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Towards closing the gap between the neuron & behavior
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Foundations of computational neuroscience

David Marr (1945-1980) proposed three levels of analysis:
1.the problem (Computational Level)

A 2.the strategy (Algorithmic Level)
LEVELS 3.how its actually done by networks of neurons
Computation [l why (problem) (Implementational Level)

Algorithm [[F27 what (rules)

Implementation how (physical)

flapping
/

e
feathers flight

David Marr’s three levels,
Krakauer et al. Neuron 2017

David Marr at MIT. Photo by the author.



Decision-making & behavior

To ski or to not ski?

A problem we all face in our daily lives is how to
make optimal decisions
(maximize reward, minimize punishment)

Getty Images




Decision-making & behavior

Perceptual judgment

Left?

*— \otion

——> Right?

« Sensory evidence

Value-based decisions
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Making decisions can be challenging...

A Premotar
cortex

Visua
cortices

Why is decision-making difficult?

| Amygdala
e Reward/punishment may be delayed i
(mins, days, weeks, years)

B Motor cortex

e Outcomes may depend on a series of actions
= “credit assignment problem” (Marvin
Minsky 1961 & Sutton, 1978)

Posterior
paneta
cortex

Basal
gangla

Hippocampus

i.e., the agent needs to determine which
action(s) will lead to a given outcome S ataon

nuciei

Cerebellum

Spinal cord

Which action leads to each outcome? (what is the body
position, the swing, the follow-through, and/or your
visual acuity?) 6



Encoding of information in neural firing pattems

Stimulus Spikes
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* How do neurons respond to a certain stimulus?




Encoding and decoding

Stimulus Spikes
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e Our brain needs to determine what is going on in the real world from patterns of spikes.



Rewards (punishment) and decision making

* Perceptual & Value-based
Decision Making

* Operant Conditioning

e Classical Conditioning Il ||




Perceptual decision making

Sensory | Decision

N
N

input process

Random dot motion task

It takes up to 1-2 seconds to decide

Decisions unfold gradually by accumulating noisy evidence.

Motor
output

10



The Visual pathway

Dorsal pathway * location, motion, depth

(“where”) « color-blind

Ventral pathway
(“what”)

* object recognition
+ color

Dorsal
(parietal) ==

pathway MT»::;

Pa& Retina
% P cells
Retina @ o -
Q ?{cgnmtraciral) Magno\
path\F/)vay @
LG N M cells

. . (lateral geniculate nucleus)
Principles of Neural Science
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Reminder: vision is tightly
integrated into decision-making,
memory (and movement areas)

M P AGE Felleman and Van Essen Cerebral Cortex 1991



Organization of receptive field of neurons in the primary (V1) visual cortex

(B) Stimulus Stimulus
orientation presented
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Example for a V1 neuron with a "simple" (bar-like) receptive field

Purves Fig. 12.8



1 Bar stimulus

2 Spot stimulus
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V1 simple & complex cells

Light

A; Response to orientation of stimulus
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* Orientation specificity!
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* Orientation specificity!
e Less sensitive to exact locations

Principles of Neuroscience
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V2 neurons: edge detection

(Kanizsa, 1955)

Slide courtesy of Prof. Uchida



Hierarchical visual processing

Receptive fields size Features
IT A v
edges V4 \
and lines
V2
I\
/ : \\
faces SHapes ¥ \‘IA<
visual field

and objects
* V1 neurons are most sensitive to low-level features, such as edges and lines.

* In higher visual areas, like V4 and IT, receptive fields are larger, and neurons
are sensitive to complex features, such as shapes and objects.

