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The retina converts
light into neural
signals for processing
by the brain
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Photoreceptors are
light-sensitive cells that
absorb light and convert
itinto information

®

Once light is converted
into information, it gets
passed onto a layer of
intermediate neurons

@

The intermediate
neurons connect to the
retinal ganglion cells
which project into the
brain and form the optic
nerve

Brain computer interfaces in industry

® Wholt's For

We are currently focused on giving
people with quadriplegia the ability
to control their computers and
mobile devices with their
thoughts.

NEURALINK

Simply put, a brain-computer interface
(BCI) enables a person to control an

Source: GAO analysis (data). emojoez/svitlana/titaporn/stock.adobe.com (images). |
GAO-22-106118

https://www.gao.gov/products/gao-22-106118
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How systems neuroscience is enabling advancements in neuroprosthetics & BCls

Neuroprosthetics in systems neuroscience and Neuroprosthetics
medicine

Medical applications

Visual
impairment

Our accumulating knowledge in systems neuroscience combined with the development

of innovative technologies may enable brain restoration for patients with nervous

Communication | Amputee
disability

Hearing
impairment

system disorders. This Collection provides a platform for interdisciplinary research in

neuroprosthetics. It will gather studies investigating medical applications of systems

neuroscience, informatics, and engineering in the development of neural prostheses.
Submissions with a clinical focus on nervous system diseases and brain repair in either

humans or animals are also included. outputs

https://www.nature.com/collections/hjcgcjcach

Neural
stimulation

Neural repair
Electro-neural

interface

Next-generation technologies

* Which brain areas to record from

* Need to understand neural subtypes
 How to give appropriate sensory feedback
* How do we enable adaptation and learning

Bioengineering

Electronic
engineering
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Systems neuroscience and neuroprosthetics

Article Identifying potential training factors in a vibrotactile P300-BCI
Open Access

17 Aug 2022

Scientific Reports

M. Eidel & A. Kibler

Article Transcranial focused ultrasound modulates cortical and thalamic motor activity in N
Open Access awake sheep
Neuroprosthetics

Scientific Reports

Hyun-Chul Kim, Wonhye Lee ... Seung-Schik Yoo

Medical applications

Visual

Article Prepulse inhibition predicts subjective hearing in rats i i

pe R impairment

23 Sep 2021

Scientific Reports Hearing Communication)( Amputee
Naoki Wake, Kotaro Ishizu ... Hirokazu Takahashi impairment dlsablllty

Article Intuitive real-time control strategy for high-density myoelectric hand prosthesis
Open Access using deep and transfer learning
28 May 2021

Scientific Reports

Simon Tam, Mounir Boukadoum ... Benoit Gosselin

outputs
Article Transcranial static magnetic stimulation over the motor cortex can facilitate the
Open Access contralateral cortical excitability in human
8 Mar 2021

Expt.2

Scientific Reports

Yasuyuki Takamatsu, Satoko Koganemaru ... Tatsuya Mima

Article Quantifying the alignment error and the effect of incomplete somatosensory
Open Access feedback on motor performance in a virtual brain—~computer-interface setup
25 Feb 2021

Scientific Reports

Neural
stimulation

Neural repair

Robin Lienkdmper, Susanne Dyck ... Christian Klaes

Electro-neural

Article Operant conditioning of motor cortex neurons reveals neuron-subtype-specific ‘E ”””” R f\ﬁ interface

Open Access responses in a brain-machine interface task

17 Nov 2020 . e i
Scientific Reports LN R T LI I T EIeCtronIc

ke kuJ.L.l,i.’;. PR YO R

Next-generation technologies engineering

Martha Gabriela Garcia-Garcia, Cesar Marquez-Chin & Milos R. Popovic

Article Haptic sound-localisation for use in cochlear implant and hearing-aid users .
Open Access
25 Aug 2020
Scientific Reports e T T iy
i A ¥
Mark D. Fletcher & Jana Zgheib i il Pl
Article Cerebellar transcranial alternating current stimulation in the gamma range applied  “

Open Access during the acquisition of a novel motor skill




Brain computer interfaces: a primer in decoding

Stimulus

e Qur brain needs to
determine what is going
on in the real world from

patterns of spikes.

Spikes
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Encoding Bayesian
p(rls) model decoding

N

\-u.

