
Rewards, 
decisions & 
RL in the brain
Mackenzie Mathis, PhD

NX-435

image from https://neurosciencenews.com/decision-making-brain-19504/

1



Computational 

models (& computations)

Neural activity Behavior

Towards closing the gap between the neuron & behavior

David Marr’s three levels, 
Krakauer et al. Neuron 2017
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David Marr (1945-1980) proposed three levels of analysis: 
1.the problem (Computational Level) 
2.the strategy (Algorithmic Level) 
3.how its actually done by networks of neurons 
(Implementational Level)

David Marr’s three levels, 
Krakauer et al. Neuron 2017

Foundations of computational neuroscience
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Decision-making & behavior

A problem we all face in our daily lives is how to 
make optimal decisions
 (maximize reward, minimize punishment)

To ski or to not ski?

Getty Images



Decision-making & behavior

Perceptual judgment Value-based decisions

• Sensory evidence • Cost/benefit

• Value (utility)
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Why is decision-making difficult?

• Reward/punishment may be delayed 
    (mins, days, weeks, years)

• Outcomes may depend on a series of actions 
     ⇒ “credit assignment problem” (Marvin 
Minsky 1961 & Sutton, 1978)

i.e., the agent needs to determine which 
action(s) will lead to a given outcome

Making decisions can be challenging…

Which action leads to each outcome? (what is the body 
position, the swing, the follow-through, and/or your 
visual acuity?)



Encoding of information in neural firing patterns

Stimulus Spikes

• How do neurons respond to a certain stimulus? 
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Encoding and decoding

Stimulus Spikes

• Our brain needs to determine what is going on in the real world from patterns of spikes. 
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Rewards (punishment) and decision making

• Perceptual & Value-based
Decision Making

• Operant Conditioning

• Classical Conditioning
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Sensory
input

Decision
process

Motor
output

?

Random dot motion task

• It takes up to 1-2 seconds to decide

• Decisions unfold gradually by accumulating noisy evidence.

Perceptual decision making
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V1 Retina

LGN            

(lateral geniculate nucleus)

The Visual pathway

Principles of Neural Science

Dorsal pathway

(“where”)

Ventral pathway

(“what”)

• location, motion, depth

• color-blind

• object recognition

•  color

11



Reminder: vision is tightly 

integrated into decision-making, 

memory (and movement areas)

Felleman and Van Essen Cerebral Cortex 1991



Organization of receptive field of neurons in the primary (V1) visual cortex

Example for a V1 neuron with a "simple" (bar-like) receptive field

Purves Fig. 12.8
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V1 simple & complex cells

• Orientation specificity!

Principles of Neuroscience

• Less sensitive to exact locations

• Orientation specificity!
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V2 neurons: edge detection

(Kanizsa, 1955)

15Slide courtesy of Prof. Uchida



• V1 neurons are most sensitive to low-level features, such as edges and lines. 

• In higher visual areas, like V4 and IT, receptive fields are larger, and neurons 
are sensitive to complex features, such as shapes and objects. 

• Responses of high-level neurons are fully determined by the neural firing of 
lower-level neurons. For example, the neural firing to a square is determined 

by the neural firing for two vertical and two horizontal lines.
From: When crowding of crowding leads to uncrowding

Journal of Vision. 2013;13(13):10. doi:10.1167/13.13.10

Hierarchical visual processing
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Hierarchical visual processing → decision areas
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Drift diffusion models: accumulating noisy evidence

• Variability in response times and judgments

• Effect of difficulty on response times

(Uchida et al., 2006) 18



LIP neurons: accumulating evidence

(Roitman & Shadlen, 2002)

• Average of 54 neurons

saccade
motion
onset

Reaches to the same level
(threshold)

• Strong signal        faster increase in firing rate 19



In dynamic environments, subjects often integrate multiple samples of a signal 
and combine them to reach a categorical judgment. The process of deliberation 
can be described by a time-varying decision variable (DV), decoded from neural 
population activity, that predicts a subject’s upcoming decision. Within single 
trials, however, there are large moment-to-moment fluctuations in the DV, the 
behavioral significance of which is unclear. Here, using real-time, neural 
feedback control of stimulus duration, we show that within-trial DV fluctuations, 
decoded from motor cortex, are tightly linked to decision state in macaques, 
predicting behavioral choices substantially better than the condition-averaged DV 
or the visual stimulus alone. Furthermore, robust changes in DV sign have the 
statistical regularities expected from behavioral studies of changes of mind. 
Probing the decision process on single trials with weak stimulus pulses, we find 
evidence for time-varying absorbing decision bounds, enabling us to distinguish 
between specific models of decision making.
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Real-time readout of decision states during a motion discrimination task

• they could decode the correct choice starting at ~250 ms
• the “DV” decodability in time correlates with the 

strength of the motion coherence
• single trials are noisy!