* Responses of high-level neurons are fully determined by the neural firing of
From: When crowding of crowding leads to uncrowding lower-level neurons. For example, the neural firing to a square is determined
Journal of Vision. 2013;13(13):10. d0i:10.1167/13.13.10 by the neural firing for two vertical and two horizontal lines.

faces

objects

shapes

edges
and lines
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Hierarchical visual processing - decision areas
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Drift diffusion models: accumulating noisy evidence

e Variability in response times and judgments

Stimulus A Stimulus B
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e Effect of difficulty on response times

Easy

Evidence

Difficult

Stimulus  —

(Uchida et al., 2006)



LIP neurons: accumulating evidence

 Average of 54 neurons
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(Roitman & Shadlen, 2002) * Strong signal = faster increase in firing rate ¥



Article | Published: 20 January 2021

Decoding and perturbing decision states in real time

Diogo Peixoto &9 Jessica R. Verhein &9, Roozbeh Kiani, Jonathan C. Kao, Paul Nuyujukian,

Chandramouli Chandrasekaran, Julian Brown, Sania Fong, Stephen |. Ryy, Krishna V, Shenoy & William

T. Newsome &

Nature 591, 604-609 (2021) | Cite this article

In dynamic environments, subjects often integrate multiple samples of a signal
and combine them to reach a categorical judgment. The process of deliberation
can be described by a time-varying decision variable (DV), decoded from neural
population activity, that predicts a subject’s upcoming decision. Within single
trials, however, there are large moment-to-moment fluctuations in the DV, the
behavioral significance of which is unclear. Here, using real-time, neural
feedback control of stimulus duration, we show that within-trial DV fluctuations,

decoded from motor cortex, are tightly linked to decision state in macaques,
predicting behavioral choices substantially better than the condition-averaged DV
or the visual stimulus alone. Furthermore, robust changes in DV sign have the Dots decoder
statistical regularities expected from behavioral studies of changes of mind. n g:;‘_’;mdaz:;ar
Probing the decision process on single trials with weak stimulus pulses, we find

evidence for time-varying absorbing decision bounds, enabling us to distinguish

between specific models of decision making.
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Real-time readout of decision states during a motion discrimination task
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* Smg/e trials are norsy! *DV: a continuous readout of the strength of the model’s prediction for the
subject’s choice. They calculated the logistic model’s log odds ratio for the
two choices for each time point on every trial.
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DV fluctuations track evolving decisions

e Virtual boundary experiment schematic
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DV
— Right choice * Amazingly, they can very well predict the choice

_ Left choice outcome depending on the DV strength
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Closed-loop experiment to test:
Is it achange a mind (CoM)?

* They established neural criteria for a candidate CoM that,
when met in real time, led to stimulus termination and the
monkey’s decision (i.e., they needed to rapidly decide!)
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the relationship between prediction accuracy and DV at stimulus
termination was very similar for CoM and non-CoM trials —and
only ~¥2% error rate! Meaning yes, the state of the DV at the time
of termination DID predict the choice!
(more than correlation!)

* CoM criteria:
* (1) CoMs are more frequent for low- and intermediate-coherence
trials compared with high-coherence trials
* (2) more likely to be corrective than erroneous
« (3) CoMs are more frequent early in the trial than later irfthe trial




Making decisions can be challenging...

Why is decision-making difficult?

e Reward/punishment may be delayed
(mins, days, weeks, years)

e Outcomes may depend on a series of actions
= “credit assighment problem” (Marvin
Minsky 1961 & Sutton, 1978)

i.e., the agent needs to determine which
action(s) will lead to a given outcome

— -

Timg —

How (else) can we formalize studying decisions in the brain?

* An algorithm (to test): reinforcement learning (RL)

* Experimental paradigms: classical conditioning & operant
conditioning

e Aim: to understand the neural basis — can RL be
implemented in the brain, and if so, where?



Rewards (punishment) and decision making

* Perceptual & Value-based
Decision Making

* Operant Conditioning

* Classical Conditioning II II

25



Operant Conditioning (also called trial-and-error learning)

Edward Thorndike
(Wikipedia, 1912)

ANIMAL INTELLIGENCE

EXPERIMENTAL STUDIES

BY
EDWARD L. THORNDIKE

TEACHERS COLLEGE, COLUMBIA UNIVERSITY

operant conditioning can be considered as
the formation of a predictive relationship
between an action and an outcome
*classical conditioning is the formation of a
predictive relationship between two stimuli
(the CS and the US)

26


https://archive.org/details/animalintelligen00thor/page/20/mode/2up
https://archive.org/details/animalintelligen00thor/page/20/mode/2up
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Aversive classical conditioning: "fear learming"

Freezing
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Cartoons by Prof. Steve Ramirez (BU)