I l Illlll




Brain computer interfaces: a primer in decoding

A encoding and decoding models

P(x/K)

Deccoding Model
X(t) - N K(t)

AP~
AP~ T
—n— (LT
P~ IR

world brain

P(Kix)
Encoding Model

An encoder represents the neural response of population
K(t) to stimulus x(t) via P (K|x), and a decoder aims to
recover x(t) given the neural activity K(t) via P (x|K).

B levels of analysis

Environment

Tuia et al. 2022

Behavior

Brain

Allen Institute

System (circuits)

Neurons (& glia)

Brainbow (Litchman Lab)

Synapses

NetPyNE

Genes, molecules,
& proteins

AlphaFold (DeepMind)

multi-modal ML models,

video recordings’ EMGs foundation models (LLMS)

physics simulators
(mujoco, OpenSim)

computer vision mode

unctional imaging

(2P, 1P, iMRI, EEG) network neuroscience

CNNs, RNNs,
neural-transformers

GLMs, latent variable mode

pharmacology,

patch clamping Hodgkin-Huxley

ODEs, LIF

AlphaFold,

RNAseq, proteomics
gene-regulatory networks

Vv

data tools & models

Systems neuroscience spans scales of descriptions and decoding algorithms can target any
individual level, and even span across scales. Here, we outline example scales (from genes to
environment), the types of data we can collect (from genetic sequencing to whole-animal
video analysis), and the classes of models the field has developed. On the far right is our
mapping of scales, example data, and example tools to levels of understanding (akin to Marr’s
‘three levels’ (14), with a systems perspective)

uoneindwon



Brain computer interfaces: a primer in decoding

A encoding model of wind direction

angle

relative firing rate (k/K,,.,)

neuron1 neuron?2 neuron 3

B decoding with population vector

p(a[36 12 2 1]7)7?

pulation vector .*
— .

wind direction xq v,

’\,\,\/\"
555

12

45° 135° 225°

angle (degrees)

Vv

A: The cercal system of the cricket has four interneurons that represent the wind direction. The preferred wind directions of the neurons are pointing in four cardinal
directions and can be represented by orthogonal vectors (on the left). Each neuron responds with a firing rate approximated by a half-wave rectified cosine function.

The maximum firing rate is elicited when the wind is blowing in the preferred direction.

B: The wind direction x can be decoded as the direction of the population vector “x. This vector is the sum of the four preferred orientations scaled by their firing rate.
An example is shown for neurons responding with activity [36, 12, 2, 1]T . Note how the population vector closely matches the wind direction



latents

Brain computer interfaces: a primer in decoding

neural latents

Z = (21,22, .--2n)

—

W

W
S\

time

A

neurons

observable neural data

K = (K1, ko, ..

’ ’ H ‘ H ’ ’ H ’ H repel dissimilar
samples

k)

time

> K =yg(2)

attract similar
samples

latent :w
embedding g

learnable latent
(g) - decoder

~ decodable variables
_ (external or internal)

—

» 71

Learnable latent variable models. A: On the path to building more causal models are new frameworks, such as CEBRA (27), that allow for
learning a mapping from the observable data K to the latent dynamics Z. Here, the aim is to use identifiable models with contrastive learning g(Z) (the
encoder), then invert this model or use another decoder framework to probe the relationship between the estimated latents, Z1, and a variable such as

an externally observable state (behavior), internal, or sensory (i.e., recover some stimulus space (x)).



Brain computer interfaces: a primer in decoding

learnable latent
(g) - decoder

® 6 o o

N-<N-R R latent Vg:\@’:\g:\@':
o™ o™ o™ embedding ® ©6 0 ©
® 6 o ©o

adaptation to a new session

pretrained scratch

* Input embedding is finetuned * Input embedding is finetuned
+ Feature extractor is fixed (pretrained) + Feature extractor is from scratch

T =

* Input embedding is finetuned * Full model is finetuned
+ Feature extractor is finetuned + Feature extractor is from scratch

Schneider, Lee, Mathis 2023 Nature

H
U

Median Error (cm)

15

w
wn
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w

= From scratch
w— Pre-trained
= Full model

= = |nput embedding

0

1k 2k 3k 4k 5k
Adaptation steps

Median Error (cm)

0.7s 35s

0 100 250 500
Adaptation steps
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Record Neural Activity

