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This is still a large gap in our ability to build adaptive embodied Al



Of course, artificial Intelligence has made huge leaps with LLMs...

tell me a joke about Swiss soccer players vs. DeepMind robots playing soccer

R




Karen Zack (art director)

Slide courtesy of Prof. Andreas Tolias



“'-ﬂ.“ b Google DeepMind

r*v

-
Mm
please tell me what is in each cell in a tabular format aligned aﬁﬁ

with this picture grid.

@ Here's the content of each cell in the provided image, organized in a tabular format: Show drafts Vv
° please tell me what is in each cell in a tabular format aligned with this picture grid.
1 2 3 a 5 6

| i i i i i * Certainly! Here's a tabular representation of the image content, aligned with the grid:

1 | Muffin Dog Muffin Muffin Dog Muffin
|2 DoV S |E D0y pritin S 000 N | E000 S| Mdthin I'll describe the contents of each cell in a tabular format that aligns with the 4x8 grid

3 Muffin Dog Mutfin Muffin Dog Muffin Row Column 1 Column 2 Column 3 Column 4 Column 5 oyl tie e

a4 Dog Dog Dog Muffin Dog Dog

5 S o s Dog Dog o 1 Muffin Chihuahua Muffin Chihuahua Muffin Muffin Dog Dog Dog Muffin Dog Dog Dog

6 Dog Dog Muffin Dog Dog Muffin 2 Chihuahua Muffin Chihuahua Muffin Chihuahua Dog Muffin Dog Muffin Dog Dog Muffin Dog
This table identifies each cell as either a muffin or a dog, corresponding to the grid in 3 CRhEhtS Mo CHREE S Muffin GhintahtS Dog Dog Dog Dog Dog Dog Dog Dog
the image.

o ) ) _ , ) Dog Muffin Dog | Muffin Dog Muffin Dog Muffin

4 Chihuahua Muffin Chihuahua Muffin Chihuahua
5

Slide courtesy of Prof. Andreas Tolias
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B Levels of analysis

A Encoding and decoding models
P(x|K)
/‘ Decoding model —
x(1) K(1)
AN NN
A A (NTARINE
— N LIREIEN
Affle—— NI

World Brain

-

P(K]x) e

Encoding model

Mathis, Perez Rotondo, Chang, Tolias, Mathis Cell 2024

Environment

Behavior

Tuia et al. 2022

Brain

Allen Institute

System
(circuits)

Brainbow (Lichtman Lab) Neurons

(and glia)

Synapses
NetPyNE

Genes,
molecules,
\ and proteins
AlphaFold (DeepMind)

Video recordings,
EMGs

Functional imaging
(optical imaging:
2p, 1p; IMRI, EEG,
opto-fMRI)

Pharmacology,
patch clamping

Multi-modal ML
models, foundation
models (LLMs)

Physics simulators
(MuJdoCo, OpenSim)

Computer vision
models

Network
neuroscience

CNNs, RNNs,
neural-
transformers

GLMs, latent
variable models

Hodgkin-Huxley

ODEs, LIF
RNAseq AlphaFold,
proteomic':s gene-regulatory
networks
Data Tools and models




What is neuroAl?

Neuroscience — Artificial Intelligence (Al)

|Receptive fields size| | Features |

IT A faces . . . .
: H Hubel & Wiesel discoveries in cat
edges Vv objects . . .
. (7 V1 inspired convolutional neural
" L o networks
shapes Vi { ¢ \R aremgglienses

and objects

Convolutions Representations
cat (CNN) in ImageNet

trained (CNN)




Neuroscience — Artificial Intelligence (Al)

|Receptive fields size | | Features |

IT A faces . . . .
- (1] Hubel & Wiesel discoveries in cat
edges Vi objects . . .
e (7 V1 inspired convolutional neural
v2 1 e networks
shapes Vi \'I)‘ aﬁg?ienses

and objects Visual field

Convolutions Representations
(CNN) in ImageNet
trained (CNN)

edge detector neurons X
: , t

can be explained with ~ —ana > g AL, i

sparse autoencoding

NANS

AV EERSIN

169) = ) 4 dilx,y) +ex,) REUEENNSN
i Ixy) by @ ¢i(z,y)

Adapted from A. Mathis
Olshausen & Field, 1996 Nature 9



10

feature detectors in CNNs

Universality of Representations

rtesy of Prof. Andreas Tolias

Slide cou



The representational level

Equivalences between neural activity and sensory input &behavior

Somatosensation Retina Area V1 Retina Hippocampus IT Entorhinal cortex

Muscle force Visual space Visual edges Movement Spatial Location Faces Spatial Location
1926 194 1959 1963 1971 1984 2005
Adrian Hartline Hubel & Weisel Barlow O’Keefe Gross Moser & Moser
H%%ef_,l)m'ze Nobel Prize Nobel Prize Nobel Prize Nobel Prize
(1967) (1981) 2014 2014

Slide courtesy of Prof. Andreas Tolias



What is neuroAl?

Neuroscience — Artificial Intelligence (Al)

Nonlinear encoder Contrastive learning

B actve * M CEBRA —
iﬁ\ active € /f (neural network (f)) + (loss function)
/iy - oo @ @ g
] .~ ¢ ® Aftract (1) output
T . Time similar
\ #/— — 2 ¥ labels E ] [ samples
i | LS — | 1]
A 4 active Neural data 1 1 :
} ; (N) Repel
dissimilar
. samples

Data:Chowdhury
et al 2020 elLife Schneider, Lee,
Mathis 2023 Nature

* Which lead to better neural Advances in Al, such as
dynamical models of sensorimotor contrastive learning in image
cortex (important for fundamental processing could be expanded
< understanding and BCls) to neuro-specific domains

12



What is neuroAl?