CS: An innocuous sensory stimulus
(tone of 7 kHz, 80 dB, 0.1 s, 30x)

US: A mild electric footshock
Activates nociceptors on the feet and probably
other low-threshold mechanoreceptors

CR: freezing (behavioral immobility)
An evolutionary useful response in
the presence of a not clearly present threat
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Paviov’s classical conditioning

Before Conditioning

During Conditioning

D @ =

[—

https://en.wikipedia.org/wiki/Classical cdf&iti®ming#/media

[File:lvan_Pavlov_research_on_dog's_reflex_setup.jpg

After Conditioning

Ten of the more photogenic of Pavlov's dogs. Krasavietz (upper left), Beck, Milkah, Ikar, Joy, Tungus, Arleekin, Ruslan, Toi and
Murashka (bottom right). The rest of Pavlov's dogs and their corresponding Drosophila memory mutants can be found on the author's
webpage at www.cshl.org.

https://www.sciencedirect.com/science/article/pii/S096098 2203000666
29



https://www.sciencedirect.com/science/article/pii/S0960982203000666
https://en.wikipedia.org/wiki/Classical_conditioning
https://en.wikipedia.org/wiki/Classical_conditioning

Classical conditioning depends on degree of stimulus-outcome correlation ™

A 0% Unpaired shocks Strength of conditioning

.M B B_M B\ "R’
oy —31_ B l l _

B 20% Unpaired shocks

es L W 16 0w 06 W I W W
vs.— 8 1 8 18 N |

C 40% Unpaired shocks

es. LM I (o (M W W I8 W P
us _H] 9 | | |8 |

Kandel. Figure 65-12 30



Kamin's blocking experiment

1. Conditioning 2. After conditioning 3. 2" conditioning 4. Test

> > -9 v Y

No surprise...

“Blocking”

* Learning occurs only when expectation is violated!

 Whatis the neural basis of this?

predicts food already.

31




Key concept: peri-stimulus time histogram

The Peri-Stimulus Time Histogram (PSTH) plots the average
firing rate of a neuron over time relative to the onset of a
stimulus. Here's how it's typically calculated:

16 1

Count

12 1

1. Define a time window around the onset of the stimulus.

Divide this time window into small bins.

3. Countthe number of spikes (action potentials) that occur
within each bin across multiple trials.

4. Average the spike counts across trials for each bin.

N

16 1

5. Plot the average spike count (firing rate) for each bin as a Wl
function of time. -
0O Open in Colab ’_E Ny

Calculating a Peri-Stimulus Time Histogram (PSTH):

For NX-435 by Mackenzle Mathis

Peristimulus
Channel 3, n = 17 trials

Raster
Channel 3, n = 17 trials

What is a PSTH?

0.0 0.1 0.2 0.3 0.4 0.5
Trial Window, s

327


https://github.com/MMathisLab/Nx-435_EPFL
https://colab.research.google.com/github/MMathisLab/Nx-435_EPFL/blob/main/Notebooks/Demo_PSTH.ipynb
https://colab.research.google.com/github/MMathisLab/Nx-435_EPFL/blob/main/Notebooks/Demo_PSTH.ipynb

Dopamine neurons in the ventral tegmental area

Before conditioning

After conditioning

What is this for? /

* Lack of reward responses when the reward was fully predicted

(Schultz, Dayan, Montague, 1997)

33



Dopamine as reward temporal difference (TD) error: reward prediction errors!

No prediction
Reward occurs

Reward predicted
Reward occurs

Reward predicted
No reward occurs
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(Schultz, Dayan, Montague, 1997)

Dopaminergic (DA) neurons fire phasically (100-500 ms)
after unpredicted rewards or cues that predict reward.

Their response to reward is reduced when a reward is fully
predicted (the phasic firing happens at cue presentation).