21

Average DV traces during dots period. Single example DV traces

*DV: a continuous readout of the strength of the model’s prediction for the 

subject’s choice. They calculated the logistic model’s log odds ratio for the 

two choices for each time point on every trial.



DV fluctuations track evolving decisions

• Amazingly, they can very well predict the choice 
outcome depending on the DV strength 

• Example trials for one monkey

• Virtual boundary experiment schematic
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GIL COSTA ARTWORK

Closed-loop experiment to test: 

is it a change a mind (CoM)? 

• They established neural criteria for a candidate CoM that, 
when met in real time, led to stimulus termination and the 
monkey’s decision (i.e., they needed to rapidly decide!)

• CoM criteria:
• (1) CoMs are more frequent for low- and intermediate-coherence 

trials compared with high-coherence trials
• (2) more likely to be corrective than erroneous
• (3) CoMs are more frequent early in the trial than later in the trial

the relationship between prediction accuracy and DV at stimulus 
termination was very similar for CoM and non-CoM trials – and 

only ~2% error rate! Meaning yes, the state of the DV at the time 
of termination DID predict the choice!  

(more than correlation!)
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How (else) can we formalize studying decisions in the brain?

• An algorithm (to test): reinforcement learning (RL)

• Experimental paradigms: classical conditioning & operant 
conditioning

• Aim: to understand the neural basis – can RL be 
implemented in the brain, and if so, where?

Why is decision-making difficult?

• Reward/punishment may be delayed 
    (mins, days, weeks, years)

• Outcomes may depend on a series of actions 
     ⇒ “credit assignment problem” (Marvin 
Minsky 1961 & Sutton, 1978)

i.e., the agent needs to determine which 
action(s) will lead to a given outcome

Making decisions can be challenging…



Rewards (punishment) and decision making

• Perceptual & Value-based
Decision Making

• Operant Conditioning

• Classical Conditioning
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Operant Conditioning (also called trial-and-error learning)

• operant conditioning can be considered as 
the formation of a predictive relationship 
between an action and an outcome

• *classical conditioning is the formation of a 
predictive relationship between two stimuli 
(the CS and the US)

Edward Thorndike 
(Wikipedia, 1912)

https://archive.org/details/animalintelligen00thor/page/20/mode/2up

https://archive.org/details/animalintelligen00thor/page/20/mode/2up
26

https://archive.org/details/animalintelligen00thor/page/20/mode/2up
https://archive.org/details/animalintelligen00thor/page/20/mode/2up


Thorndike: the 
OG escape 

room…
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Aversive classical conditioning: "fear learning"

CS: An innocuous sensory stimulus
(tone of 7 kHz, 80 dB, 0.1 s, 30x)

US: A mild electric footshock
Activates nociceptors on the feet and probably 
other low-threshold mechanoreceptors

CR: freezing (behavioral immobility)
An evolutionary useful response in
the presence of a not clearly present threat

Content A Content B Content A

Cartoons by Prof. Steve Ramirez (BU)
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https://www.sciencedirect.com/science/article/pii/S0960982203000666
https://en.wikipedia.org/wiki/Classical_conditioning#/media
/File:Ivan_Pavlov_research_on_dog's_reflex_setup.jpg

Before Conditioning During Conditioning After Conditioning

Pavlov’s classical conditioning
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https://www.sciencedirect.com/science/article/pii/S0960982203000666
https://en.wikipedia.org/wiki/Classical_conditioning
https://en.wikipedia.org/wiki/Classical_conditioning


Classical conditioning depends on degree of stimulus-outcome correlation

Kandel. Figure 65–12 30



Kamin’s blocking experiment

1. Conditioning

+

2. After conditioning 3. 2nd conditioning 4. Test

?