Neuroscience — Artificial Intelligence (Al)

L Query

“When is the mouse
on the treadmill?”

%@ Input Video
h J)

Prompt
points, box, masks

- madeusGPT & ¥ l l

[T]

EDCoron: +—> G

Generate Code based on class AnimalBehaviorAnalysis:

Core API & Integrations h
task_program(): . mmeme— Prompt encoder
behavior_analysis = AnimalBehaviorAnalysis() get_object names() —> List[str]
object_names = ['18'] .,, get names of all objects
fig, ax =\ def animals_state_events(self, l
state_type, T T
behavior_analysis.plot_object_ethogram(object_names) comparison, 2 :
i ax bodyparts = s

D00

(a1l . .
(1]
(1T —>  Embedding —> I

‘1
):

Python Interpreter p

S Iy

use pretrained DLC model use pretrained SAM model

Mask decoder

Image encoder

!

Final Mask

D00

: A
/~ & Output v S

“Result for query : 12,836 frames
the mouse is on the treadmill (total
\ video length is 107,800 frames).” /

GPU

@.15s Web-browser (CPU)

@.055s

AmadeusGPT Ye et al. 2023 Segment Anything (Meta Al) 13



What is neuroAl:

* Many definitions, but widely accepted that it is the new inter-disciplinary field of merging

neuroscience and Al research (€< =)

* Others define is more narrowly as using neuroscience (=) to shape research in Al

nature neuroscience

Explore content v About the journal v Publish with us v

) porspectives > article

ut st

A deep learning framework for neuroscience

Blak I I | 20, Philpoe B £ 1
' ( fia t Ponte Costa, A J 1 Ga ) ANt
Hafner, Adam Kep a M meuron
Richard Naud, 1 ( w\af
Jon) | ) P, Kord
1

Neuroscience-Inspired Artificial Intelligence

Demis Hassabis,'-"-" Dharshan Kumaran,'? Christopher Summerfield, ' and Matthew Botwinichk' -~

"Deaphling, 5 MNew Sirest Square, London, LIK

Gatsby Computational Newoscience Unit, 25 Howland Street. London, LK

Ninstitute of Cognithve Neuroscience, Linkversity College London, 17 Queen Sguare, London, LIK
‘Department of Experimental Pychology, University of Oxclond, Ondond, UK

*Comespondence: dhoontactBgoogle com

nature communications

Explore content ¥ About the journal ¥  Publish with us

rature Communcat ¥ perspectives » artiche

Catalyzing next-generation Artificial Intelligence
through NeuroAl

y Zador € =| Sean Escola, Blake Richards, Benco Olvecriy, Yoshus Bengio, Kwabona Boahen,

Matthew Botvinick, Dmitri Chikclowski, Anng Churchland, Claudia Clopath, James DiCarko, Surya Gangy
el Hawking, Konrad Kordeng, Alewei Koulakoy, Yann LeCun, Timothy Lilkcrap, Adam Marblestone
Hshausen, Algxandre Pouget, Crigting Savin, Terrence Senowski, Eerg Simoncelli, Sara 5o
pillo, Andreas S, Tolias & Dovis Teao

14



One rapidly growing area Is trying to build better Al by better understanding
Blological intelligence (Bl) / Natural Intelligence (NI)

- “If a new facet of biological computation found to
be critical to supporting a cognitive function, then

. & we would consider it an excellent candidate for

v () e incorporation into artificial systems”

V2 [] sher

w [43 \P( a:gg“nes MNauron ‘
Neuroscience-Inspired Artificial Intelligence
Demis Hassabis, ' Dharshan Kumaran,' Christopher Summerfield, ' and Malthew Botvinichk'-
"Deaphdind, 5 Mew Strest Squane, London, LIK
‘iatsly mw&tw Meuroscwance Unil, 25 Howland Strest, London, LK

. Ninstitute of Cognithre Meunoscience, University Collage London, 17 Quesen Square, London, LK
How can we build better models of

‘Department of Experimantal Peychology, University of Oxford, Owlond, LK
TSN, tacts )l

neural systems, and what is the role of

systems neuroscience? “neuroscience can provide validation of Al

techniques that already exist. If a known algorithm is
https://ellis.eu/programs/natural-intelligence subsequently found to be implemented in the brain,
then that is strong support for its plausibility as an
“note, ELLIS also has th? top integral component of an overall general intelligence
1 S umbrella PhD program in Europe

system”
earning and Intelligent Systems for M L/A / researCh y

15


https://ellis.eu/programs/natural-intelligence

Neural circuits are much more complex than modern Al systems ...

[Receptive fields size| |Features|
IT E faces
edges V4 @ objects

and lines a n P Cl Ic b \
V2 D shapes B S
1 —
edges \ \ Cortex
shapes Vi \P‘ and lines t) ' /
f\\ / | Ne— '|
R -
Striatum =
Thalamus
ER ﬁl i
36
=HT =
I = I Ic
E?:H %a Brainstem
\m=|| LP MSTI SESI
|_ i £i8S : = .:m
[ B Spinal cord
I = il e 3
[l it
e g FHLH Ly Ik
==is
A== il
VaA
LI
1
VJI |
!

Felleman and Van Essen Cerebral Cortex 1991 Shepherd and Yamawaki Nature review neuroscience 2021
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Previously we covered (some) tools for measuring and modeling
behavioral and neural data with data-driven approaches ...