Simple overview
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Record neural data 2>

build a model = deploy ‘ e @

h

Methods for decoding without patient individual training —

Interpolated grid

points

M 075 povement w04
a ‘ classification R
Movement decoding cohorts and tasks B o5 [balanced accuracy) Bos
Center Berin Bejrg Pmsburgh Washingtlon
Subjects 12PD 1070 16 PD 18 Epllepsy
\ ) 1\ - 0A8. Real-Time decoding
‘/ '\ e ‘_'u--\‘
Task \\ % J NN No individual training
J e
Rotation | Button press | Grip force {Clench & release @0\"
)
O°
A @o
(P
i
06\.
Q‘(}fo"
Merk et al. 2023

https://doi.org/10.21203/rs.3.rs-3212709/v1

Connectivity template
(decoding network map)

j

Contrastive learnin
embedding using CEBRA  consistency map

Embedding
dimensions

VA :

k

ECoG embedding

Patients

I Movement
0 Patients

Plug & play decoding on a newly recruited subject

Individual training
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Brain computer interfaces:
for language

Multi-modal speech decoding.

Neural activity was used to train a ANN to
predict phone probabilities, speech-sound
features

and articulatory gestures.

A decoder was then constructed to
produce text, generate audible speech and
animate an avatar, respectively.

Attempted
silent speech

Avatar

" animation

Text

[ decoding

Speech

synthesis ~

g‘; dsuja | lj<_

Phone probabilities

Speech-sound features

Metzger et al., 2023

Articulatory gestures

A

Deep-learning models

A

14



Brain computer interfaces: for
visual scene estimation and
reconstruction

Movie frame prediction from V1 of
mice (using CEBRA + kNN decoder)

lllustration of decoded images from fMRI
using Diffusion Models.

Ground truth (GT) vs. decoded images
generated by Chen et al. from human
fMRI with a diffusion model. Note that
decoded images share similar color,
shape and semantics.

15



What'’s next: BCls also can be used to study neural dynamics of learning

BCls not only have the potential to replace or
augment motor function, but also to be used
as tools to study the direct and
indirect neural circuits involved in learning as
they adapt to new contingencies

Garcia-Garcia et al. 2020

* Single neuron BCI!

* Monkeys demonstrated volitional control of
the discharge rates of nearly all cells tested
within the first 10-min practice session

Letter | Published: 01 December 2008

Direct control of paralysed muscles by cortical
neurons

Chet T. Moritz B, Steve |. Perlmutter & Eberhard E. Fetz

Nature 456, 639-642 (2008) | Cite this article

a Cell [

Extensor target rates

J ha

Centre target rates

iﬁg’ 20 pps

Wrist torque 2s

TorqueIE —n/‘*v n & u&| 0t N

Stimulation I “ k l ’ RO
Stimulation
Smoothed W [40 pps
cell rate Baseline
Cell activity /il |l M RHER L 1omm OPPS

5s 16



Brain computer interfaces: considering neuron subtypes

Visual Feedback Long-Evans Rat

AW A AW A\

-3 AN Al AN A
. W AW A A R b
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BMI Task Example

Threshold surpassed I LN MERETEE R AR EERE G pg
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Neural Transform
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- | Time (s)
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Article | Open access | Published: 17 November 2020

Operant conditioning of motor cortex neurons
reveals neuron-subtype-specific responsesina
brain-machine interface task

Martha Gabriela Garcia-Garcia ™, Cesar Marquez-Chin & Milos R. Popovic

Scientific Reports 10, Article number: 19992 (2020) | Cite this article

The authors investigated how neuron subtypes
respond and adapt to a given BMI task.

* We conditioned single cortical neurons in a BMI
task.

e Recorded neurons were classified into bursting
and non-bursting subtypes based on their spike-
train autocorrelation.

* Both neuron subtypes had similar improvement
in performance and change in average firing rate.

* However, in bursting neurons, the activity leading
up to a reward increased progressively
throughout conditioning, while the response of
non-bursting neurons did not change during
conditioning.

17



Record neural data = build a model = deploy

nature neuroscience

Explore content v About the journal v Publish with us v

nature > nature neuroscience > articles > article

Article | Published: 04 November 2019

Inception loops discover what excites neurons
most using deep predictive models

al activity
Train (day 1)
Optimize (night)
Test (day 2) Fi

Model activity
Edgar Y. Walker &, Fabian H. Sinz &, Erick Cobos, Taliah Muhammad, Emmanouil Froudarakis, sl
Paul G. Fahey, Alexander S. Ecker, Jacob Reimer, Xaq_Pitkow & Andreas S. Tolias & v.,,\L.n;M
» A
: : S " TR R
Nature Neuroscience 22, 2060-2065 (2019) | Cite this article
k 2]

Closed loop Y * Inception Loops are a great example of neural decoding and close-loop
experimental stimulus design.

design

* In part, this is a type of “BCl”, as we are designing neural control of
“optimal” external stimuli to drive activity.

