dataset  with domain shift 

induced by common image 

corruptions

Mathis, Biasi et al. WACV 2021 25



Deep learning + transfer learning

task-related data

Transfer learning enables pose estimation with less data

Only a few examples (10-200) 
for most applications

Andrew Ng

Predictorimage pose

train A lot of labeled 

images (>10^6 joints!)

Foundational 
deep neural networks
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Cachot et al. 2021 Science Advances

Courtesy of the D. Goldman Lab

Joska et al 2021

800,000+ downloads |  >12K monthly
Nature Neuro 2018, Nature Prot. 2019, Neuron 2020,  WACV 2021, ICRA, 2021, 
CVPR-W 2021, Nature Methods 2022, ICCV 2023, Nature Communications 2024

Lauer et al 2022

Mathis, Warren2018

JoJo Schultz



AI Residents 2023:
Anna, Rae, Konrad

Gilbert, Glastad et al. in press
Cell 2025

atta cephalotes (Wikipedia)



User testing/dev & deployment:

Larger scale pipeline computing:

Built on the open source python stack: Real-time specific tools:

Computer Vision:
Post- pose estimation tools:

Classifiers: SVMs, Random Forrest, ANNs

            - B-SOID, ETH-DLC Analyzer, simba

Models: HMMs, decision-trees, ANNs

Ethograms: BORIS, BENTO, AmadeusGPT, Keypoint-MoSeq, 

Clustering: CEBRA, MotionMapper, JAABA

Motor analysis: DLC2Kinematics
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Many, many models are trained on (closed-source) 

animal datasets …. 

But what if we could combine this collective 

knowledge into better foundational models?
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Foundational models

2024 AI Index report from the 
Stanford Institute for Human-
Centered Artificial Intelligence, 149 
foundation models were published in 
2023, more than double the number 
released in 2022

Mathis 2025 arXiv NVIDIA

Bommasani et al. 2021

https://aiindex.stanford.edu/wp-content/uploads/2024/05/HAI_AI-Index-Report-2024.pdf


Typical Lab Setting
SuperAnimal TopView In-the-wild setting

SuperAnimal Quadruped 

SuperAnimal- Quadruped (80K) SuperAnimal- TopView Rodent (5K)

New animal pose datasets ….

26 keypoints

39 keypoints
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Better foundational models for behavioral analysis

• Pose estimation is a good video dimensionality reduction step
• This can be generalized to semantic behavioral labeling

Challenge 1: 
• Users do not define semantically similar keypoints, or even the same keypoints per animal

33



• Pose estimation is a good video dimensionality reduction step
• This can be generalized to semantic behavioral labeling

Challenge 1: 
• Users do not define semantically 

similar keypoints, or even the 
same keypoints per animal

Solution: learning keypoint 
mappings, gradient masking

Better foundational models for behavioral analysis
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Memory-replay self-supervised fine-tuning 
boosts performance

With memory replay

Without memory replay
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SuperAnimal models zero- and few-shot outperform 
ImageNet pretrained models (in low data regime)

Horse-10 Benchmark data Openfield (DLC)

GT 4 keypointsGT 22 keypoints

36



SuperAnimal models fine-tuned outperform 
ImageNet pretrained models on animal pose CV benchmarks
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Challenge 2: 
• We need more open source data 

(labeled data is even better, but 
can also use unlabeled data)

Solution: online crowd sourcing, robust 
generalized data converters/standards, 
web infrastructure

Challenge 3: 
• People need to easily use such 

tools for zero-shot and for fine-
tuning …
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modelzoo.deeplabcut.org

contrib.deeplabcut.org *https://huggingface.co/spaces/DeepLabCut

ModelZoo: model deployment & data curation
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Real-time video

Adaptation on 

your data

40



Zero-shot video Zero-shot+ video adaptation

Rapid test-time video adaptation

~1.3 real time for 1K iters (GPU)

41



Shaokai Ye et al. 2022, 2024

Towards building a 

foundation model for 

animal pose estimation
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Advances:

• Zero training from scratch could be required (huge energy savings & time/compute!)