Environment

Behavior

Brain

Allen Institute

system (circuits)

Brainbow (Litchman Lab)

Neurons (& glia)

Synapses

NetPyNE

Genes & molecules,
proteins

AlphaFold (DeepMind)

video recordings, EMGs

functional imaging
(2P, 1P, fMRI, EEG)

multi-modal ML models

computer vision|& RL

network neuroscience

RNNSs, transformers

GLMs, latent variable models

pharmacology,
patch clamping

RNAseq, proteomics

Hodgkin-Huxley
LIF (NEURON, nengo, etc)

ODEs, LIF

AlphaFold,
gene-regulatory networks

Experimentally-derived data

Data-driven &
Theory-driven models

N
I

17



Data-driven and Task-driven modeling for understanding Bl

AGENT: BIOLOGICAL CNS

ENVIRONMENT

(

Vision

Proprioception Motor
Touch

~

e motion capture

AGENT: MODEL CNS

e constrain model b

%
Sensory:

Proprioception
Touch
Vision

| X

)

Motor
High-level
controllers

Motor
Low-level
controller

18
Hausmann et al. Current Opinion in Neurobiology 2021



Data-driven modeling Task-driven modelling

GLMs, PCA, Sussillo et al. 2015 Nat Neuro Yamins et al. PNAS 2014, Kell et al. 2018 Neuron,
State-space models, ... Banino et al. 2018 Nature ....

Constrain ANN based on
behavioral task to test
hypotheses about a system

Record from neural data
- during a behavioral task

Sandbrink et al. 2023 eLife

: :: [ XT) Data
GLMs e & o attract similar e 00
L1 % samples © e % Linear model
. PY \l/ 1\ 2 NHP S, unit 1; DNN EV=0.648, linear EV=0.607
[ ]
: : 2 ,
= . 1 N}
. \L T repel dissimilar \J/ T 8’ : "?“} 4 "H{ WTL )ATJR ﬁ‘m f 1“[\ ﬁ
4 samples P = L r\‘ LN ‘r \/ [
ANNs ¢ ¢ = Y3 A ».b ;
. T1, « T2, =» T3, 4 T4, T5, & T6, 4 T7, = T8, ™ T9, « T10, »
(CE BRA) Schneider Lee Mathis 2023 Nature
Marin Vargas et al. 2024 Cell
Joint models that describe NN models that describe
neural variance & representations neural variance & computationally

constrain system 19



Data-driven modeling Task-driven modelling

“If a new facet of biological computation found to “neuroscience can provide validation of Al
be critical to supporting a cognitive function, then techniques that already exist. If a known algorithm is
we would consider it an excellent candidate for subsequently found to be implemented in the brain,
incorporation into artificial systems” then that is strong support for its plausibility as an
integral component of an overall general intelligence
system”

Neuron

Neuroscience-Inspired Artificial Intelligence

Demis Hassabis,'--* Dharshan Kumaran,'-* Christopher Summerfield, ' and Matthew Botvinick'-
"DeepMind, 5§ New Street Square, London, UK

‘Gatsdy Computatonal Neuroscience Unit, 25 Howfand Street, London, UK

institute of Cognitive Neurcscience, University College London, 17 Quaen Square, London, UK

‘Department of Experimental Psychology, University of Oxford, Oxford, UK

"Correspondence tacts



how task-driven models

can inform us about the

computational goals of
the brain

(which can lead to

validations and/or new

Ideas forAl)

Task-driven modelling

Yamins et al. PNAS 2014, Sussillo et al. 2015 Nat Neuro, Kell et al. 2018 Neuron,
Banino et al. 2018 Nature ....

Constrain ANN based on
behavioral task to test
hypotheses about a system

Sandbrink et al. 2023 eLife

0 00 Data

e ¢ % Linear model
\l/ 1\ NHP S, unit 1; DNN EV=0.648, linear EV=0.607

® 2

. 9 A

*l1 o 1M, gyt /ﬁv "‘ s

27 %l rp qﬁ‘ P A
[ ) 0 ' \.\j &‘\f_
[ ] T1 T

Marin Vargas et al. 2024 Cell

NN models that describe
neural variance & computationally
constrain system



Using deep neural networks as task-driven models of a system

il >
<

Vision: Yamins et al. (2014) .. Wang et al. (2025)

cat

Audition: Kell et al. (2018)- speech recognition,
speaker identification, natural sound
identification

Barrel Cortex: Zhuang et al. (2017)
Cognition: Mante et al. (2013)

Proprioception: Sandbrink et al. (2023), Marin Vargas*, Bisi* et al. (2024)

oo vy

22



The goal: to build NN models that are constrained to goals of a neural system

Machine learning Neuroscience

Architecture Circuits
Task / objective Ecological niche
Dataset Environment
Optimization method (learning rule) Natural selection + synaptic plasticity

NN model

»

Slide courtesy of Prof. A. Mathis 23



Hierarchical visual processing

Receptive fields size Features
T A
edges V4 N
and lines
V2
Jai
an K
Vi
faces shapes Y
and ObjeCtS visual field

* V1 neurons are most sensitive to low-level features, such as edges and lines.

* In higher visual areas, like V4 and IT, receptive fields are larger, and neurons
are sensitive to complex features, such as shapes and objects.

