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Recap - The Hippocampus

The two structures in the mammalian brain that are
critical for encoding and storing explicit memories are the
prefrontal cortex and the hippocampus.

The prefrontal cortex mediates short-term memory.
Information stored in short-term memory can be actively
maintained for very short periods and then rapidly
forgotten, such as a telephone number that is
remembered only until it is dialed, or it can be

stored elsewhere in the brain as long-term memory. The
hippocampus stores declarative information (facts and
events) in a more stable form for periods ranging from days
to weeks to years, up to a lifetime.

The hippocampus is also the place where a cognitive map
of the environment is stored - an internal map of space
which can be used as a form of database which stores
information in relation to the animals position
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Recap - The Hippocampus
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The hippocampus is a highly conserved brain
structure across all mammals, including humans

Primarily uni-directional processing
loop: entorhinal cortex -> hippocampus ->
entorhinal cortex
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Recap - The Hippocampus

Huge amount of visual processing until any external
sensory information reaches the hippocampus

In other senses (auditory, somatosensory) there is
similarly complex processing upstream of the
hippocampus — except olfactory inputs that reach the
hippocampus much more directly (olfactory bulb ->
entorhinal cortex)

The hippocampus stores a world-centered (allocentric)
map, derived from self-centered (egocentric) sensory
information, a cognitive map of the environment

Fellemann & Van Essen 1991



Initial training setup

Food reward \
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The animal acquires a
structure of the
environment during initial
exploration

a cognitive map of the
environment
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Tolman, Ritchie, Kalish 1946
Edward C. Tolman, 1948



You are here

How do you know?

You have a cognitive map
of the EPFL campus with
place cells encoding
specific places within it
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Place cells in hippocampal subfield CA1
-

To spike discriminator

To mouse tracker
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O’Keefe et al. 1971
O’'Keefe & Nadel, 1978



Place cells in hippocampal subfield CA1
Jr—HHWMr fgﬁ ;:' Firing-rate map

To spike discriminator

To mouse tracker

O’Keefe et al. 1971
O’'Keefe & Nadel, 1978



Place cells in hippocampal subfield CA1
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http://www.youtube.com/watch?v=STyd1qJr3yM

Place cells in hippocampal subfield CA1

Many place cells together tile the whole
environment

They provide a map of the environment,
in the sense that the combination of
currently active cells is sufficient to read
out precisely where the animal is in the
environment

Physical space is encoded in reference
to the world (allocentric) - it is fixed with
respect to a point in the outside world
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Place cells remap in novel contexts
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200000 - 800000 neurons in CA1 (mice - rat)

Not enough neurons to encode larger (real-world)
environments

Tiling a much larger space with typical place fields as
measured in the laboratory (~10 to 20 cm diameter,
single field per neuron) would require 10*13 neurons.

This is ~10A8 times more neurons than the number
of cells in the entire dorsal hippocampal area CA1
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Place cells remap in novel contexts

Place cell locations remap
when context changes
drastically (global remapping)

Smaller context changes are
encoded as changes in firing
rate (rate remapping)

Allows place cells to encode
multiple spaces and adapt to
new environments

Cell 1

Cell 2

Cell 3

Cell 4

Cell 5
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Global remapping

[

Rate remapping

Latuske et al. 2018



13

Place cells replay previously experienced trajectories

Sharp-wave ripple

™~

Environment setup

Replay event

Replay of previously experienced
trajectories in a temporally
compressed manner

Replay is a form of mental
rehearsal by which certain
memories are gradually
consolidated (to cortex) and thus
may be a crucial aspect of the role
of the hippocampus in memory

Zielinski et al. 2017



The cognitive map



The cognitive map
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Head direction cells
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Taube et al. 1990
Preston-Ferrer et al. 2016
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Head direction cells
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http://www.youtube.com/watch?v=CvTZjMshQ7M
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In drosophila the head
direction circuit is
arranged in a
topographical ring with
nearby cells encoding
nearby angles

Taube et al. 1990
Preston-Ferrer et al. 2016



The cognitive map
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Grid cells in entorhinal cortex (EC)

Ratemap Autocorrelogram

Hafting et al. 2005

Grid cells in entorhinal cortex respond to multiple
spatial locations in a unique triangular grid pattern.

|@ Hippocampus  OEC]|




Grid cells in entorhinal cortex (EC) /\\\255\

Ratemap Autocorrelogram

Haftmg et al. 2005 Grieves, Jefferey 2020

Grid cells in entorhinal cortex respond to multiple
spatial locations in a unique triangular grid pattern.
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http://www.youtube.com/watch?v=YMdGxGqv1AU
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Grid cells form modules along the dorsoventral axis of EC
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Phase Scale of grid cells increases topographically from dorsal to the ventral
part (~30cm dorsal to several metres ventral)

The expansion is not linear but step-like, suggesting that the grid-cell PONS Gih Ed. 5413
network is modular. Moser et al. 2015




23



Decoding multiple behaviors from raw neural activity

Vv

!