”

* However, the goal of BCls is slightly different: we want to “read & write
into the brain.

18



What’s next: Reading & Writing into the brain

Current BCls are mostly focused on allowing brain signals (neural

activity) to be translated into controlling external devices. SRR Build a B
However, another critical goal is to give sensory feedback to the Activity A?geng:; parameters
patient. for external
(imagine: if you are controlling a robotic arm, it would be very e et A
helpful to know when the arm touched the cup you want to pick H] a . |W-‘-§W-‘-§W-'-§W~‘§ - ’
up | ) TSR embedding R &

P

This requires us then being to DECODE the signals to create the \ /
MOVEMENTS in the external device, and GIVE SENSORY feedback
to the BRAIN.

Do we know how to give the “right” patterns of activity to make
it “feel, look, hear” real?

This is also where more scientific understanding is critical ...
19



Reading & Writing into the brain: all optical studies

CGH Spiral scanning CGH (2D or 3D)
SLM SLM ! ;
Phase hologram YA

Temporal focusing

GS iterative
algorithm

Spiral scanning : :
2D or 3D Xy x+<+ B !
illumination pattern &.;, . .

e Calcium imaging + optogenetics
allows for “all optical” access the
neural circuits.

(] e
* We can design closed-loop )
ex pe I’I me ntS tO measure an d p e rt ur b Scanless 3D-CGH with temporal focusing f Multiplexed scanless 3D-CGH with temporal
(3D-SHQOT) focusing (MTF-CGH)

neural activity.

* We can design these such that we
“closed-loop” record neural activity
and have the animal use this activity
to complete a task.

Adesnik, H., Abdeladim, L. Probing neural codes with two-photon holographic optogenetics. Nat Neurosci 24,
1356-1366 (2021). https://doi.org/10.1038/s41593-021-00902-9 20



Reading & Writing into the brain: all optical studies

Typical 2-photon imaging window is
~500 um in diameter in the cortex
(layers ~2-5 most typical).

Now, new approaches are enabling
recording in deeper areas (GRIN lens)
and larger areas (mesoscope)

Our 2P mesoscope system at EPFL!
(not many in the world)

a b
Mesoscope
T 0N
V
L A
~5 mm
c . d . .
Brain removal Fiber-coupled microscope

Adesnik, H., Abdeladim, L. Probing neural codes with two-photon holographic optogenetics. Nat Neurosci 24,
1356-1366 (2021). https://doi.org/10.1038/s41593-021-00902-9



Brain computer interfaces: all optical studies

BMI tasks provide a powerful approach for studying
sensorimotor learning, as they enable arbitrary mapping
between neuronal activity, behavioral output and reward

Mice learn to intentionally modulate calcium dynamics.

e b

L
E — Ensemble 1
- — Ensemble 2
o : — Indirect cells £ 60
S c
=
\J\_\ g 40
[}
\L o
7 ~ 20 | N =10 mice
. Transform s - =
i > 2E1-2E2
Auditory L Day
feedback < Target Local network reorganization accompanies learning
ol Q2
-g a b @ 10 . ° ®eE1 eoE2
= % ®e &
8 w 0.16 ik ‘e
o E ;' § 1 ...o.’ ‘.‘uc .
LL' % 0.14 g g “ ...a ?.“.p...
———— Cursor frequency ) 2 g|S B Gt o
Y, 201 i
Reward when “ ot “l3 ; .
target achieved 0 5 10 15 20 001 o1
Clancy et al. 2014 Relative time in session Burst freq. baseline (Hz)

22
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Brain computer interfaces: all optical studies

Can mice learn to use a fabricated feedback channel to control single-neuron activity?
How do responses of the conditioned and neighboring cortical neurons change with learning? ) ) )
Reminder: 2P imaging

Virus injection and titer optimization

Part 1

!

8-12 weeks

M1
Forepaw

Part 2
2-3 hours

H

Scanned

o

:

Part 3
* They used 2P imaging, optogenetics, ECoG, real- 1 hour

time ROl selection, and a decoding algorithm*
* (technical tour de force!)

