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SUMMARY
A central principle in neuroscience is that neurons within the brain act in concert to produce perception,
cognition, and adaptive behavior. Neurons are organized into specialized brain areas, dedicated to different
functions to varying extents, and their function relies on distributed circuits to continuously encode relevant
environmental and body-state features, enabling other areas to decode (interpret) these representations for
computing meaningful decisions and executing precise movements. Thus, the distributed brain can be
thought of as a series of computations that act to encode and decode information. In this perspective, we
detail important concepts of neural encoding and decoding and highlight the mathematical tools used to
measure them, including deep learning methods. We provide case studies where decoding concepts enable
foundational and translational science in motor, visual, and language processing.
INTRODUCTION

Imagine sitting at a piano reading the sheet music, taking in the

dark notes on the crispwhite page of Rachmaninoff’s PianoCon-

certo No. 2. You have a mental (internal) model of how the piano

works; thus, the task for your brain is how to translate the notes

into motor actions. The tactile sensation of the keys provides

critical proprioceptive feedback, and your auditory senses are

heightened as they immerse themselves in the melodic contours

and harmonic progressions, listening intently to each note as you

play and hum along. From this multi-sensory input, you

constantly refine your next movements that ultimately create

the rich tapestry of a motor skill in action. This scenario show-

cases the brain’s ability to both encode sensory stimuli and

decode this representation into meaningful actions while modu-

lating your play with memories and emotions.

Within the brain, sensory areas must encode stimuli, such as

the edges and dark contrast of the notes on the page, and down-

stream areas must decode these features to build an internal

model of yourself and the environment,1 transforming the statis-

tical spiking properties of input neurons to construct new useful

representations within other neurons (Figure 1A).2 For example,

internal models ultimately serve to select control policies that

enable goal-directed actions,1 having integrated multi-sensory

information with the prior state of the body. Collectively, this pro-

cess of neural encoding and decoding lies at the heart of one
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fundamental question in neuroscience: that is, how the brain

computes to perceive, act, and learn.

‘‘Decoding the brain’’ therefore has two meanings: one, as

described above, is how neural dynamics decode and transform

incoming information across distributed circuits to represent

meaningful information about sensory and other task stimuli

(Figure 1A). The other is how we can build ‘‘decoder’’ algorithms

tomeasure information in thebrain (representational level analysis)

and use it for translational approaches like brain-computer inter-

faces (BCI)8,9 (Figure 1A), but this does not necessarily link to neu-

ral mechanisms. Nonetheless, both avenues require recording

from neurons and transforming action potentials (or other signals

gleaned from fMRI, electroencephalogram [EEG], etc.) into

lower-dimensional representations of the data or latent factors.

However, the inherent challenge lies in the brain’s complexity,

from its vast scale to the intricacies of its internal language, span-

ning from the 302 neurons in aworm to the 80 billion in the human

brain.10 Fortunately, technological advances allow us to record

from large numbers11,12 of neurons and build powerful machine

learning models.13,14 Deciphering the neural code involves grap-

pling with non-linear, dynamic systems distributed across brain

regions, functioning across temporal scales to integrate past ex-

periences, the current state, and future predictions.

A significant challenge of decoding is determining the neces-

sary dataset scale and even timescale to train and evaluate the

performance and generalization of the learned model. Namely,
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Figure 1. Encoding-decoding across scales
(A) An encoder represents the neural response of
population KðtÞ to stimulus xðtÞ via PðKjxÞ, and a
decoder aims to recover xðtÞ given the neural ac-
tivity KðtÞ via PðxjKÞ.
(B) Systems neuroscience spans scales of de-
scriptions and decoding algorithms can target any
individual level and even span across scales. Here,
we outline example scales (from genes to envi-
ronment), the types of data we can collect (from
genetic sequencing to whole-animal video anal-
ysis), and the classes of models the field has
developed. On the far right is our mapping of
scales, example data, and example tools to levels
of understanding. Inset images adapted from: Tuia
et al.,3Wang et al.,4 Livet et al.,5 Dura-Bernal et al.,6

and Jumper et al.7
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for constructing a decoder for BCI applications in motor control

or language, for example, shorter time bins of spiking data from

local neuronal populations are likely sufficient. However, learning

hierarchical behavioral representations that span orders of

magnitude in both time (from seconds to years) and space

(from local environments to the entire world) in order to build

foundational internal world models for downstream decoding

tasks definitely requires richer, larger datasets. These datasets

should ideally encompass recordings from individual neurons

to the entire brain across multiple timescales (Figure 1B).
In this perspective, we begin by review-

ing core principles of neural encoding-

decoding and essential mathematical

concepts and discuss work on using

data-driven and normative machine

learning models. Then, we provide case

studies that highlight aspects of how neu-

ral decoding canallow for translational and

foundational insights into the neural code.

Lastly, we argue that ultimately the field

should move toward causal modeling

that allows us to infer and test causality

in neural circuits.

NEURAL ENCODING

Decoding information from neural activity

hinges on the assumption that the infor-

mation is, in fact, encoded by the neural

population in the first place (Figure 1).

Thus, we begin by covering neural encod-

ing principles, as it serves as a foundation

for our understanding of how neurons

encode information and how we interpret

neural activity. Foundational research

involving frogs, cats, mice, non-human

primates, and humans has demonstrated

that neurons convey information through

their action potentials. As neuroscientists,

we develop encoding models to quantify,

from an information-theoretic perspec-

tive, the extent to which neural activity
can be explained by externally observable or internally estimated

variables.15,16

From a mathematical perspective, an encoder represents the

neural response of population K to stimulus (or event) x:

PðKjxÞ (Equation 1)

Here K is a vector representing the activity of N neurons, and

each entry represents, e.g., the number of spikes in some time

bin or the rate response of that particular neuron. Fundamentally,
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this statistical relationship summarizes how a group of neurons

respond to an event x. As we discuss, there are different ap-

proaches for estimating these models.

Techniques such as linear regression, generalized linear

models (GLMs), and artificial neural networks (ANNs) enable us

to assess how individual neurons encode information.16–24 This

understanding is crucial because it forms the basis for construct-

ingmodels of neural population dynamics, whether through pop-

ulation vectors, latent factor dynamical systems, or sophisti-

cated hierarchical neural network models (which will be

discussed in depth below).

In brief, linear regressionmodels provide a basic framework by

predicting neural responses through a linear relationship with

stimulus features, while GLMs offer more flexibility by accommo-

dating non-normal response distributions and non-linear link

functions, making them well-suited for a broader range of neural

data.17,18 To quantify the amount of information neural re-

sponses convey about stimuli, information theory models such

as mutual information are utilized, offering a measure of predic-

tive accuracy without assuming a specific relationship form.