* Responses of high-level neurons are fully determined by the neural firing of
From: When crowding of crowding leads to uncrowding lower-level neurons. For example, the neural firing to a square is determined
Journal of Vision. 2013;13(13):10. doi:10.1167/13.13.10 by the neural firing for two vertical and two horizontal lines.

faces

objects

shapes

edges
and lines

24



IT neurons are nonlinear

Receptive fields size Features The Code for Facial Identity in the Primate Brain

Le Chang'" and Doris Y. Tsao’-*""

1Division of Biology and Biologlcal Enginearing, Computation and Neural Systemns, Caltech, Pasadena, CA 91125, USA
A e *Howard Hughes Medical Institute, Pasadena, CA 91125, USA
IT | faces >Lead Contact
A e *Correzpondance: lachang@caltech.edu (L.C.), dortsas@caltech edu (D.Y.T)

hittpe/fdx.dol.org/10.1016/.cell.201 7.05.011

V 4 1. We recorded responses to parameterized faces from macaque face

objects patches

V2 shapes
N -

/ \ 2. We found that single cells are tuned to single face axes, and are blind

| : to ch rth I to thi j
v1 / \ \ edges O changes ortnogonal 1o this axis . i .

and lines 45TA BEBEE

visual field

Face axis 3
wn
o
a8
N

Firing rate
-

(=]

From: When crowding of crowding leads to uncrowding

Journal of Vision. 2013;13(13):10. doi:10.1167/13.13.10 3. We found that an axis model allows precise encoding and decoding of
neural responses

25




Example higher-order visual cortex responses

" Site 5

Q

2]

c

o

o

n

£

S v

= 0w —

4 & 8

la - ° (,)

m) Site 4 7

— o 9

© ~ Q0 p
c S =

o S &

'5 = =~ Animals Boats Cars Chairs Faces Fruits Planes Tables
Q

o -

o

- @ =

o g &

7] Z

k) &

o Lo

= s =

© S &

u’j = ~~  Animals Boats Cars Chairs Faces Fruits Planes Tables

(1600 images tested here)

Slide from Prof. Jim DiCarlo, MIT



(o)

Performance

90

Decoding object identity from neural data

Low variation Medium variation High variation
' .-+ 640 images

D ek < P i - /)( [ J—

I 1 L 10 | I Il 1 A I A A 10 A A 1 I A 1 1 A
120 140 160 0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160

Number of Neural Sites

Slide courtesy of Prof. A. Mathis Yamins et al., PNAS 2014 27



Core-object recognition and the visual pathway

Encodin Decodin
a g g

Stimulus B Neurons B> Behavior
b V1 (ee009] V2 (re0009)
V4
V1 {) rz Lo AIT
o e . @i BoriHo
(] /‘\lT o - o < -
100-ms /
visual
presentation ) — =T
1 faces

Yamins and Di Carlo, Nat Neuro 2016 .
objects

edges h
\‘I)‘ and lines e

28



Building models of visual pathway: what Is the computational goal?

Decoding

Stimuius » Nourons »> Behavior
b Vi /’1 V2 r,.'-"!
e va PIT cIr AIT
2 Q) @—»
< -~ g ---- oa -
A
4 /’
e
(i >
o i
Spatial convolution /i Mo \
over image input 4 /\

d [ Operations in linear-nonlinear layer

Figure 1 HCNNs as models of sensory
cortex. (a) The basic framework in which
sensory cortex is studied is one of encoding—the process by which stimuli are transformed
into patterns of neural activity—and decoding, the process by which neural activity generates
behavior. HCNNs have been used to make models of the encoding step; that is, they describe

$ 9,
"E"@"@

~] Theeshold Pool Normalize

Yamins & DiCarlo Nature Neuroscience 2016

Task information consistency
Single-unit response predictivity

Population representational similarity

29



Building models of visual pathway: the ingredients

Task-driven deep neural network models are built from
three basic components:

1. model architecture class from which the system is built,

formalizing knowledge about the brain's anatomical and
functional connectivity;

2. a behavioral goal that the system must accomplish,
such as object categorization; and

3. a learning rule that optimizes parameters within the
model class to achieve the behavioral goal.

Model architecture class

Localization

N

Differing Do .
learning 5y g,
dynamics ﬂ /

cmmm—— Word recogn

Primary
e Belt
@
Parabelt

Yamins & DiCarlo (2016)
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Learning, architecture search, and model comparison across visual areas

Recordings from across the visual hierarchy
Trained models outperform untrained models

Supervised ImageNet models do very well, and
so do unsupervised models...

Early-Middle layers best predict V1, middle
layer predict V4 and High layers best predict IT

A e

Test Input

Presentation

O
Noise-Corrected Predictivity

o
[4)]
=]

©
w
=]

Untrained

Pretrained DCNN

V4

0.84

0.77

0.70 |

Colorization

Test Per-Site Neural Predictions

Bl &l amp—em

0.80

0.60

0.40

Local Aggregation

0.801

0.60

040

Neural Recordings from V1, V4, and IT

Untrained
— Auto-Encoder
= PredNet

Supervised

Supervised

g =

Zhuang et al., PNAS 2020

Early Middle
Layers

High

31




Representational similarity analysis

neural predictivity

Brain recordings Model units

* Representational Similarity Analysis (RSA) is a
method to compare neural or model
representations by computing pairwise
dissimilarities between activity patterns
(e.g., fMRI, neural data, or model activations)
and comparing the resulting representational
dissimilarity matrices (RDMs) across
conditions

fit

regression weights

* Given n conditions with neural (or model) responses
ry,r3,...,ITy € Rd, RSA computes a Representational
Dissimilarity Matrix (RDM) D € R™*™ where:

images

D;; =1 — corr(r;,r;)

Commonly, corr(-, -) is Pearson or cosine correlation.

correlation predict held-out

S Sme—

Image adapted from from Prof. Martin Schrimpf

Yamins*, Hong*, et al. (PNAS 2014) Schrimpf*, Kubilius*, et al. (bioRxiv 2018)
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Intermediate Take Homes:

NN models can be trained on different
visual tasks to make hypotheses about the
goal of the visual system

Better NN models at the categorization
task predicted IT neurons better

Task mattered more than architecture or
depth of networks

Three points to consider when comparing:

Task information consistency
Single-unit response predictivity

Population representational similarity

Encoding Decoding
a Stimulus —_— Neurons —_— Behavior
= b V1 v2
Vi [ y RGC LGN . V4 PIT cIr AIT
L) EeEe o o1 o
falr <€---[ees| € - - - «--- €---- = =
m: / H44

goro

O

Untrained Col t Local Aggregation Supervised

N 4:

o
8

Noise-Corrected Pr
o
8
>
o
>
>
H
o o <
8 2
Y .
&
= 2
= 2
>
)
o o o
- -3 @
o =3
ntral
n el

neural predictivity

Brain recordings Model units

images
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primate

RGC LGN V1 V2 V4 IT behavior

The hunt continues ...

.55 ®
best mobilenet o

31.‘.‘, N .56

best basenet \..'.

/
.50 ¥ ‘::.-.° 55 densenet-169
oo o alexnet cornet_s resnet-101_v2
) Y I * s = » densenet-201
o 5 ® . 7ot ® e * resnet-152_v2
O .45 n i
wn & xception
- g e e ® pnasnet_large
.é ® vgg-19 ®
m .40 & s o ® & o
3 52 e inception_v4
® n.s.
70 72 74 76 78 80 82
35 8 ImageNet performance (% top-1)
r=0.92
Schrimpf et al. Neuron 2020 2 20 40 60 80 34

ImageNet performance (% top-1)



Deep Neural networks are notentirely a black box!

can perform millions of in silico experiments
derive experimentally testable predictions

Slide courtesy of Prof. Andreas Tolias



What other tasks? What other stimuli Is the brain (visual) encoding?

Biological: recordings in visual system Building “digital twins”, NN models of the system

vision

Hubel & Wiesel discoveries in cat V1

inspired convolutional neural networks Can we use our NN to produce
predictions of optimal stimuli?
We now now a lot more (faces, Can this help reveal anew
motion, value coding) but we computational principle, or
never can give enough stimuli .... validate a discovered rule?

What would the ideal stimulus

be fOl' a given neuron? Mathis, Perez Rotondo, Chang, Tolias, Mathis Cell 2024 36



Paper reading: developing deep predictive models for causal testing!

nature neuroscience

Explore content ~  About the journal ~  Publish with us «~

nature » nalure neurascience > articles » Htﬂ;lﬂ

Article | Published: 04 November 2079

Inception loops discover what excites neurons
most using deep predictive models

Edgar Y. Walker 2, Fabian H. Sinz &, Erick Cobos, Taliash Muhammad, Emmanoull Froudarakis, _

Paul G, Fahey, Alexander 5. Ecker, Jacob Reimer, Xaq Pitkow & Andreas 5. Tolias &
A Hecord
Test
A

Neural activity

Nature Neurpscience 22, 2060-2065 (2019) | Cite this article

Tram (day 1)
Optimize (night)

Test (day 2) Fit

Optimize

Target Model activity

- . <
Artdficral neural natwork o
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Invivo verification

Natural

pd
o
-5
3
» — 05 X
C B N
o 9
- o
3 .
v o
& Model Neural Z =
ode Vi <.
7 WA O / activity Lo 5
AN
'
)/
o @

Artificial MEI Images

neural network

Slide courtesy of Prof. Andreas Tolias 38



What about MEls in macaque V1?

Macaque primary visual cortex

Mouse primary visual cortex

oo

()

©

o
8 15 4 “ # 4 - % > 4 A

Tolias

—

c

dreas

Q.
o™

rtesy of Prof. A

Slide cou

Fu et al., 2024



Data-driven modeling

GLMs, PCA, Sussillo et al. 2015 Nat Neuro
State-space models, ...

Record from neural data
during a behavioral task

0 00
GLMs ° Y PA attract similar
4T % samples
| o
®
O
L1 o
' ° repel dls?lmllar
ANNs samples
®

(CEBRA)

Schneider Lee Mathis 2023 Nature

Joint models that describe
neural variance & representations
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Generalization to new neurons, mice, stimulus domains and morphological cell types

in silico

Locomotion
& Pupil Size

ra L —

Eric Wang 4
Wang et al., Nature §025

Slide courtesy of Prof. Andreas Tolias



Generalization to out-of-distribution stimuli

£
S s
B 0
z E .
08 Natural Movies Natural Images
. =< - =
o6 - ==
_ = -
ER: 04
z E
02 = <
500
£ Drifting Gabor Filters Flashing Gaussian Dots
5 A 0.8
< o
=
© £06 oSS N s e e
= S =
c
604
E
o (&)
e c
200
g 08 Directional Pink Noise Random Dot Kinematograms
¢ 444
&9 44
g 4 T =
S - _' 02 —— -
0.0
4 16 28 40 52 64 76 4 16 28 40 52 64 76
X Amount of Training Data (Minutes of Natural Movies)
o

Wang et al., Nature4§025

Slide courtesy of Prof. Andreas Tolias



Slide courtesy of Prof. Andreas Tolias

Generalization to new neurons and mice

Natural videos

i

Training stimuli

s aee ReadOUt Readout

'l'%:a;;f;? Foundation vs individuel
W Modu=_ Modulatior Modulatio”
_perspectVe perspective perspectiVe

Wang et al., Nature 2025 43
Lurz et al., ICLR 2021 (with Sinz lab)