—_

L N

W\WWW

[

[

40ms

Spike time vector, Cluster 1
2.5, 3.3, 4.4, 51, ... ]

Spike time vector, Cluster 2
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Spike sorting helps in removing noise and clustering neurons, however
Results of spike sorting may vary from person to person (subjective)

Spike sorting discards information outside the spike range



Frequencies

Decoding multiple behaviors from raw neural activity
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Decoding multiple behaviors from raw neural activity
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Navigating three-dimensional space




Navigating three-dimensional space

Place cell Grid cell Border cell Head-direction cell
330 230
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240 120
210 180 150
330 -2 30
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K. 240 120
— 0. 21073557150
Ulanovsky Lab

Same spatial cells in
crawling bats (2D)

Geva-Sagiv et al. 2015
Ginosar et al. 2021
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Navigating three-dimensional space

Flying bat (cell 1)

Cell 6
/
In bats, grid cells in 3D show
local order but no global lattice
Global order Local order  Disorder
' Cylindrical Cubic Hexagonal L " Random !
hex. lattice lattice 3D lattice arrangement
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000 g

In rats, grid cells in 3D show
purely random arrangement

Ginosar et al. 2021
Grieves et al. 2020 & 2021
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The cognitive map in humans
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Place cells in human hippocampus

Participants navigating a virtual environment — Taxi task
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Cells in human hippocampus show spatially selectivity,
reminiscent of place cells in rodent experiments
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Ekstrom et al. 2003
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Hippocampal volume and navigation performance

time as taxi driver (months)

Volume of posterior hippocampus in humans O % e 0 X0 ;0 w0 o
Larger in London taxi drivers than in age-matched a% s -
controls 1.0 o Y
Larger in Taxi drivers than in experience-matched Bus ﬁ: o

drivers & no correlation with experience in Bus drivers

Navigation based on a cognitive-map, i.e. an allocentric
strategy (taxi drivers) requires a larger hippocampus than
egocentric (route-based) navigation (bus drivers) ?
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Maguire et al. 2000
Maguire et al. 2006

32 Ulanovsky 2021
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Grid cells in human entorhinal cortex
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How to detect single-cell activity in
fMRI tasks?

Calculate participants trajectory for
aligned vs. misaligned paths,
assuming hexagonal grid firing (60
degree)

Compare activity in entorhinal
cortex to other periodicities like 90
degree (square grids)

In entorhinal cortex a 60 degree
offset has the largest effect
between aligned and misaligned
trajectories

Doeller et al. 2010



Reduced grid-cell like activity in Alzheimer’s disease
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Grid-cell-like activity in Alzheimer’s patients is
reduced during a virtual object retrieval task

4. Re-encoding

Kunz et al. 2015
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The basic elements of the cognitive map

Medial entorhinal cortex Hippocampus

Border cells Head-direction cells Grid cells Place cells

6Hz

e

Ranck, Taube 1980s
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Mosers, O’'Keefe, Knierim 2008
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Encoding of visual space




Grid cells in entorhinal cortex encode visual space

Eye-tracking during
picture viewing

L $ =~ « 4 Find the letter
o ™ %, | Lamong the
A

letter T

RH EC

Kilian et al. 2012
37 Nau et al. & Julian et al., 2018
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Cells encoding physical space also encode visual space

Grid cells Visual grldfells Place calls Spatial view cells

350 m
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Eye tracker

Border cells Visual border cells Head direction cells Saccade direction cells
90° 90° 90°
180° AT S5 & 0°

270°

Hippocampus not only supports navigation but mediates a world-centered
representation of visual space and guides viewing behavior



39

Legs length

>

Neck length

Encoding of abstract spaces

y=-4

EC

Participants in an fMRI scanner learned
association between objects and birds
(with variable neck and leg length) -> a
novel abstract 2D space

During trajectories through that space
grid-like activity in entorhinal cortex can
be observed

This shows that the cells underlying
physical space also encode abstract space



Encoding of abstract spaces

A cognitive space spanned by the dimensions of
car weight (y axis) and engine power (x axis)
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Encoding of abstract spaces

Abstract knowledge is often represented at different
hierarchical levels

The different levels can be represented on the
posterior-anterior (or dorsoventral in rodents) axis of
the hippocampus or entorhinal cortex

For example:

A vehicle characterized by low weight and high
engine power might be a Porsche.

On a more general level, you can classify it as a
sports car

On a more specific level you might wonder about
the particular model and its associated
characteristics.
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Summary

Place cells serve as landmarks in the brain's cognitive map,
firing when an animal is in a specific location

Grid Cells create a hexagonal grid of spatial firing, acting as
metric for the space (estimating of distances or vectors)

Head direction cells act as a neural compass, firing based on
the animal's head direction, crucial for transforming
egocentric to allocentric signals

The collective activity of these cells forms a comprehensive
cognitive map for navigating complex environments.

These mechanisms also enable the encoding of abstract
spaces, suggesting a fundamental role in imagination,
planning, and memory.