ANNs consist of (multiple) layers of simplified (computational)

neurons, whose connectivity patterns mimic the hierarchical,

integrative properties of biological circuits. They are universal

function approximators25 and thus have emerged as powerful

non-linear encoding models.19–24

DECODING WITHIN THE BRAIN

Once information is encoded, downstream areas must integrate

information from upstream ensembles of neurons. For example,

when reading the sheet music, the retina processes photons,

and retinal ganglion cells transmit activity via the lateral genicu-

late nucleus to primary visual cortex. Even at the level of the

retina, encoding and decoding approaches have been powerful

to better estimate the variance in neural responses.17

The information encoded by specific groups of neurons, such

as local contours in an early visual area of the visual hierarchy like

V1 (although not all),26 is processed or decoded by downstream

neurons in higher visual areas like V4 to transform information

and encode higher-order features like contours or textures.23,27

Therefore, from the brain’s point of view, neurons are encoding

new information (i.e., representing specific latent world vari-

ables) by decoding and transforming information from upstream

neurons. The encoding-decoding process must be thought of as

two sides of the same coin, where neurons encode, transform,

and process information from upstream neurons to more easily

decode high-level relevant features of the world and drive

behavior. Of course, sensory information cannot increase along

a processing hierarchy, and thus all information about the visual

world at a given instance is in the photon patterns impinging on

the retina. However, the question lies in the simplicity of the

decoder to extract relevant information, both from the experi-

menter’s point of view and downstream neurons.20,28

For instance, the representation of a specific friend under all

possible poses, lighting conditions, clutter, scales, etc., is en-

coded in the patterns of activity in the retina, forming a non-linear

neural manifold embedded in a high-dimensional space. Howev-

er, decoding or extracting the identity of that specific friend from
5816 Cell 187, October 17, 2024
all other possible images in a generalizable way requires a com-

plex, non-linear decoder at the level of the retina.28 In contrast,

neurons in the inferotemporal (IT) cortex may allow for simpler

decoding, potentially even with a linear decoder.20,22,29 This pro-

gression through the visual processing hierarchy illustrates the

shift from implicit to explicit encoding of information.20,28 Early

visual processing involves implicit encoding that does not

directly convey object identity, whereas higher visual areas like

the IT cortex provide more explicit representations tied to iden-

tifiable objects, making them easier to decode and more ‘‘hu-

man-interpretable.’’ This view is, of course, oversimplified, as

the visual cortex contains abundant redundant reciprocal con-

nections, and this yin-yang of encoding and decoding is not sim-

ply done in a feed-forward manner.

One elegant line of work on how neurons might decode up-

stream spikes comes from studies on decision-making in rodents.

Watabe-Uchida, Uchida, and colleagues have shown that dopa-

minergic neurons in the ventral tegmental area (VTA) encode

reward prediction errors (RPEs), and GABAergic neurons encode

a function akin to the estimated state value.30 Notably, this maps

exceedingly well to reinforcement learning algorithms.30,31 Then,

to address how dopamine neurons come to compute these

RPEs, they measure their anatomical ‘‘inputome,’’32 and go on to

record from these upstream neurons to find partially computed

RPEs,33 suggesting that dopamine neurons must decode these

partially computed RPEs and inputs from GABAergic neurons in

order to fully compute then broadcast RPEs.34 This elegant

example highlights how theoretical models and the neural decod-

ing framework allow us to estimate what neurons decode in order

to compute. Moreover, it offers us a mathematical framework to

formalizemapping neural representations to neural computations.
NEURAL DECODING: MATHEMATICAL PRINCIPLES

As outlined, information processing in the brain can be concep-

tualized (in a simplified fashion) as a series of cascading encod-

ing-decoding operations. Through these operations, the brain

extracts relevant information from the environment, transforms

it, and ultimately uses it to guide behavior. Decoding models

serve as powerful tools in this context. This section goes into

the mathematical principles of these decoders.

Consider a population of neurons encoding a stimulus x as

described by Equation 1: PðKjxÞ. A natural question to ask is

can we predict x from a spike count vector K? The aim of a

decoder is to predict x from the neural response K. Mathemati-

cally, a decoder is a function that maps K to some estimate
bxðKÞ. Naturally, many different decoders are possible, and we

first describe one of the simplest—the linear decoder—in more

detail. A linear decoder combines the activities of the different

neurons in a linear fashion, i.e.,

bxðKÞ = w1$K1 +w2$K2 +.+wN$KN; (Equation 2)

where the differentwi are weight vectors that indicate howmuch

the activity of neuronKi contributes to the estimate. This decoder

is biologically plausible, as it is rather natural to think of neurons

to linearly combine their inputs.
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A particularly instructive and simple example is given by the

cercal system of the cricket.35 The cricket has four neurons

that integrate information of hair cells that are responsive to

planar wind (Figure 2A). By combining their activity in a linear

fashion, one can estimate the wind direction in a simple and

effective way (Figure 2B). This linear combination is commonly

called population vector, i.e., the weighted sum of the activity

of all neurons. We will later see that the population vector en-

ables strong movement decoding in primates,36 and that linear

decoders are essential for assessing learned representations

of models (linear probing). Furthermore, linking to the earlier

example, object identity can be accurately decoded from IT

but not from upstream brain areas with linear decoders.20,29

Another simple yet powerful decoder is given by the k-nearest

neighbors (k-NN) algorithm (illustrated in Figure 2C). Consider L

recorded neural responsesKl each associated with a stimulus xl:

ðx1;K1Þ; ðx2;K2Þ;.ðxL;KLÞ. To decode the stimulus from a new

trial with neural response K, the 1-NN algorithm finds the neural

pattern Kj, which is closest to K, and assigns the new trial to the

corresponding stimulus xj (Figure 2C). In the more general case,

one considers the k-NN and can also average their events.

Bayesian decoders directly use the probabilistic encoding

model.16,37 Concretely, a Bayesian decoder uses Bayes’ theo-

rem to compute the probability that, given a response K, the

stimulus x was presented. Mathematically, let PðxÞ denote the

probability of a stimulus x and PðKjxÞ the conditional probability

of obtaining the population response K given the stimulus x (as in

Equation 1; illustrated in Figure 2D). Bayes theorem states that:

PðxjKÞ =
PðKjxÞ$PðxÞ

PðKÞ ; (Equation 3)

with PðKÞ =
P
x
PðKjxÞ $PðxÞ. Using this expression of the poste-

rior probability PðxjKÞ, we can predict the most likely stimulus:

the x that maximizes PðxjKÞ. Bayesian decoders such as the

naive Bayes decoder have been popular for position decoding

from hippocampal activity, and here one can utilize priors repre-

senting the a priori expected location of the animal.38 Another

classic decoder builds on the Kalman filter39 and allows levering

the dynamics of the system.