Trace extraction Indicator dynamics w Analysis

.\ 4
TR AL I‘Peak

*general linear model with the threshold crossing rate (TCR)

z score as the dependent and the z scores of the event rate

(ER) and event amplitude (EA) as the independent variables
was fit to each of the sessions as follows:

Binarization

| l }‘
3xSD ~fh \ \
\ I\ \ F[’ 1
X \ [ « “off

RS ¢ 5
Raseline Onset Offent 0

TCR = berER + braEA https://www.sciencedirect.com/science/article/pii/S2666166721007164

Prsa et al 2017 Neuron 23



Brain computer interfaces: all optical studies

Can mice learn to use a fabricated feedback channel to control single-neuron activity?
How do responses of the conditioned and neighboring cortical neurons change with learning?

D s ,F -.»Te.x.:..i‘."arinr.

“ S1
510 S0
'

Recording & Storage

Online Analysis
Decoding

Gigabit
Ethemet

5

Lick sensor

& Rewards
o)
= 3
AT
[~ BT
)
[ B8 =
co
L =
D&
2o
>
(@)

o[ H b e rr'_
767 ;‘J
3.89 i
d
197, [/ Rewar
rl" r 0
1 |
0 05 5.2.2

Prsa et al 2017 Neuron

Schematic of the experimental setup showing the head-fixed mouse
under the two-photon microscope.

The two laser beams for imaging and stimulation were controlled
independently, but focused through the same microscope objective.

To protect the sensitive photomultiplier tubes of the imaging system during

the optogenetic blue light pulses, we combined optical filters and gated
detection electronics.

Two-photon images were acquired on a PC running Scanimage and
streamed to a control PC that extracted in real time:

- the Ca-dependent neural activity

- generated the feedback signal (inset: transfer function between neural
activity and feedback pulse rate)

- acquired ECoG, lick, and forepaw movement sensor data

- controlled the blue light mask

S1, S2, scanning mirrors; D1, D2, dichroic mirrors; EF, emission filter; gPMT, gated photomultiplier tube.
A conditioned neuron (CN) (blue) was chosen among hundreds of simultaneously imaged neurons (gray).

24



Brain computer interfaces: all optical studies

Can mice learn to use a fabricated feedback channel to control single-neuron activity?
How do responses of the conditioned and neighboring cortical neurons change with learning?

‘k un
fe Ethermet

q C
/M1 0.4 mVv
Forepaw
Control
mouse | 0.1 mVv
: 500 ms
D P _?_F_-'_.»?,.x_r‘,i'minn E S
91 .
m ..... ./ S ' Online Analysis
= ‘ Recording & Storage Decoding
m' .
b 4% Gigabit

Conditioned
neuron

=
Lick sensor
& Rewards

Prsa et al 2017 Neuron

85 M | 1
g% ;:; ,frj Reward I |
58 ‘ 3
83107 7 oo v 11| WL Wl
J =
B 10 05 115 2 25 R
Af/f,

+All-optical brain-machine-brain interface for
neuroprosthetic control

*Mice rapidly learn to activate single neurons
under optogenetically evoked feedback

*Population imaging reveals that learning is
restricted to the conditioned neuron

Note, no visual feedback was provided, only
stimulation into S1!

25



Brain computer interfaces: all optical studies

Can mice learn to use a fabricated feedback channel to control single-neuron activity?
How do responses of the conditioned and neighboring cortical neurons change with learning?

2

+All-optical brain-machine-brain interface for

¢ ans o neuroprosthetic control

Forepaw

*Mice rapidly learn to activate single neurons
under optogenetically evoked feedback

Control
= | osow o -
*Population imaging reveals that learning is
VY iR restricted to the conditioned neuron
D "r e £ 500 ms
2V excitation . .
prre ///51 ----- g - Note, no visual feedback was provided, only
----- . line Analysis . . .
fo Recording & Storage ~ Decoding stimulation into S1:
o P Gigabi i
P e S | o |
Importance of Artificial Sensory Feedback for Execution and Learning
l Conditioned A ChR2 mice B Control mice
4 neuron 2 . 2- i
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K 5 S5 - 815
' [~ A 7
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Prsa et al 2017 Neuron 26



Brain computer interfaces: all optical studies

Multi-neuron Conditioning

A
N+ f(N1)
i\ NG
= = ,
b, Arm
10 1 _position
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A O g, B
) é
] v v v 0
\j 1 Cl"f“f 2 ( 3)
NS
— e m i
c

The Af/fy activities Ny, N,, and N3 of three CNs were first transformed by a
logistic function into f(N;), f(N,), and f(N3), and the ensemble activity
computed by adding f(N4) and f(N,) and subtracting f(N3). Each activity Neuronal activity
transform dictated the angular position of a robotic actuator and the ensemble
activity was proportional to the effector distance to target.