• Learning occurs only when expectation is violated!

• What is the neural basis of this?

+

predicts food already.

No surprise…

“Blocking”

Kamin, L. J. (1969). Predictability, Surprise, Attention, and Conditioning. In 
B. A. Campbell, & R. M. Church (Eds.), Punishment Aversive Behavior (pp. 
279-296). New York: Appleton- Century-Crofts
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Key concept: peri-stimulus time histogram

The Peri-Stimulus Time Histogram (PSTH) plots the average 
firing rate of a neuron over time relative to the onset of a 
stimulus. Here's how it's typically calculated:

1. Define a time window around the onset of the stimulus.
2. Divide this time window into small bins.
3. Count the number of spikes (action potentials) that occur 

within each bin across multiple trials.
4. Average the spike counts across trials for each bin.
5. Plot the average spike count (firing rate) for each bin as a 

function of time.

https://github.com/MMathisLab/Nx-435_EPFL
https://colab.research.google.com/github/MMathisLab/Nx-
435_EPFL/blob/main/Notebooks/Demo_PSTH.ipynb
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https://github.com/MMathisLab/Nx-435_EPFL
https://colab.research.google.com/github/MMathisLab/Nx-435_EPFL/blob/main/Notebooks/Demo_PSTH.ipynb
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• Lack of reward responses when the reward was fully predicted

 

Before conditioning

After conditioning

What is this for?

(Schultz, Dayan, Montague, 1997)

Dopamine neurons in the ventral tegmental area

33



Dopamine as reward temporal difference (TD) error: reward prediction errors!

• Dopaminergic (DA) neurons fire phasically (100–500 ms) 
after unpredicted rewards or cues that predict reward.

• Their response to reward is reduced when a reward is fully 
predicted (the phasic firing happens at cue presentation).

• DA activity is suppressed when a predicted reward is 
omitted (negative prediction error).

34(Schultz, Dayan, Montague, 1997)



Dopamine neurons

Dopamine circuitry of the brain  

Stimulus                  Reward

Before 

During 

After

(++)

(+)

(0)

(-)
After learning, reward omitted

Ventral Tegmental Area (VTA)

• Dopaminergic neurons are ~55–65% of VTA neurons
• The rest are mostly GABAergic inhibitory neurons or 

Glutamatergic neurons

NAc

PFC

35



Addictive drugs cause an increase in mesocorticolimbic 
dopamine through three distinct cellular mechanisms:
•  (1) direct activation of dopamine neurons (e.g., 

nicotine)

• (2) indirect disinhibition of dopamine neurons 
[opioids, gamma-hydroxybutyric acid (GHB), 
cannabinoids, and benzodiazepines]

• (3) interference with dopamine reuptake (cocaine, 
ecstasy, and amphetamines). 

Dopamine circuitry of the brain: drugs have strong effects  

DOPAMINE

GABA

36



Dopamine neurons in VTA are also involved in motor learning & Parkinson’s disease

Hosp et al, J. Neuroscience, 2011

Hosp & Luft, Frontiers in Neurology, 2013 

Parkinson’s disease: reduced DA 

37

https://www.criver.com/products-services/discovery-services/pharmacology-studies/neuroscience-models-
assays/parkinsons-disease-studies/vivo-models-parkinsons-disease?region=3696
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Thus, the role of dopamine in the brain 
is complex, and there are many 
hypotheses about its various roles: 

• Reward Prediction Errors  (but of course this can be 
implemented in many ways…)

• Role in saliency/attentional modulation
•  Uncertainty estimation
• Energizing/motivating behavior



Temporal difference (TD) error reinforcement learning (RL)

States t

V(t)

t +1

V(t +1)

t +2 t +3
r(t) r(t + 1) r(t + 2) t = time

r = reward
V(t) = value

Value is the discounted sum of all future rewards!

V(t) = r(t) + 𝞬 * r(t + 1) + 𝞬2 * r(t + 2) + ….

Discounting factor

0 < 𝞬 < 1

V(t) = r(t) + 𝞬 * V(t +1)

Temporal difference prediction error:

𝛿 (t) = r(t) + 𝞬 * V(̂t +1) – V(̂t)

Update V(t) 

V(̂t)  V(̂t) + ⍺ * 𝛿 

Sutton & Barto 1996, Schultz et al. 1997, Cohen et al. 2012
39



How could a system encode a temporal difference (TD) error

TD error as a derivative-like computation:
(neurally doable!)