Generalization to new neurons and mice

Natural videos

-
n

== Foundation
New Mouse

Training stimuli

' '
16 28 40 52 64 76

Median CCnorm on Testing Stimuli

> V

Transfer (R} Foundatio” vs individual Amount of New Training Data (Minutes of Natural Movies)

coré coré

Modulation M odulation
perspectiVe perspective

Wang et al., Nature 2025 "
Lurz et al., ICLR 2021 (with Sinz lab)

Slide courtesy of Prof. Andreas Tolias



MlCI‘ONS Explorer Home Data Requests Tools Gallery About

Slide courtesy of Prof. Andreas Tolias https://www.microns—explorer.org/
Bae et al., Nature 2025 ~



https://www.microns-explorer.org/

Data Types

Avallable as a resource

Slide courtesy of Prof. Andreas Tolias

Bae et al., Nature 2025

FUNCTIONAL DATA ELECTRON MICROSCOPY FUNCTIONAL -STRUCTURAL
IMAGERY CO-REGISTRATION

NucLEUS PROOFREADING CELL TYPES
SEGMENTATION STATUS
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wr 0zg

- large scale high resolution
election microscopy

Ding, Fahey, Papdopoulos et al., Nature 2025

Zhuokun Paul Stelios Andreas

Ding Fahey Papadopoulos Tolias 47

Slide courtesy of Prof. Andreas Tolias



Predict morphological cell types nMICrONS data

L2a

"ﬂ. .

L4a L4b

y. %
ST
3%%T%§§> ‘*?éﬁ:eﬁfgﬁé’

N

Slide courtesy of Prof. Andreas Tolias

L4c

L2c L3a L3b

L5a LSb LSET
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In vivo recordings
of excitatory neurons

-

P

@ o \
a Fbundation

In silico
model

9 ®
I core a
= : g

E 1 mogun 3

perspectVe g
[0}
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7
g /
@
3 Feature
§ weight}s/
Position
Neuron 2
Neuron 1
f
L2a L2b
L1 \ .
( 3 N -~ R
: ; P /S
L4
L5
500 um

D ——>

Predict morphological cell types in MICrONS data

LM

RL

True visual area

AL

L3b L4a

X (a.u.)

Readout position

\'A LM RL AL

Predicted visual area

L4b L4c

1

True cell type

L5

z=

L2a
L2b
L2c
L3a
L3b
L4a
L4b
L4c
L5a
L5b
LSET

y (a.u.)

A0 % a0 p2 3 O P
IR fb\y\y\y\g;\gg\iaé

Predicted cell type

1

a L5b L5ET

They could recover the
retinotopic map! (c)

AREA PREDCTION: readout
weights could predict visual
areas with a balanced accuracy
of 68%, exceeding the chance
level of 25% (d)

CELL TYPE: Using logistic
regression they achieved a
balanced accuracy of 32% for
cell-type prediction,
outperforming the chance
baseline of 9% (e)
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how task-driven models

can inform us about the

computational goals of
the brain

(which can lead to

validations and/or new

Ideas forAl)

Task-driven modelling

Yamins et al. PNAS 2014, Sussillo et al. 2015 Nat Neuro, Kell et al. 2018 Neuron,
Banino et al. 2018 Nature ....

Constrain ANN based on
behavioral task to test
hypotheses about a system

Sandbrink et al. 2023 eLife

0 00 Data

e ¢ % Linear model
\l/ 1\ NHP S, unit 1; DNN EV=0.648, linear EV=0.607

® 2

. 9 A

*l1 o 1M, gyt /ﬁv "‘ s

27 %l rp qﬁ‘ P A
[ ) 0 ' \.\j &‘\f_
[ ] T1 T

Marin Vargas et al. 2024 Cell

NN models that describe
neural variance & computationally
constrain system



Using deep neural networks as task-driven models of a system

il >
<

Vision: Yamins et al. (2014) .. Wang et al. (2025)

cat

Audition: Kell et al. (2018)- speech recognition,
speaker identification, natural sound
identification

Barrel Cortex: Zhuang et al. (2017)
Cognition: Mante et al. (2013)

Proprioception: Sandbrink et al. (2023), Marin Vargas*, Bisi* et al. (2024)

oo vy
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Proprioception (the sense of posture)

Thalamus

Muscle spindle

" Pulvinar

intrafusal muscle fibres sensory innervation z ’\/
] }\ bag fibre f /)
muscle bag, fibre \ Medial lemniscus
nerve '{ H Anterior parietal ol
' | chain fibres \ cortex
f\ r\ A 7 Medulla p \ X7
spindle \ | J l ‘ ( | Dorsal column nuclei: L\ \ \"x_
o nerve | ‘ | ‘ (C) Cuneate nucleus Y\ cld
\ ~{capsule [ | IHIR) (G) Gracile nucleus \ P
§ e l m (E) External cuneate
equator
it v W
lal‘ (| e y S e
po \‘ ' " e | .* Dorsal column:
region | | '} Tendons and Muscle >

joints Fasciculus cuneatus

ey s~ ...,

Fasciculus gracilis

~ Fan
tendon J = %ﬁk ) \\
Banks 2020 \ /
Periphery Spinal cord

Delhaye et al., 2018
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Muscle Fiber-Length (mm)

somatosensory
cortex

-~

/ " thalamus

brainstem

What is the integrative logic
of proprioception?