DA activity is suppressed when a predicted reward is
omitted (negative prediction error).
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Dopamine circuitry of the brain

" 4
Ry Y 4
P FC V,&,\ 4
, &
N
N
\
\

Ventral Tegmental Area (VTA)

Dopamine neurons H

Dopaminergic neurons are ~55-65% of VTA neurons
The rest are mostly GABAergic inhibitory neurons or
Glutamatergic neurons

L2

Before (++)
/\/
During
A N (+)
After /\ (0)

After learning, reward omitted

A (-)

—

A A

Stimulus Reward
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Dopamine circuitry of the brain: drugs have strong effects

Addictive drugs cause an increase in mesocorticolimbic
dopamine through three distinct cellular mechanisms:
* (1) direct activation of dopamine neurons (e.g.,

nicotine)
gfsct:,';;,e Opioids » (2)indirect disinhibition of dopamine neurons
Amphetamines GHB o [opioids, gamma-hydroxybutyric acid (GHB),
Cannabinoids cannabinoids, and benzodiazepines]

DOPAMINE Benzodiazepines

* (3) interference with dopamine reuptake (cocaine,
ecstasy, and amphetamines).

Nicotine

Drug-Evoked Synaptic Plasticity Causing Addictive Behavior

Christian Lischer
Journal of Neuroscience 6 November 2013, 33 (45) 17641-17646; DOI: https://doi.org/10.1523/JNEUROSCI.3406-13.2013 36



Dopamine neurons in VTA are also involved in motor learning & Parkinson’s disease

Dopam il“li—"r'{]if‘ neso-cortical projections to M1: role in
. . _
motor learnii nd motor cortex plasticity Parklnsonsdlsease reduced DA

Jonas A. Hosp'? and Andreas R. Luft'*** ‘

()
Hosp & Luft, Frontiers in Neurology, 2013 .. o0
Dopaminergic Projections from Midbrain to Primary Motor . .
Cortex Mediate Motor Skill Learning
A SHAM 6-OHDA

Jomas A. Hosp,'** Ana Pekanovic.'** Mengia S. Rioult-Pedotti,*” and Andreas R. Luft'”

Hosp et al, J. Neuroscience, 2011

https://www.criver.com/products-services/discovery-services/pharmacology-studies/neuroscience-models-
assays/parkinsons-disease-studies/vivo-models-parkinsons-disease ?region=3696
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Thus, the role of dopamine in the brain
is complex, and there are many
hypotheses about its various roles:

* Reward Prediction Errors (but of course this can be
implemented in many ways...)

* Rolein saliency/attentional modulation

* Uncertainty estimation

* Energizing/motivating behavior



Temporal difference (TD) error reinforcement learmning (RL)

States t t+3

r(t) r(t+ 1) r(t+2) t = time
V(t) = value

V(t) V(t+1)

Value is the discounted sum of all future rewards!
Discounting factor

V(t)=r(t)+y*rit+1)+ p2*r(t+2)+.. 0<p<1
V(t) =r(t) + y* V(t +1)

Temporal difference prediction error: Update V(t)

S(t) = r(t) + p * V(t +1) - V(t) m) ) CVrats

39
Sutton & Barto 1996, Schultz et al. 1997, Cohen et al. 2012



How could a system encode a temporal difference (TD) error

TD error as a derivative-like computation: d(t)=r(t)+ y*V(t+1)-V(t)
(neurally doable!)

—

t=time
[ \ r=reward
V(t) V(t) = value

B

Jy = discount factor
/ \ J'= prediction error
V(t+1)

yEV(t+1) - V(t)

r(t)

J(t) —/\ Dopamine neurons '—<,<

A A Y

Stimulus Reward
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REMINDER: receiving a reward with a
magnitude below the mean reward will elicit
a negative RPE, whereas larger magnitudes
will elicit a positive RPE!

(if a LARGER reward was given it would elicit
a DA response at the time of reward)

No prediction
Reward occurs

Reward predicted
Reward occurs

Reward predicted
No reward occurs

(Schultz, Dayan, Montague, 1997)
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Letter | Published: 18 January 2012

Neuron-type-specific signals for reward and
punishmentin the ventral tegmental area

Jeremiah Y. Cohen, Sebastian Haesler, Linh Vong, Bradford B. Lowell & Naoshige Uchida &

Nature 482, 85-88 (2012) | Cite this article

3 functional “types”
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~ Sl rowdr ~_ Dopamine Neuron
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i}
2 o T T T T -
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31% 2104 e o % Time — odour (s) )
(s} o W : - ] n
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Cohen*, Haesler*, et al, Nature 2012 Cohen, Amoroso, Uchida, elLife 2015 42



What cells could enable this computation?