How can we assess the quality of a decoder? For a continuous

variable, like wind direction, we can just check howwell it recon-

structs the original stimulus x:

EK�PðKjxÞ k bxðKÞ � xk2; (Equation 4)

where we average over samples K.16 This is the variance of the

decoder. We think that one particular decoder is better than

another decoder if it has a lower variance or, in other words, if

it is more accurate at estimating x from the neural response of

the population.

Given the large number of potential decoders, establishing

lower bounds to the variance is crucial to studying theoretical

components of representations. The Cramèr-Rao inequality

serves exactly this purpose. It states that the variance of any un-

biased estimator can be bound from below by the inverse Fisher

information.16 Notably, the Fisher information can be calculated
directly from the encodingmodel,PðKjxÞ, enabling the extraction

of valuable insight for simple tuning curves (such as parameter-

ized place and grid cells) within this framework.40,41 For an excel-

lent review on this topic, see Kriegeskorte and Wei.42

However, in many instances where the encodingmodel PðKjxÞ
is complex or not even explicitly known, calculating the posterior

probability PðxjKÞ is computationally challenging. As we discuss

next, this is where data-driven and normative models, taking

advantage of machine learning, can learn powerful statistical

models to facilitate decoding.

DATA-DRIVEN MACHINE LEARNING

As delineated above, the key to a good decoder algorithm is a

solid encoding model. There are several approaches to do so,

namely data-driven or task-driven models. Data-driven decod-

ing approaches, which we cover in this section, build powerful

statistical models to assess how stimuli or behavior are encoded

in neural activity, not necessarily focusing on mechanistic real-

ism (Figure 3). Concretely, by mechanistic models, we mean

they aim to model the biological basis of a given neural function,

such as the Hodgkin-Huxley model.43

Historically, data-driven models were hindered by, one, the

lack of large-enough datasets, but modern methods allow for

single-neuron resolution of nearly 1 M neurons at a time,11 and

two, modeling approaches that could combine data across ses-

sions and animals without averaging data.13,14 Combined, this

paradigm shift now greatly enables data-driven modeling ap-

proaches capable of capturing the complexity of high-dimen-

sional population activity while remaining computationally

feasible.

Two main categories of data-driven statistical models have

emerged in neuroscience: fully observed models and latent var-

iable models.14,48–53 Fully observed models, such as GLMs and

vine copula models, strive to explicitly delineate the interactions

among neurons by directly modeling the joint activity of the pop-

ulation, operating under the assumption that the recorded pop-

ulation encompasses all relevant neuronal activity without the

need to account for unrecorded neurons contributing to the neu-

ral manifold. On other hand, latent variable models, which wewill

mostly focus on, infer hidden (i.e., latent) variables that capture

the underlying structure of the observed neural data through a

joint probability distribution, acknowledging the possibility that

unrecorded neurons or other unseen factors may contribute to

the observed data. The goal of both approaches is to measure

how much information, often measured through decoding or

other information-theoretic approaches, about a given stimulus

or behavior is captured by a model.

Given the intractability of modeling the entire space of neural

activity, fully observed models rely on efficient descriptions of

neuronal dynamics, often a priori ascribing the dynamics for

simplicity.51,54 On the other hand, latent variable models operate

under the assumption that population activity is typically con-

strained on a low-dimensional manifold and can be summarized

by a compact set of variables known as latent factors (or var-

iables).55

How can we extract neural latents? Classic dimensionality

reduction techniques such as principal-component analysis
Cell 187, October 17, 2024 5817



Figure 2. Encoding model and decoding methods
(A) The cercal system of the cricket has four interneurons that represent the wind direction. The preferred wind directions of the neurons are pointing in four
cardinal directions and can be represented by orthogonal vectors (on the left). Each neuron responds with a firing rate approximated by a half-wave rectified
cosine function. The maximum firing rate is elicited when the wind is blowing in the preferred direction.
(B) The wind direction x can be decoded as the direction of the population vector bx. This vector is the sum of the four preferred orientations scaled by their firing
rate. An example is shown for neurons responding with activity ½36; 12; 2;1�T . Note how the population vector closely matches the wind direction.
(C) In the k-nearest neighbors (k-NN) decoding method, neural activity K is represented within a neural activity space, which is illustrated here in 2D for two
neurons for clarity (neuron 1 and neuron 2 from A). With these two neurons, angles between 0� and 225� can be represented. For simplicity, we focus on an NN
variant with k = 1. As 1-NN is only able to decode discrete variables, we classify the angles in three ranges: 0�–45�, 45�–135�, and 135�–225�. Previously
observed trials are color-coded by their associated wind direction ranges (L = 13). To decode the wind direction for a new trial (unfilled triangle), the k-NN (here,
k = 1) in the activity space are identified. The decoded wind direction corresponds to the wind associated with the NN, highlighted by the sample connected to
the observed sample via a dashed line.
(D) Bayesian decoders incorporate a priorPðxÞ (dashed line) that reflects the probability of different wind directions before taking neural evidence into account and
influences the decoded angle. For instance, if mainly wind directions around 125� have been experienced (mean of the prior PðxÞ), the decoded angle will be
shifted toward this direction. The likelihood PðKjxÞ (green-blue line) describes the probability of observing a particular neural response K given a specific wind
direction. Following Bayes’ theorem,9 the prior PðxÞ and the likelihood PðKjxÞ are multiplied to obtain the posterior distribution PðxjKÞ (solid black line). The
posterior can be used to decode the wind direction, here 270�, based on the highest value for the observed neural activity K.
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(PCA)56 and independent component analysis (ICA)57 simplify

neural data by revealing the underlying (linear) structure essential

for understanding the stimuli that are encoded. Of note, while

such linear methods enhance interpretability, they often sacrifice

performance andmay over-estimate the true dimensionality.58,59

A correct estimation of the intrinsic dimensionality is arguably

critical for scientific interpretability. Namely, our aim is to reduce

the dimensionality of the high-dimensional neuronal space into a

latent space of reduced dimensions where the geometry of the

latent space is interpretable with respect to behaviorally mean-

ingful features like objects, actions, decisions, cognitive states,

etc. Emerging frameworks have successfully illustrated this in

many different domains.14,59–63
5818 Cell 187, October 17, 2024
These latent factors are the mathematical representation un-

derlying dynamics that give rise to the observable data (spikes)

that we can directly record (Figure 4A). Thus, rather than explic-

itly modeling neuron correlations, these models capture

neuronal relationships through the activation of these latent fac-

tors, often through non-linear machine learning approaches

such as variational auto-encoders (VAEs),64 or contrastive

learning.14,65,66 The aim of these methods is to generate a latent

space, or so-called embedding, that captures the variance of the

observed neural data within a smaller number of factors. This is

akin to a dimensionality reduction procedure.