250 -
100 -
w
E Sandbrink et al. 2023
=
‘; Delhaye et al., 2018
=
125 - + 8 o-
[@]
=
Q
O
0
S
=
-100"
0 - T 1 I 1

o Time(s) 2 5 Time(s) 2 Slide courtesy of A. Mathis 53



Task development: arm movements in 3D space

|5C7m<
z

<
e

Human pen-tip

movements writing 7
Latin alphabet 30 — /\/\
@
- S a= =
= e W e T
Generate synthetic arm E _\/\/
trajectories to re-create '603 . X 04—~ __
movement in 3D space 0 60 . -
0 Time (s) 2
—60Y0 = es;ep ese e esr — eef

Sandbrink, Mamidanna et al. 2020, 2022 biorxiv/ 2023 eLife >4



Derive muscle spindle activity for 1M trajectories

Proprioceptive Inputs

250 -
= 100 -
S T
£ E
S E
g >
- T+ 8 o+
o ]

2 =
b Q
o v,
a 4
= =
= ~100"

0 Time (s) 2

Sandbrink, Mamidanna et al. 2020, 2022 biorxiv / 2023 eLife



Task-driven modelling for the sensori(motor) system

train deep
proprioceptive inputs neural networks

1. Action Recognition Task

a,b,c,d..z?

handwritten character
trajectories

—

2. Trajectory Decoding Task
Position or Position+Velocity

I

model + muscle spindle modeling = =

V]

— reconstruction

Sandbrink, Mamidanna et al. 2020, 2022 biorxiv / 2023 eLife

somatosensory
cortex

thalamus

brainstem

spinal cord

compare neural network unit
properties to real neurons,
make new predictions
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multi-class SVMs trained on proprioceptive inputs show action recognition is a hard task

Pairwise Classification Performance of Baseline Models
1.0 g -
o 0.5 - -7
©
0.9 ;
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" 5 0.3 ' - 3 ~
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- 0.6 > -3 3
2 |
> @
N
-0.5 abcdeghImnopgrsuvwyz 0.2 4 — — -1

© End-effector Coords @ Joint angles

© Proprioceptive Input Muscle Lengths
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Neural networks can readily solve both action recognition and trajectory decoding
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3 .".! 2,

Different representations “emerge” in NNs trained
on action recognition or trajectory decoding

Layer 1

000000
000000

000000
000000

Action
Recognition
spatial-Temporal
Trajectory
Decoding

Imnoppr s uvwyz

abcdegh

- Here, we used tSNE (nonlinear method) to look at changes in Label clustering across NN layers
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Tuning curve analysis of NN units show canonical S1-like tuning

A R%=0.67 R%=0.76 R%=0.76 R%=0.05
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Prud’Homme and Kalaska (1994)
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ART-trained models contain direction selective units, but TDT-trained do not...

1. Action Recognition Task

a,b,c,d..z?

2. Trajectory Decoding Task
Position or Position+Velocity

S

\
\

— reconstruction

oo« Action Recognition Task

of neurons

oir- @ @ @ ® @ @ @

ve- 9 @ © © @ © @

Pos.Cart. - @ @ @

Speed - - °

® =] ° ©
Pos.Polar- @ @ @ @ e e o
Acc. - 1 1 1 i o o

Labels -

Trajectory Decoding Task

\
/\/

L4 L5 L6 L7 L8
Layer

L7 L8 Sp. L1 L2 L3

Textbooks tells us:

proprioception is there to tell
us where our body is in space
We should see direction
selectivity & positional
information ...

If we train only on ART we
see direction, less position;
traj = position and no dir ..
independent of ref.
framework
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Population vector analysis of NN units show canonical S1-like tuning, in trained models

primate S1
* ART Layer 4-5 most S1 like
* Hypothesized that:
B * cuneate nucleus closer
W to layer 1-2
’ & . * S2 deepest layers (6+)

. Action Recognition Task

a,b,c,d..z?

Versteeg et al.,
Journal of Neurophysiology (2021)

Prud’Homme and
Kalaska (1994)

ART-trained
Spindles \
\
/A
Sp. Untrained

“Biomechanics only”
show direction
tuning...



Decoding the brain: towards more causal models ...

Data-driven decoding A ) c
g 2 .
1 0\0 .Attempted Good to see you
= Hodgkin, A.L. and y : ) silent speech
Huxley, A.F. (1952) - Causal . ;
models Al
() Chen Z., et al. (2021) ' ‘ ) ¢
q ' j
~ NPE-N Closed loop 7N ,_'ﬂél_tﬂ
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s et al. (2018) ® A7 s‘" S = A
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[$) ’ &
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< Tize > Deep-learning models
Statistical power Articulatory gestures

Mathis, Perez Rotondo, Chang, Tolias, Mathis Cell 2024



neuroAl in labs at EPFL:

Brain-Score

Integrative Benchmarks | Models at Scale

https://www.epfl.ch/labs/schrimpflab/

Prof. Dr. Martin Schrimpf

Welcome to the Mathis Group!

We work at the intersection of computational neuroscience and
machine learning, an area that is sometimes called

NouroAl. Ultimately, we are interested in reverse engineering the
algorithms of the brain, in order to figure out how the brain works

and to build better artificial intelligence systems

We develop machine learning tools for behavioral and neural data
analysis and conversely try to learn from the brain to solve
challenging machine leaming problems such as leaming motor skills

Check out some of our research direction below.

https://www.mathislab.org/

Prof. Dr. Alexander Mathis

-y Ourworld & 2iwavs cha“gng how ¢o oy’ biains adapt™ We

* P-

‘c 'L MM 10w deretand The Charisr INAderiying a0aptive
behavior vom systearrs oka ‘adaptive