B C Joint angles
4
Feedback stimulation rate
<
E 3
£2
.“E'
&1
&
Paw holding
Reward 0 ) :
! ‘ : Session Session Time(s)
Lick | [l | [ | ! start end

Prsa et al 2017 Neuron 27



Designing experiments to test neural coding

a, Probing the role of neural synchrony.

b, Schematic of two types of multiphoton holographic perturbations, one
that obeys the intrinsic low-dimensional architecture of the neural activity
patterns a group of neurons exhibits (‘on manifold’) and one that does not
(‘off manifold’).

¢, Schematic of using multiphoton holographic optogenetics to artificially
induce Hebbian spike timing-dependent plasticity between two artificially
chosen neural ensembles (indicated by the two colors).

Top left, schematic of the conventional STDP learning rule,
plotting change in synaptic strength (AEPSP) versus the time
delay between pre- and postsynaptic activation (t).

Top right, holographic stimulus pattern to induce STDP.

Bottom, schematic of fast interleaved photostimulation of two
ensembles to drive STDP between them.

Increasing synchrony >

h v
AP

C STDP learning rule  Plasticity induction

o
(2]
o
w
Off manifold 4&
manifo At Il
At
Presynaptic Postsynaptic
activation activation
L 7) Y @ | |
7 45,, ] j’:f\
[7759<

Adesnik, H., Abdeladim, L. Probing neural codes with two-photon holographic optogenetics. Nat Neurosci 24,
1356-1366 (2021). https://doi.org/10.1038/s41593-021-00902-9
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Brain computer interfaces: electrical implants

BMIs in humans and non-human
primates are generally all
electrical systems.

Current Opinion in Biotechnology

Rapeaux & Constandinou, 2021
Current opinion Biotech.

29




Implanted microelectrode arrays

Implanted microelectrode arrays are a common tool in systems

neuroscience.

The size and number of recording sites vary with experimental

goals and model organism.

A

3000 pm

Wark et al., 2013 J. Neural Eng.

Vetter et al.,
2004

Transactions on
Biomed. Eng.
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Microelectrode arrays

Implanted arrays can provide stable recordings
for months or years.

In primate research, research subjects often
live with cortical implants for years, and
perform multiple tasks with researchers.

Implant Order (By Lifetime Length)
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Sponheim et al., 2021 J. Neural Eng.

31



Brain computer interfaces: electrical implants in humans

* Implanted arrays have also been
tested in clinical settings.

* They have been used to help
guadriplegics regain some
lost function.

Patient cable

Nevral activity

Recording array
Decoder
__________________________________________ Implanted lead
. i Electrode
e

stimulator

Percutaneous
lead connector

Instrumented
goniometer

Mobile arm support

Ajiboye & Willet et al., 2017 Lancet

32



Brain computer interfaces: electrical implants in humans

* Implanted arrays have also been
tested in clinical settings.

* They have been used to help

qguadriplegics regain some
lost function.

* However, the use of cortical
BMiIs is almost entirely
experimental

Ajiboye & Willet et al., 2017 Lancet 33



Next gen microelectrode arrays

Modern microelectrodes tend to
have increased throughput.

* 1000-6000 contacts

There is also a focus on more
biocompatible materials.

The electrode arrays used in
research are several years ahead of
their clinical counterparts due to
safety testing requirements.
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Wang et al., 2023 Microsystems & NeuralEng.
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So we can record from motor cortex with BMls, what have researchers found?
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Movement research and primates

In vivo recordings of cortex in primates have
been used to study movement for over 50
years.

Even the earliest studies demonstrated
motor cortex encodes key features of
movements.

Evarts 1968, J. Neurophysiology
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Center-out motor task

, , The task is very separatable yet
The center-out task is frequently used in motor constrained.

control studies.