• Zero-shot inference, or only tens of images for rapid fine-tuning required

• (networks: gradient masking, memory replay, semantic mapping)

• Zero-shot video inference, or 1.3x video inference w/test time aug.

• Tops OOD pose benchmarks

Still (more) challenges: 

• TopView rodents & quadrupeds are not all animals in neuroscience

• Do we build centralized models, or groups build their own SuperAnimals? 

•  good data sharing practices // central resources? 
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User testing/dev & deployment:

Larger scale pipeline computing:

Built on the open source python stack: Real-time specific tools:

Computer Vision:
Post- pose estimation tools:

Classifiers: SVMs, Random Forrest, ANNs

            - B-SOID, ETH-DLC Analyzer, simba

Models: HMMs, decision-trees, ANNs

Ethograms: BORIS, BENTO, AmadeusGPT, Keypoint-MoSeq, 

Clustering: CEBRA, MotionMapper, JAABA

Motor analysis: DLC2Kinematics

44
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Post- pose estimation tools

Classifiers: SVMs, Random Forrest, ANNs

            - B-SOID, ETH-DLC Analyzer, simba

Models: HMMs, decision-trees, ANNs

Ethograms: BORIS, BENTO, AmadeusGPT, Keypoint-MoSeq, 

Clustering: CEBRA, MotionMapper, JAABA

Motor analysis: DLC2Kinematics

• Keypoints are an excellent way to 
reduce the dimensionality of the 
video (from hundreds-thousands 
of pixels to key “pixels” over time

• How can we analyze this time-
series data?



Behavioral analysis tools 
(many!)

46

- feature extraction (pose estimation)
- quantification (quality & cleaning)
- clustering, time series modeling, ethograms
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Behavioral analysis tools 
Keypoint-MoSeq
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Beyond deep learning, and 
foundation models … 

Agentic Systems



Shaokai Ye, Jessy Lauer, Mu Zhou, Alexander Mathis, Mackenzie W. Mathis NeurIPS 2023

AmadeusGPT: a natural language interface 

for interactive animal behavioral analysis
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Highlights:

• AmadeusGPT leverages LLMs, such as GPT3.5 or 4

• Its  an “OS”: a systems architecture approach to 
combing LLMs for  encoding, rephrasing, and 
explaining results

• Leverages SOTA models, such as SAM (MetaAI) and 
SuperAnimals (DeepLabCut)

• Can match human-level performance at quantifying 
animal behavior

50



System design & plugin system for AmadeusGPT

51



Measuring behavior with multi-modal models & natural language

52



AmadeusGPT benchmarked on several common scenarios in neuroscience
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AmadeusGPT: 

SuperAnimals, SAM & CEBRA for behavioral analysis

Ye et al. Neurips 2023 54



https://github.com/AdaptiveMotorControlLab/AmadeusGPT
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Summary 

- there are many behaviors people use in systems neuroscience, and therefore they require 
custom solutions to measure behavior
- pose estimation is the computer vision task of measuring the geometric configuration of 
keypoints (joints)
- to build high performance models, transfer learning is powerful approach transfer learning 
is the ability to take a pretrained encoder model and use in a downstream task (i.e. 
ImageNet or SuperAnimal backbones)
- CNNs are a standard model for this task setting, but transformers are also used
- primer on basics of convolutions and decoders
- “out of distribution” data is very common in neuroscience, so we need robust solutions
- data is also sparse, so we need to get creative and train models with disjoint data; take-
home (1) is that even in systems neuro you need to innovate in other areas; (2) technically, 
this meant masking gradients and video adaptation algorithms 
- good algorithms are not enough; in science you need to make your code usable! 
- behavioral analysis is a rapidly growing area in neuroscience // many options exist
- towards the future of behavioral analysis: LLMs as “operating systems” for analysis 
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