𝛿 (t) = r(t) + 𝞬 * V(̂t +1) – V(̂t)

t = time
r = reward
V(t) = value
𝞬 = discount factor
𝛿 = prediction error

r(t)

𝞬 * V(̂t +1) – V(̂t)

V(̂t +1)

V(̂t)

𝛿 (t)

(derivative like)

Dopamine neurons

Stimulus                   Reward
40
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REMINDER: receiving a reward with a 
magnitude below the mean reward will elicit 
a negative RPE, whereas larger magnitudes 
will elicit a positive RPE!

(if a LARGER reward was given it would elicit 
a DA response at the time of reward)

(Schultz, Dayan, Montague, 1997)



Light-identified 

dopamine neurons 

encode RPE in mice

Cohen*, Haesler*, et al, Nature 2012 Cohen, Amoroso, Uchida, eLife 2015

52%

31%

18%

3 functional “types” 
Optogenetically identified

Dopamine Neuron

42



What cells could enable this computation?

• Hypothesis: Neurons within the VTA could encode all needed features or 
neurons that project TO DA neurons could contribute 

43



Comparison of Input Areas between VTA and SNc Dopamine Neurons

44
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• Electrophysiological recording from monosynaptic inputs of dopamine neurons was performed
• Rabies virus tracing was combined with optogenetic tagging in awake recording
→They recorded from input-dense areas along this ventral stream that have most often been used in RPE models: 
→ the ventral and dorsal striatum 
→Ventral
→ lateral hypothalamus
→ subthalamic nucleus 
→rostromedial tegmental

 nucleus (RMTg)
→pedunculopontine 

tegmental nucleus (PPTg) 

What are the inputs to Dopamine neurons encoding?
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• Information required to compute reward 
prediction errors (RPEs) was distributed!

• There are mixed representations of 
variables and partially computed RPEs in 
input neurons

What are the inputs to Dopamine neurons encoding?
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In contrast to classical temporal-difference 
(TD) learning, distributional RL posits a diverse 
set of RPE channels, each of which carries a 
different value prediction, with varying 
degrees of optimism across channels!

*In standard TD learning, all value predictors learn the same value V. Each dopamine cell 

is assumed to have the same relative scaling for positive and negative RPEs. This causes 

each value prediction (or value baseline) to be the mean of the outcome distribution. 
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Distributional TD learns value estimates for many different parts of the distribution 
of rewards. Which part a particular estimate covers is determined by the type of 
asymmetric update applied to that estimate. (A) A ‘pessimistic’ cell would amplify 
negative updates and ignore positive updates, an ‘optimistic’ cell would amplify 
positive updates and ignore negative updates. (B) This results in a diversity of 
pessimistic or optimistic value estimates, shown here as points along the cumulative 
distribution of rewards, that capture (C) the full distribution of rewards.

https://deepmind.google/discover/blog/dopamine-and-temporal-difference-learning-a-fruitful-relationship-between-neuroscience-and-ai/

https://deepmind.google/discover/blog/dopamine-and-temporal-difference-learning-a-fruitful-relationship-between-neuroscience-and-ai/
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Hypothesis: DA neurons 
firing during complex tasks 
are better fit by D-TD

On each trial, a variable reward size is given: They simulate C-TD vs. D-TD and compare to real data:
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Summary:

• Marr’s 3 levels provide a computational formulation for studying computations in the brain
• Decision-making is hard: the “credit assignment problem”, delayed rewards, uncertain outcomes
• Perceptual and value-based decision-making can help refine how to study and where in the brain 

to study
• → reminder for the neuro-anatomy that supports visually guided decisions
• → Encoding & decoding is critical 

• Decision variables DV), evidence accumulation, and how to use decoding to closed-loop test how 
DV are related to actions

• → Change of mind in decisions – how did they test this?
• Operant and classical conditioning
• PSTH
• Dopamine (DA) neurons in VTA
• RPEs
• RL & TD learning
• How to formalize finding computations: mapping TD to DA 
• Iputs to DA neurons show distributed information and even (possibly) partially computed RPEs
• Distributional RL in the DA population better fits the data
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