With those frameworks, complex, non-linear relationships

between stimuli and neural responses can be assumed.



Figure 3. Data-driven models: Statistical power vs. mechanistic re-

alism
Ultimately, as a field, we want to map mechanism to computation in order to
have causal, testable models. On one side we have mechanistic models, and
on the other statistical models that aim to best encode neural dynamics, but
there is a large gap between them. We provide a non-exhaustive selection of
contributions: Schneider et al., 14 Pillow et al.,17 Lange et al.,37 Hodgkin and
Huxley,43 Jones et al.,44 Bernaerts et al.,45 Chen et al.,46 and Chen et al.47
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ANNs are particularly useful for quantifying non-linear relation-

ships in neural data.13,19,20,26,29 Recent strides in non-linear

disentangled representation learning and self-supervised

learning have paved the way for new methods that can be

jointly applied to behavioral and neural recordings,65,67 unveil-

ing meaningful lower-dimensional neural population dynamics.

Recently, a new dimensionality reduction method called CE-

BRA introduced a new paradigm for joint modeling of time-

series data with a generalized contrastive learning algorithm14

(Figure 4A). Critically, the data-sampling scheme (the selection

of ‘‘positive’’ samples of paired ðx;KÞ data vs. the ‘‘negative’’

samples that are ultimately contrasted against, f) and the

model optimization (minimally denoted by fð$; $Þ) are directly

linked such that the resulting latent factors can be interpreted

based on the input auxiliary variables (such as behaviors

[kinematics], animal identification, rewards, estimated internal

states, etc.).

Given an auxiliary variable x, such as the continuous position

of an animal, and neural data K, one can select the positive dis-

tribution (samples) of paired data, pðxjKÞ, to explicitly test the

relationship of the auxiliary variable to the neural data. This is

then contrasted with a negative distribution qðxjKÞ to optimize

an ANN. It was empirically shown that if x does not influence

K, the model cannot falsely fit the data (in fact, it collapses on

the manifold used for training14). Thus, this method can be

used to construct data-driven models that allow for hypothesis

testing, and this model can be simply linked to a decoder algo-
rithm of choice for downstream use, whether for BCIs or for inter-

pretation of the latent variables.14,68,69

Note, the goal of this contrastive approach, in comparison to

auto-encoders (like VAEs), is not to reconstruct the input data

(i.e., spikes) but rather invert the data generating process to

extract latent variables that give rise to the recorded data

(whether from spikes, fMRI, ECoG, or calcium imaging14,68). A

promising direction of this work is to interrogate how neurons

across time contribute to latent variables.69 Here one can build

on advances in interpretable machine learning. Moreover, we

can begin to derive the underpinning ordinary differential equa-

tions (ODEs) that govern the latent representation.46,47,70 Criti-

cally, this approach could be additionally merged with normative

approaches (see below) in order to ultimately link mechanistic to

statistical approaches to build causal models (Figure 3).

NORMATIVE, TASK-DRIVEN MACHINE LEARNING

Normative models address the question of why a system ex-

hibits particular features,71,72 aiming to better link mechanism

to function. For example, Horace Barlow proposed the efficient

coding hypothesis, which postulates that a sensory systemmin-

imizes the number of action potentials (energy constraints) to

efficiently represent sensory information.73 One can, for

instance, deduce that simple cells emerge as a consequence

of sparsely representing natural scenes.74 Sparse coding also

explained coding properties in many other systems.

Machine learning has elevated normative modeling to new

heights in the name of task-driven modeling, where the norma-

tive principle is the goals (or computational task, i.e.,

Figure 1B) that the system is trained to achieve.20,72 It is impor-

tant to keep in mind that just 15 years ago, it was considered

challenging to train machines to recognize objects in natural

scenes.28 Yet, while robustness issues persist,75 in the mean-

time, these models are the best models at predicting the neural

representations of the ventral pathway in non-human pri-

mates.20,22 Importantly, for decoding the brain, this suggests

that we can gain insights into neural coding with a complemen-

tary approach to data-driven modeling. This approach is partic-

ularly successful in the (neural) data-poor regime.

The normative approach leverages the computational power

of ANNs to explore how neural circuits implement complex

tasks. The underlying assumption is that neural responses

emerge as an interplay of task objectives, neural circuit architec-

ture, and learning constraints. This approach involves training

models on specific tasks to test hypotheses regarding the com-

putations carried out by neural circuits. By doing so, they provide

insights into the functional significance of neural activity patterns

and their role in mediating behavior. The emerging representa-

tions are then compared neural data via linear probing, i.e.,

one checks how well the activity on test stimuli can be decoded

from the learned representations via a linear readout.20,29

This normative framework is general and has been applied

beyond vision,19–21,23,24 in studies on audition,76 propriocep-

tion,77,78 heat perception,79 and path integration.80,81 In

contrast to neural-data-heavy (data-driven) approaches, here

one needs large-scale stimulus datasets, tasks, and architec-

tures. Thus, for instance, in the context of path integration,
Cell 187, October 17, 2024 5819



Figure 4. Learnable latent variable models
On the path to building more causal models are new frameworks, such as CEBRA,14 that allow for learning a mapping from the observable data K to the latent
dynamics Z. Here, the aim is to use identifiable models with contrastive learning (the encoder), then invert this model or use another decoder framework to probe
the relationship between the estimated latents, Z1, and a variable such as an externally observable state (behavior), internal, or sensory (i.e., recover some
stimulus space (x)).
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one simply needs movement trajectories.81 In the context of

object recognition, one needs large-scale image datasets

with annotations of objects.19,20 If primary data for a particular

stimulus is not easily available, physics engines can help to

generate the relevant large-scale datasets.77,78,82 For instance,

Marin Vargas et al.78 used musculoskeletal simulators to gener-

ated synthetic proprioceptive inputs resulting from passive,

naturalistic movement at scale, which they then used to train

neural network models on computational tasks reflecting hy-

potheses about proprioception. Subsequently, they tested if

the network’s learned internal representations resembled those

of proprioceptive brain areas and found that task-driven

models could more accurately predict single-trial neural dy-

namics than classical encoding models. For the majority of

computational tasks, architectures that performed better at

solving the computational tasks based on biomechanical data

were better at explaining the neural data.78 This work highlights

that we can gain insight into neural processing via constraints

from the body, including muscles.