It can be performed with a limb, a cursor,
or a robotic manipulandum.

a ph Baseline Early CF

Late CF

PCD

Cs\@ @Ks

Perich, Gallego & Miller, 2018 Neuron Ubeda et al., 2017 J. NeuroEng & Rehab. 37



Center-out motor task

A Center-Out Reaching Task (Manual) B Center-Out Reaching Task (Observational)

Color Cue On Move to Target Target Reached Reward Color Cue On Cursor Moves Cursor Reached Reward

No Reward

Observational version of the center out task are also used to train neural
decoders.

An et al., 2019 eNeuro 38



How does motor cortex encode movement?
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Review: what are dynamical systems?

“A set of coordinates, often represented as a
vector, describing the instantaneous
configuration of a dynamical system and that is
sufficient to determine the future evolution of
that system and its response to inputs.”

Churchland Shenoy 2013
Ann. reviews in neuroscience

C position D state space
p/ o / \/
—b >
> time E
velocity >

v1/\ _________ /\
N\

— -
time position

Pandarinath et al., 2018 J neuroscience
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* Monkeys performed a center out reaching task
while neurons were recorded in primary motor

Discovery of rotational dynamics

cortex.

Researchers also recorded from leeches
swimming and walking monkeys.

Sl

Cell 112

. . —
Target Move onset 200 ms

Cell 42 |

A Cell 184
A\{Monkey N

Cell 15 |

Monkey N c“ ’
L \' s
\J

Chruchland et al., 2012 Nature 41



Rotational dynamics

a Monkey B b  Monkey A
 Low dimensional projections of neural activity
during center-out reaching tasks produce highly 3
consistent neural trajectories. S
o
o |
: . . 5 \
* These cyclical trajectories appear to show 5 \
organization based on movement kinematics 8 c ISt d
. . o . N (@]
including direction and velocity of movements. o V———
d V Instructed\
slow
* Thisfinding suggests that motor cortex acts as 3 Neural data
a dynamical system, with neural activity ]
evolving over time based on local dynamics =
and external inputs. 5
C
o
o
o
Projection' onto jPC, Projection onto jPC, Projection onto jPC,
(a.u.) (a.u.) (a.u.)

Chruchland et al., 2012 Nature
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Motor cortex as a dynamical system

Strong input not required Strong, time-varying input required
Motor cortex Motor cortex

External input External input
il > i /\ g
ult,...) r(t) ult,...) r(f)

There is ongoing research into the extent to which motor cortex is input-driven
compared to intrinsically driven.

Sauerbrei et al., 2020 Nature



How does motor cortex encode movement?

Motor cortex‘code’ Flexible pattern generator?

i ?
* How cortical motor commands are —A/\_\
transformed into motor movements

is still an area of open debate. "I \? <

* Movement coding could be

organized through muscle

activations, movement kinematics, _A/\——\
muscle synergies or some
combination of factors.

e Since the precise transformation
from neural cortical activity to )
movement is still under research,
scientists can try to simplify cortical
outputs to facilitate research. 4)\

Shenoy KV, et al. 2013.
Annu. Rev. Neurosci. 36:337-59
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BMIs facilitate causal testing of the effect of neural activity on ‘movements’

A Motor commands
—

Decoder

/ Cursor
Task / \ o

|
904 / Sensory feedback

Motor cortical
neural activity
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Simple overview

Calculate requisite
control parameters
for external device

Build a Decoder
Algorithm

Record Neural Activity

learnable latent
encoder (g) - decoder

. latent W
" embedding

—
Ws
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Can we demonstrate a causal relationship between invariant dynamics in
motor cortex and a task-relevant command?
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Experiment setup: training the BMI decoder

A
population activity decoder (2D) cursor (2D) el (T A [ e
X, K nX, velocity (V,) position (p,) (passive observation)
0'5‘ O/8 2 = ) ':» V pt
% :J.'.r‘ "““ — _ % t Closed-loop
0 .j z il e i decoder calibration
O :,o;‘ ‘o E _‘ V.*A
\gf ﬁou = v ‘
GO 8Te0) ] | Pes Experiment
@ BMI neurons (20-151) V= Kx#v,"a  p=p, A fiiea aecoush)

16x8 multi-shank arrays were implanted in the

Monkeys were trained to control a cursor using the
upper limb area of motor cortex.

implanted array, but without moving their arm.
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Experiment setup: training the BMI decoder

B Center-Out Reaching Task (Observational)

Color Cue On Cursor Moves Cursor Reached Reward

o o™ Ll R O |=
4
Center Hold
No Reward
‘ Lﬁj [ﬁj L@]
o 0= o= O | =

B
C

chentaqe)

-
NBODC
OOSOO{

(=)

Rate (events/min)

—
N

-------------

Distance (cm)

-
OWOHON

o

-5 0 5
Distance (cm)

Monkeys first observed the
center out cursor task so that
decoder units could be
identified.