Merging machine learning &
neuroscience

he b revolves sround two Interactive areas cavelop g coe
ANINZ 10015 & unoove e el Gynamics durng AasDTve
pCIIC Y, Wo ot ign Bohavior s’ assays 107 mice. porforn T

scale neural record ngs, anc byl d 1cols 5o a d in our guest of finding interna
\ < 1™ ar
p |

https://www.mackenziemathislab.org/

Prof. Dr. Mackenzie Mathis
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Summary

* NeuroAlisan emerging discipline that crosses across systems neuroscience and computer science
* It’s goal is broadly to use neuro insights to build Al, and to develop Al for understanding the brain (neuro)
* |tis needed as it is still VERY hard to develop embodied Al, human-like movement into robotics, and we
still lack generally intelligent systems (although LLMs for language are impressive ... )
* Key example in Neuroscience inspiring Al: convolutional neural networks (likely transformers too
“attention”): this is a hot area in industry — using cognitive neuro approaches to study NN btw!
* Interestingly, CNNs developed representations similar to the brain
» Key examples of Al influencing neuro: better behavioral analysis tools, better neural analysis tools (see also
BCl week soon!)
* What is missing? NNs are very simple “neurons,” that lack the complexity of what we find in the real brain:
an opportunity awaits!
* Yet, there is a universality of the representations ...
e Data-driven and task-driven modeling: key approaches in neuroAl
* How do we model sensory systems: examples in vision and proprioception
* What to consider: both how close they are at single cell, task performance, and population level
similarity
* Ongoing efforts: Brain-Score, Inception Loops ... Foundation Models to predict function < > structure



Creating *even more* task-driven models of proprioception

Ingredient 1:
Putative goals (of

HYPOTHESES TESTING
Task 1
Task 2

proprioception)
Prlmary / ‘a
somatosensory cortex ’ ‘
Ingre dient 2 AN Thalamus |
ANNs Cuneate nucleus P ey
Spinal cord.—~ |

Marin Vargas* A., Bisi* A., Chiappa A., Versteeg C.,
Miller L., Mathis A. Cell 2024

Ingredient 3: simulating spindle dynamics at scale Slide courtesy of A. Mathis



16 computational tasks to create candidate models

SUPERVISED TASKS UNSUPERVISED TASKS
/ EgoHand \ EgoLimb JointLimb Action recognition \ Efficient coding
hypothesis hypothesis hypothesis hypothesis hypothesis
. Y -w o YW \
@ Hand position (" Limb position \ ( Joints position | /~ Action recognition | Redundancy reduction |
XY,z ‘
XY,z 24 - a I HYPOTHESES GENERATION
W X b | [ EgoHand | [ EgoLimb | [ JointLimb |
0. B,v Cc - [Acﬁon gl : [ Efficient coding ]
Hand velocity Limb velocity Joints velocity \m/
e, L0, W
7 4 2 i
\ ili | / tagizogﬁirfic)
Z Vx, Vy, Vz & probability _// Proprioceptive ( [:p
Vx, Vy, Vz Vx, Vy, Vz Ws representation 8)_,'
Hand pos. & vel. Limb pos. & vel. Joints pos. & vel. Sensorimotor A g
XY,z X.y.z wa,wB,wvﬁ hypothesis Empirical cross-correlation Ehender l s } l g.
- ; 4 D) | f N
Vx, Vy, Vz Vx, Vy, Vz 3x '/ Torque Autoencoder 1\
\ M Vx, Vy, Vz G'va ws Ta,TB, Ty Synt.heticlmuscle
Hand pos., vel. & acc. Limb pos., vel. & acc. Joints pos., vel. & acc. , spindle inputs
Xyz xrylz warwﬁrwv X X=X
s Wa, W, Wy 5
: /\ Reconstruction
Vx, Vy, V Vx, Vy, Vz 3 | loss
\ A A A Ax Ay, Az | | : || .
\ )\ A Ay Az By wsws S \_ y O 4
Egocentric coordinates Joints coordinates
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AGENT: BIOLOGICAL CNS

ENVIRONMENT

AGENT: MODEL CNS

r

Vision

Proprioception Motor
Touch

| ® motion capture

e constrain model §

N\
Sensory:
| ’><€ Proprioception
‘ Touch
‘/ Vision

Motor
High-level
controllers

Motor
Low-level
controller

/ BEHAVIORAL EXPERIMENT

Joint pose :
\ @ . ) 4
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DeepLabCut

PASSIVE
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Task-trained models predict single neuron dynamics!

Active trials NHP S, CN unit 1 (EV=0.622)

Firing rate [spks/bin]

[ N
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> Y Y U =2 N &« Y
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o
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-10 0 10 -7 0 7
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ACTIVE

Comparing network representations with unsupervised UMAP clustering

HP = Hand position
= Hand velocity
= Hand acceleration

Less More

brain-like brain-like &
o

[
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models‘ h ®
A Al
s g. _NHP
-2.5 0.0 2.5 5.0 7.5 10.0

UMAP 1

LP = Limb position
= Limb velocity
= Limb acceleration
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AR = Action Recognition
= Torque

70



Task-trained models predict neuron dynamics!

* For all 16 hypotheses, if a computation is better learned on synthetic, passive spindle data, then the
model also generalizes better to neural data

* Neural data (in the active case) is best explained by the hypothesis that proprioception is optimized to
encode the location and velocity of the body (irrespective of coordinate framework (hand or limb)

* Lack of evidence for hierarchical processing; this suggests that proprioception even in the brain stem is
dominated by efference copies ...

ACTIVE PASSIVE

[P mary n::; ryJ [Primarylr son:at oooooo ryJ
{ T ) N Center-out reaching [ T ] N Passive perturbation

Thalamus Thalam

’P f i_ ’P x ’ x %‘ i
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r f
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Slide courtesy of A. Mathis
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