However, as our capabilities to scale up recording tech-

niques improve and we enter the regime of very large-scale

data in neuroscience,11 including in behaving non-human pri-

mates,83 we are beginning to see data-driven models outper-

form task-driven ones.84 This shift opens exciting research di-

rections to develop new normative models to bridge these

gaps. One such intriguing principle is the idea that biological

neural systems have evolved to reflect the symmetries of the

natural world. For example, in object recognition, translation,

scale, and 3D pose represent group symmetries or transforma-

tions that do not alter the identity of the object. In the context of

group theory, a symmetry is characterized as a transformation

that maintains the identify of an object through the relevant op-

erations. Leveraging the principle that neurons learn represen-

tations invariant to 2D translation, recent works have derived fil-

ters similar to those of V1 neurons, proposing an alternative

normative model to sparse coding that predicts the character-

istics of neurons in V1.85,86
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VISUAL FEATURE DECODING

Understanding the brain’s algorithms of visual perception re-

quires comprehending how natural visual scenes translate into

neural activity. This subject has been explored using two com-

plementary methods: encoding methods, which describe neural

responses based on the stimuli, and decoding methods, which

aim to reconstruct the visual scene or specific attributes from

neural data without learning an encoding model first.

Historically, predicting how higher-order visual neurons

respond to visual stimuli has long been an open challenge.28 Ya-

mins et al.29 proposed the task-driven modeling approach and

could substantially improve our ability to predict the neural activ-

ity of V4 and IT neurons. Subsequently, progress was fast, and

more powerful encoding models were created gaining insights

into core-object recognition in primates. This approach was

also successful for modeling neural responses to static images

in mice24,26,87 and studying how brain states modulate neuronal

tuning.88

These models have mostly focused on static images, and

learning encoding models for dynamic scenes has been a chal-

lenge. By following the data-driven foundationmodel paradigm,89

recent works have built a video encoding model that was trained

on large-scale data (> 70;000 neurons) combing data from many

mice and visual areas.90 Foundation models, by definition, are

built in order to provide a strong encoder model for many down-

stream decoding tasks. Indeed, the model improved the predic-

tive power for natural videos and many other stimulus domains

that the model was not trained on.90 It could also predict synaptic

connectivity in the MICrONS data,91 which combined functional

imaging with synaptic connectivity measured through electron

microscopy.92 Conversely, anatomy can also be used to build

better encoding-decoding models. The recent emergence of a

partial connectome in Drosophila has also already been lever-

aged in models of vision using a connectome-constrained deep

mechanistic network that was able to predict neural responses

across the fly visual system at single-neuron resolution.93



Figure 5. Examples of decoding from motor, vision, and language areas
(A) Close loop experiments using digital twins: schematic of an inception loop, depicted clockwise from the upper left: (1) presentation of large entropy natural
stimuli and tasks while recording large-scale neural activity; (2) deep learning models accurately predict neural activity, creating a functional digital twin of the
recorded neurons; (3) the in silico model facilitates unlimited experiments and employs mechanistic interpretability tools to characterize neural tuning; and (4)
images and hypotheses synthesized in silico are validated back in vivo.
(B) Illustration of decoded images from fMRI using diffusion models: ground truth (GT) vs. decoded images generated by Chen et al.96 from human fMRI with a
diffusion model. Note that decoded images share similar color, shape, and semantics.
(C)Multi-modal speech decoding: adapted fromMetzger et al.,97 this panel shows the decoding pipeline, where neural activity was used to train an ANN to predict
phone probabilities, speech-sound features, and articulatory gestures. A decoder was then constructed to produce text, generate audible speech, and animate
an avatar, respectively.
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Whenmodelingmore complex neural circuits, such as those in

the neocortex, deep learning models that lack implementation-

level details remain the gold standard. Introducing mecha-

nistic-level details of biological circuits to build more accurate

predictive models is challenging. This is formidable due to the

inherent complexity of cortical circuits and the difficulties asso-

ciated with global connectivity mapping. Moreover, even though

the architecture and elements of networks might not limit the

range of functions they can realize, they significantly influence

which function is selected during the learning process when

data is limited. This means that the inductive bias of architectural

elements is intricately linked to the learning rule, underscoring

that having the correct circuit structure may not be enough

without the appropriate learning rules to guide the model toward

better predictions.

A common criticism of using ANNs to model the brain is that

we are simply swapping one complex system (the brain) for

another (ANNs). However, unlike the brain, we have a degree

of control over how ANNs are constructed.72 While we may not
fully grasp the nuances of their capabilities, ANNs are to some

extent explainable through their architecture, task performance,

and training data. Furthermore, encoding-decoding models can

also be leveraged for closed-loop physiology experiments to

gain insights into neural coding (Figure 5A). A few years

ago, several groups made exciting breakthroughs in this

domain.26,94,95

The development of accurate predictive models of neural ac-

tivity that function as digital twins of brain circuits has opened the

door to conducting in silico experiments. These models, com-

bined with emerging tools from the field of interpretability

research (or mechanistic interpretability),98 enable the genera-

tion of hypotheses that can be tested in vivo through closed-

loop experiments (inception loops, see Figure 5A). Thesemodels

have proven effective in predicting how the brain responds to

novel images26,94,95 and have paved the way for creating syn-

thetic images that maximally activate specific neurons or selec-

tively drive a particular neuron while inactivating another

group.26,94 This approach has yielded significant insights: for
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example, evidence for a columnar organization of tuning to

spatial patterns in visual area V4,23 the characterization of sin-

gle-neurons invariances,99 and the exploration of contextual

modulations at the single-neuron level.100 Recent advance-

ments, such as the use of diffusion mechanisms, have further

improved the process of predicting the most exciting stimuli,84

offering faster and images that can generalize better across vary-

ingmodel architectures compared to earlier gradient-based.26,94

In parallel, different groups also succeeded in reconstructing

visual input from neural activity. Using CEBRA with a k-NN

decoder to predict the best matching video frame from neural

activity in the visual cortex of mice.14 The predicted frame was

close to the frame that the mice actually saw (withz 95% accu-

racy). Here, the authors did not decode images at the pixel level.

Yet several other teams, based on paired data of images and

fMRI activity, trained data-driven diffusion models to tackle this

question.96,101,102 While these demonstrated that a diffusion

model could decode realistic and semantically correct images

(Figure 5B), others have observed a significant decrease in per-

formance when applying these methods to datasets that were

specifically designed to prevent category overlaps between

training and test sets, underscoring the limitations of these

fMRI approaches.103

Taken together, the fusion of large-scale neural activity

recording with the latest advancements in machine learning

has significantly enhanced the precision of encoding-decoding

models, even in the context of higher visual processing. Although

encoding models are evaluated based on how accurately they

predict neural responses, interpreting these models and what

specific groups of neurons represent becomes complex when

dealing with natural images due to the highly non-linear nature

of neuronal tuning.