After units were selected,
monkeys began training to
move the cursor though either
a velocity Kalman filter (monkey
G) or a velocity Point Process
filter (monkey J).

The decoder was refined using
“closed-loop decoder
adaptation’” or CLDA (Danhgi et
al., 2014).
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Different neural activity patterns can give rise to the same command.

Obstacle-Avoidance Task

Animals were trained on two
tasks, center-out and obstacle
avoidance.

Because the decoder is fixed
for both tasks, the motor
command produced by the
neural activity could be
compared across tasks and
trials.
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Do invariant dynamics are used

X, = h(x )+ input + noise,

to control different
movements?

Researchers wanted to test whether
the invariant dynamics in the neural
activity they recorded produced
subsequent motor commands in a
way that was relevant to the task and
condition of each trial.
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Predicted Activity (Hz)

“Invariant” dynamics predict motor commands in decoder-relevant space

* k k¥ % * %

25 *

x
20 ** shuffle R

Frac sig: 0.889
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full
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condition left-out
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Model R?
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Invariant dynamics can predict the neural
activity that produced a motor command,
even when task variables are removed.

full

command left-out 0.20
condition left-out
decoder-null & 0.15
shuffle T
b 0.10
-

0.05

0.00

Invariant dynamics can predict the neural
activity for the next motor command in a
sequence, and the full model

outperforms the null-decoder model.
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Tomorrow:

Part 1: short (30 min) paper discussion

Part 2:

 EMG recordings in your arm (30 min)

* Making a EMG-based “B"CI ! veuron £xs

NN (&

UPPER MOTOR NEURONS RUN
DOWN THE CORTICOSFPINAL
TRACT WHERE THEY SYNAPSE
WITH LOWER MOTOR NEURONS
IN THE SPINAL CORD

I commano
THEE, BICEPS, TO
contracr!

UprPer Moror
NEuroN

N

="

Lower moror

SPINAL CORP

MUuscLES ARE
BUNDLES OF
MUSCLE FIBERS

ACETYLCHOLINE 15
RELEASED AT SYNAPSE
CNEUROMUSCULAR
JUNCTIOND, CAUSING AN
ACTION POTENTIAL IN THE
MUSCLE AND A TWITCH

.~

https://backyardbrains.com/experiments/muscleSpikerBox

i
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Summary

Overview:

BCls, or Brain Computer Interfaces, are systems that facilitate a direct communication pathway between a brain and an external device.

This technology enables individuals to control devices using only their brain signals.
Recording neural activity is the foundation of how BCls operate. Specialized algorithms, known as decoders, are then employed to interpret

these sighals into commands that can control devices or computer systems.
The importance of (encoder-) decoder algorithms lies in their ability to translate neural activity into actionable instructions for external

devices, making them integral to the functionality of BCls.

Systems Neuroscience Contributions:

Instrumental in identifying optimal brain areas for signal recording, understanding neural subtypes, and designing effective sensory feedback

within BCls.
Insights into neural dynamics, such as the relationship between neural firing and sensory stimuli or motor actions, thereby informing the

development of more advanced BCls.
Current research in systems neuroscience contributes to BCls by examining the principles of encoding sensory information into neural activity

and decoding it back into the brain.

Current Technologies in BCls:

Microelectrode arrays are a key technology in BCls, allowing for the stable recording of neural activity over extended periods. These arrays can
be implanted and have been used in both research settings and, to a lesser extent, in clinical applications to assist individuals with paralysis.
Two-photon holographic optogenetics represents a cutting-edge approach in BCl technology. It enables precise manipulation and recording
of neural activity using light (calcium imaging and optogenetics).

Technological advancements in BCl include increased recording stability and longevity, more biocompatible materials for implants, and higher
throughput in signal recording. These improvements are crucial for the reliability and user-friendliness of BCls, ultimately enhancing their
applicability and integration into various aspects of life and healthcare. Ethics are also deeply important to consider.
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