* Hypothesis: Neurons within the VTA could encode all needed features or
neurons that project TO DA neurons could contribute

Whole-Brain Mapping of Direct Inputs to Midbrain
Dopamine Neurons

Mitsuko Watabe-Uchida ¢ Lisa Zhu * Sachie K. Ogawa * Archana Vamanrao * Naoshige Uchida & =

Open Archive « DOI: https://doi.org/10.1016/.neuron.2012.03.017




Comparison of Input Areas between VTA and SNc Dopamine Neurons
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Whole-Brain Mapping of Direct Inputs to Midbrain

Dopamine Neurons

Mitsuko Watabe-Uchida ¢ Lisa Zhu ¢ Sachie K. Ogawa * Archana Vamanrao * Naoshige Uchida 2

Archive « DOI: https://doi.org/10.1016/.neuron.2012.03.017
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What are the inputs to Dopamine neurons encoding?

Distributed and Mixed Information in Monosynaptic
Inputs to Dopamine Neurons

Ju Tian * Ryan Huang * Jeromiah Y. Cohon » Fumitaka Osakada * Dmitry Kobak « Christian K. Mashons &
Edward M. Callaway * Naoshige Uchida 2 © « Mitsuko Watabe-Uchida 5 2o Show sy e Show lotroles

* Published: September 08, 2016 * DOI: hitps/idol org/10. 10164 newron 2018080

* Electrophysiological recording from monosynaptic inputs of dopamine neurons was performed

* Rabies virus tracing was combined with optogenetic tagging in awake recording
—>They recorded from input-dense areas along this ventral stream that have most often been used in RPE models:
- the ventral and dorsal striatum
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What are the inputs to Dopamine neurons encoding?
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Article

Adistributional codeforvaluein dopamme- In contrast to classical temporal-difference

based reinforcementlearning (TD) learning, distributional RL posits a diverse
set of RPE channels, each of which carries a

_ _ : different value prediction, with varying
https://dol.org/10.1038/s41586-0191924.6 Will Dabney'"*, Zeb Kurth-Nelson'**, Naoshige Uchida’, Clara Kwon Starkweather’, . .
Received: 3 January 2019 Dornis Hassable', Rém| Munce' & Marthew Botviniok degrees of optimism across channels!

Accepted: 19 November 2019

S . A  rewid e T » " » hi " »
Publl online: 16 Jenuery 2020 Inceits introduction, the reward prediction error theory of dopamine has explained

awealth of empirical phenomena, providing a unifying framework for understanding
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*In standard TD learning, all value predictors learn the same value V. Each dopamine cell
is assumed to have the same relative scaling for positive and negative RPEs. This causes
each value prediction (or value baseline) to be the mean of the outcome distribution. 47
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Distributional TD learns value estimates for many different parts of the distribution
of rewards. Which part a particular estimate covers is determined by the type of
asymmetric update applied to that estimate. (A) A ‘pessimistic’ cell would amplify
negative updates and ignore positive updates, an ‘optimistic’ cell would amplify
positive updates and ignore negative updates. (B) This results in a diversity of
pessimistic or optimistic value estimates, shown here as points along the cumulative
distribution of rewards, that capture (C) the full distribution of rewards.
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Summary:

Marr’s 3 levels provide a computational formulation for studying computations in the brain
Decision-making is hard: the “credit assighment problem”, delayed rewards, uncertain outcomes
Perceptual and value-based decision-making can help refine how to study and where in the brain
to study

* - reminder for the neuro-anatomy that supports visually guided decisions

* - Encoding & decoding is critical
Decision variables DV), evidence accumulation, and how to use decoding to closed-loop test how
DV are related to actions
- Change of mind in decisions — how did they test this?
Operant and classical conditioning
PSTH
Dopamine (DA) neurons in VTA
RPEs
RL & TD learning
How to formalize finding computations: mapping TD to DA
lputs to DA neurons show distributed information and even (possibly) partially computed RPEs
Distributional RL in the DA population better fits the data
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