Decoding models are instrumental in translating neuronal

group activities into understandable stimulus features, such as

stimulus orientation, motion direction, or the detection of spe-

cific objects. The effectiveness of these decoding approaches

is heavily influenced by the selection of a quality metric or

training loss function, which guides the estimation of these de-

coded features. For tasks like identifying an object’s class or

the motion direction of a stimulus, the choice of loss function is

straightforward. However, when tackling more complex chal-

lenges, such as the reconstruction of whole visual scenes,

defining an appropriate loss function becomes more daunting.

Metrics based on image properties, like the widely utilized

mean-squared-error of pixel intensities, often fail to align with

how humans perceive similarity. This issue becomes particularly

pronounced when attempting to develop an effective loss func-

tion for reconstructing intricate natural scenes in higher visual

areas. These areas are proficient at extracting specific latent fea-

tures from visual scenes, including textures, shapes, colors, and

faces. However, the specific visual features encoded are not

known in advance. The key measure of success lies in the ability

of the decoded stimuli to accurately reflect the brain activity that

initiated their reconstruction, essentially creating visual equiva-

lents, or metamers, that are indistinguishable to a given neuronal

population when compared to the original image.

Lastly, in visual decision-making tasks, decoding can be very

powerful during closed-loop experiments. An elegant example is
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work from Peixoto et al.104 where the authors record from the

motor cortex during a visual discrimination (motion dot) task.

They constructed a ‘‘decision-variable’’ (DV) decoder such that

at each time step, in real time, they have a continuous readout

of the decoder’s prediction (concretely, the logistic model’s log

odds ratio) if the macaque will choose left or right. They found

that the within-trial DV fluctuations could predict behavioral

choices (starting within only 250 ms) substantially better than

the condition-averaged DV or the visual stimulus alone (and it

correlated with the strength of themotion coherence). Moreover,

analogous to the inception-loop paradigm, they used the DV to

terminate the trial at a particular DV threshold to test how accu-

rate the model was: if they terminated when the model strongly

predicted the macaque would ‘‘choice left,’’ for example, it

was over 90% accurate, suggesting that this readout frommotor

cortex was tightly linked to the perceptual decision-making of

the animal.

DECODING THE MOTOR CORTEX

The study of the motor system testifies to the diversity and evo-

lution of approaches to decode the brain: from deciphering the

role of individual neurons to decoding the computations underly-

ing motor control. Pioneering work in the early 20th century es-

tablished the fundamental link between individual neuron activity

and motor function. Singular motor neurons firing in the spinal

cord activate specific muscles directly. Upstream, in the primary

motor cortex (M1), the activity of single neurons was found to be

correlated with a range of movement-related variables,105 such

as force,106 muscle activity,107 and joint kinematics.107 Given

that layer 5 M1 neurons project directly onto spinal alpha motor

neurons (in many primates), it is expected to find the representa-

tion of low-level movement variables.

If the activity of some neurons in M1 relates to lower-level ki-

netic and kinematic features, what about others? In the 1980s,

Georgopolous and colleagues showed that the direction of

whole-armmovements in monkeys could be predicted by simul-

taneously recording frommultiple M1 neurons.108,109 They found

many neurons that are broadly tuned to a preferred direction of

hand movement. By constructing a population vector—a

weighted sum of the firing rates of multiple neurons—the direc-

tion of the hand movement can be accurately decoded (akin to

the linear decoder in Figure 2). This framework highlighted a sim-

ple mathematical relationship between the reaching direction

and population neural activity (cf. Sussillo et al.8). The population

vector approach could successfully find representations of

higher-level kinematic variables in the motor cortex.109–111

BCIs seek to build a link between neural activity and various

tools, e.g., in order to control computer cursors,112–116 robotic

arms,117–119 or prosthetic devices for paralyzed patients.120,121

Another consideration, especially for BCIs, is the impact of voli-

tional control on neural activity. Subjects have been shown to

quickly learn to optimize control bymodulating neural activity, al-

lowing for effective operation of devices like robotic arms or

functional electrical stimulation onto muscles,116,122 irrespective

of the neurons’ original encoding.

BCIs thus rely on brain decoders and are ideal for testing the

performance of different algorithms. Early BCIs primarily used
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linear decoders for extracting movement kinematics from neural

population activity.123 However, incorporating Kalman filters has

demonstrably enhanced accuracy.119,124–126 As indicated

above, the Kalman filter39 helps estimate the evolution of the

state (e.g., cursor velocity) over time and updates its estimates

according to the observations (neural recordings) and evolving

predictions. The success of Kalman filter decoders highlights a

key limitation of the classic population vector approach. While

population vectors offer a static snapshot of neural activity,

movements are inherently dynamic. Furthermore, identifying

representations of movement-related variables within a popula-

tion vector does not illuminate how either the representation or

the movement itself is generated.

The dynamical systems perspective focuses on how the state

of a neural population evolves over time. Here, the representa-

tion of a neural population is viewed as a dynamical system

that performs computations, such as generating movements,

through its temporal evolution. External inputs and intrinsic neu-

ral dynamics, which dictate how the current neural state influ-

ences the next, govern the evolution of neural activity.127,128

Let the vector KðtÞ describe the firing rates of N neurons at

time t. We can express the evolution of this vector with the

following equation

dKðtÞ
dt

= fðKðtÞ;uðtÞÞ (Equation 5)

where the vector dK
dt is the temporal derivative of K, u is a vector

describing the external inputs to the neural population, and f is a

function that defines the dynamics of the neural population.

This perspective shifted the focus from deciphering the infor-

mation encoded by the motor cortex to understanding how it

generatesmovement. Within this framework, how does Equation

5 aid in decoding the computations underlying movement con-

trol? Let’s consider the following: to execute a specific move-

ment at time tm, the neural activity, represented by KðtmÞ, needs
to reside within a certain subset of states—a specific configura-

tion of activity across individual neurons. Prior to target presen-

tation, nothing prevents the neural activity K to vary across trials.

However, as the brain prepares for movement, Equation 5 gov-

erns the evolution of KðtÞ, effectively constraining it toward the

required subspace for the intended movement. This conver-

gence toward a specific subspace manifests itself as the reduc-

tion in variability across trials. Importantly, this analysis offers

valuable insight into the computational goal of motor prepara-

tion. From a dynamical systems perspective, the goal becomes

driving the neural activity toward the subspace beforemovement

onset to produce the necessary motor commands for the

desired movement.

The dynamical systems perspective has been further lever-

aged for studying movement preparation.129–132 Kaufman and

colleagues identified distinct subspaces within the dynamics of

the overall neural population during movement preparation and

execution.133,134 These subspaceswere termed the ‘‘null space’’

and the ‘‘potent space.’’ During preparation, neural activity can

evolve within the null space without triggering unwanted move-

ment. In contrast, movement execution is characterized by neu-

ral activity primarily in the potent space, which controls muscle
activity. However, a part of the neural activity does not drive

themovement directly. Instead, it serves a supportive role in ‘‘un-

tangling’’ the neural dynamics—separating the neural states that

can result in different future behaviors.135 Further analysis of

movement-related neural activity has revealed that the dynamics

have a strong rotational component and that their phase and

amplitude are determined by the neural state reached during

movement preparation.9,54,134,136

So far, we have reviewed how the dynamical systems

perspective sheds light on experimental recordings of neural

populations. By analyzing these recordings, researchers have

been able to formulate principles governing the computations

that take place during motor preparation and generation. In par-

allel, computational models have provided valuable insights.

Data-driven models based on recurrent neural networks

(RNNs) have been used to model the system’s dynamics Equa-

tion 5. These RNNs embody abstract representations of the un-

derlying neural circuit while driving movement. For instance,

RNNs have been trained to generate dynamics of muscle activity

patterns.137,138Remarkably, evenwithout being trained to fit neu-

ral data, these models can reproduce responses from individual

cortical neurons and capture features of the observed population

dynamics.137–139 Furthermore, training RNNs on different motor

tasks can test hypotheses about the computations performed

by distinct motor areas.140,141 Additionally, RNNs have shown

promise in increasing decoder robustness to temporal varia-

tions.8,142,143 More recently, latent factors have been leveraged

to train spiking neural networks to perform two distinct motor

tasks,144 and data-driven latent variable models that use time

contrastive learning have been shown to have excellent perfor-

mance for decoding movement in sensorimotor areas.14

In the past decade, the convergence of advancements in un-

derstanding cortical dynamics and powerful machine learning

tools has opened exciting avenues for BCIs.121,143 Incorporating

latent factors and their dynamics into decoding algorithms has

improved performance.143,145,146 For instance, data-driven ma-

chine learning has played a critical role in achieving long-term

control of a four-limb exoskeleton by a tetraplegic individual us-

ing a BCI.147 Transformers, with their ability to be pre-trained on

a wide range or motor BCI datasets, offer the potential to

enhance BCI adaptability across experimental contexts.148

Beyond therapeutic applications, BCIs have emerged as

powerful tools for studying motor learning and adapta-

tion.122,149–151 In a typical setup, awake monkeys control a com-

puter cursor using their neural activity while receiving visual feed-

back of the cursor’s position.152 Unlike traditional motor tasks,

where complex and largely unknown transformations convert

cortical activity to muscle activity and movement, in a BCI, the

decoder characterizes this transformation. By manipulating

this mapping, experimenters can study the adaptation required

to compensate for the perturbation.152 For instance, it was found

that monkeys could learn to compensate for perturbations within

the original intrinsic manifold within a session, but it took many

sessions to learn perturbations that required control in directions

outside the manifold (off-manifold).150 This finding reinforces the

idea that although neural state space is high-dimensional, neural

population dynamics lives in a low-dimensional manifold reflect-

ing intrinsic constraints.
Cell 187, October 17, 2024 5823



ll
OPEN ACCESS Perspective
Beyond intrinsic constraints, the physical properties of mus-

cles, tendons, and bones as well as the sensory feedback

streams, play a significant role in determining how neural signals

create movement.153–156 Recently, a study in fruit flies has high-

lighted how the brain controls headmovements by adding a bias

to proprioceptive feedback loops.157 In a BCI setting in humans,

stimulating the somatosensory cortex to mimic tactile feedback

has been shown to improve robotic arm control.158 Going for-

ward, we need better models that incorporate biomechanics

and biophysics. Advances in biomechanics simulators159–161

and continuous control learning algorithms162–164 are being

actively combined to further address these challenges.164–168

LANGUAGE DECODING

The power of machine-learning-fueled decoding algorithms has

perhaps most clearly been illustrated for speech decoding,

where the action spaces are naturally very high dimensional.

Speech is a fundamental mode of human communication, intri-

cate in its orchestration of neural signals and motor actions.

The advent of speech neuroprosthetics promises to restore

communication capabilities by bridging the gap between neural

activity and speech production. Central to understanding

speech neuroprosthetics is deciphering the complex neural

mechanisms orchestrating speech production. From conceptu-

alization to articulation, speech involves a finely choreographed

interplay of neural circuits spanning cortical and subcortical re-

gions. Broca’s area, Wernicke’s area, primary motor cortex,

and supplementary motor area are among the key brain regions

implicated in speech and language generation. Perhaps the best

characterized so far is the motor and premotor cortices in the

precentral gyrus.169,170

The lateral aspect of the precentral gyrus features a somato-

topic organization of orofacial and unique dual laryngeal vocal-

tract articulator representations.171,172 Accumulating evidence

suggests that the precentral gyrus is not only critical for

executing but also for planning speech movements, a function

that is commonly mis-attributed to Broca’s area.173 Kinematic

analyses have revealed the encoding of dynamical, low-dimen-

sional patterns of speech movements called ‘‘gestures.’’174

One example is how the specific movements of forward tongue

raise and jaw closure are coordinated to create a ‘‘d’’ sound at

one local site in the precentral gyrus. The motor cortex contains

a complete inventory of speech-related movements to create all

of the sounds of a given language.174

The core objective of speech neuroprosthetics is to decode

neural signals associated with speech production and translate

them into intelligible output. Traditional approaches have

focused on text output and synthetic voice. This entails harness-

ing BCI technologies coupled with machine learning algorithms

to interpret neural activity patterns and reconstruct spoken

words or phrases. The first successful demonstration of speech

decoding of full words and sentenceswas carried out in 2021 in a

man with severe paralysis after a brainstem stroke.175 The effi-

cacy of speech neuroprosthetics critically hinges on the devel-

opment of robust decoding algorithms capable of discerning

nuanced patterns of neural activity corresponding to different

phonetic units. Recent strides in machine learning, particularly
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deep learning architectures such as RNNs, have propelled the

field forward by enabling more precise and efficient decoding

of speech-related brain signals.

More recent BCI approaches decode subword linguistic units,

such as phonemes or characters, rather than individual words or

sentences. This is a common technique in automatic speech

recognition where language models—trained to capture the sta-

tistical patterns of subword units and words—are used to

convert decoded phoneme or character sequences into senten-

ces. Progress has been rapid with recent demonstrations of fast

and large vocabulary decoding. The approaches leveraged RNN

models trained to map an input sequence of neural activity to an

output sequence of phonemes without the need for any align-

ment.97,176 Language models then mapped decoded phoneme

sequences into text words and sentences.

Metzger et al.97 also used a similar approach to decode neural

activity into synthesized speech; however, rather than regressing

the acoustic mel-spectrogram, they decoded input sequences

of neural activity into output sequences of discrete acoustic-

speech units. During training, a large self-supervised audio

model (HuBert177) was adapted to convert target waveforms

(generated from a text-to-speech model) into sequences of

discrete acoustic-speech units (Figure 5C). During online infer-

ence, the decoded discrete acoustic-speech unit sequences

were decoded into intelligible sentence-level speech. They first

used this voice-conversion approach to personalize synthesized

speech for an individual with vocal-tract paralysis using speech

samples recorded before the injury.97

While still in its nascent stages, speech neuroprosthetics hold

immense potential for revolutionizing the rehabilitation and

communication landscape for individuals with speech impair-

ments.178 Beyond restoring speech functionality, these neuro-

technological innovationsmay pave the way for novel therapeutic

interventions targeting a range of neurological disorders affecting

speech and language. However, several challenges, including

achieving high decoding accuracy, minimizing invasiveness,

and ensuring long-term reliability, warrant further investigation

to realize the full clinical potential of speech neuroprosthetics.

TOWARD CAUSAL MODELS

Overall, encoding-decoding has been a powerful mathematical

framework that enables understanding perception, action, and

cognition, as illustrated by several examples. But there are still

challenges and opportunities ahead for better understanding

the brain and building better BCI decoders.

One major thrust toward this challenge will be coming from

foundation models.89 Training large models on diverse data

gives rise to stupendous capabilities, and those models can be

adapted for many tasks relevant for neuroscience, such as

behavioral analysis via in-context learning179 and speech recog-

nition.180 As we outlined above, within neuroscience, training

large-scale models on data from many studies will also open

up many possibilities.

Furthermore, we are advocating for advancingmodels that are

mechanistic (biologically plausible) and statistical (can account

for neural data) at the same time (Figure 3). Encoding-decoding

models lie at the heart of this pursuit. As we have summarized,
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neuroscience has created many powerful statistical models of

brain function for vision, motor control, and language. Beyond

neuroscience, advances in machine learning have led to models

with high explanatory power grounded in statistical learning the-

ory.181 Next, we illustrate this envisoned future via examples.

What all examples have in common is that these models have

good (statistical) explanatory power while being grounded via a

mechanism from the lower level(s) of analysis (Figure 1B).

One excellent avenue is exploring the relationship between

neural physiology and gene expression, which naturally describe

a neuron at different levels, but are linked via biophysical mech-

anisms such as ion-channel models.43,45 Indeed, recent work

created mechanical ion-channel models that can be constrained

statistically from transcriptomics data (called NPE-N), thus also

linking across scales (Figure 1B). Given that (classically) neuronal

cell types are characterized via their anatomical and physiolog-

ical characteristics, single-cell transcriptomics continues to

refine our taxonomies of cell types.182

Another interesting example is studying the conditions under

which hexagonal firing fields emerge in RNNs that were trained

to path integrate.81 Classical mechanistic models for path inte-

gration are built on attractor models.183 The connectivity of these

models is designed to allow path integration. Remarkably, the

normative models learned similar mechanisms to represent the

location of animals (via center-surround connectivity), and to

integrate movement updates (via shift circuits). They also pro-

vide a mathematical mechanism, grounded in pattern formation

theory, why hexagonal tuning curves emerge in the abstract ANN

models.81

How might we continue to push further? Combining statistical

models and mechanistic models may require new mathematical

tools. Relevant approaches are being developed in other fields

such as in causal machine learning. Schölkopf and von Kügel-

gen184 propose using causality to build systems that do not

only rely on statistical dependencies of data and that generalize

better to out-of-distribution examples. In particular, causal rep-

resentation learning aims to extract the relevant causal variables

from data and learn representations that contain not just statis-

tical information but support interventions, reasoning, and plan-

ning.We can think of this approach as an extension of the classic

latent variable analysis. Indeed, just as with latent variables, we

can apply a decoder to the causal variables to extract the rele-

vant behavioral variables. However, causal variables also come

with the corresponding mechanisms and a causal graph that

captures the relationships between each other. Concretely, let

X1;.;Xd be some experimental variables (with some of them

corresponding to neural data K for different brain areas, others

to sensory inputs, and motor outputs)—they possess a causal

factorization:

pðX1;.;XdÞ =
Yd
i = 1

pðXijPAiÞ; (Equation 6)

where PAi denotes the direct causes of Xi and pðXijPAiÞ repre-
sents the mechanisms of the model. Although learning this

causal factorization from the recorded data is a challenging

task, if we have some knowledge of the causal structure (which
variable is caused by which) then only the mechanisms need to

be inferred.185 As the relevant behavioral variable x can be de-

coded from the causal variables x = gðX1;.; XdÞ, the causal

factorization can ultimately link the mechanisms with behavior.

Although this approach is promising and has already generated

concrete tools for machine learning (causal auto-encoders, self-

supervised causal representation learning, or independent

mechanism analysis), it might take further refinements to apply

to the field of neuroscience.186,187

Another avenue to explore is merging learning dynamical sys-

tems (such as ODEs or physics-informed neural networks

[PINNs], see below) with latent variable models. Historically, in

latent variable models, the dynamical system has been a priori

ascribed to the generative model.51 One notable exception is

CEBRA,14 where the authors explore the implicit dynamics of

the learned latent variables but do not explore the explicit equa-

tions that best model the latents. A potential challenge could be

having several sets of differential equations (solutions), even for

these theoretically identifiable models.

Here, we can turn to a recent success within the machine

learning field regarding modeling dynamical systems via neural

ODEs (N-ODE).46 Yet, despite N-ODE’s success in fitting tempo-

ral data for various applications like forecasting, control, and

system identification, the approach lacks interpretability, as

one simply gets a neural network that fits the data.

Another important direction is building knowledge into neural

network models, e.g., via PINNs, which offer a different

approach to bridge the gap between data-driven decoding of

brain activity and understanding the underlying mecha-

nisms.188,189 Unlike traditional black-box models (in machine

learning), PINNs can incorporate physics knowledge, such as

biomechanics or neural dynamics, as constraints during training.

By combining the data-fitting power of ANNs with physical con-

straints, PINNs are guided toward solutions that align with real-

world principles. This not only enhances model interpretability

but also allows PINNs to achieve good performance even with

limited data. Furthermore, these physical constraints promote

better generalization to unseen scenarios and offer mechanistic

insights into the decoded information by revealing the potential

processes at play. Demonstrating remarkable success in

modeling physical systems,190–192 and, more recently, biological

processes,193,194 PINNs hold promise for understanding neural

mechanisms. For instance, recent work has developed models

of muscle spindles that can accurately predict neural dynamics

while also including biophysical mechanisms.195 By bridging

the gap between biomechanics and neural dynamics, this model

offers a comprehensive understanding of muscle spindle func-

tion as adaptable signal processors in sensorimotor control.

Historically, differential equations provided the gold standard

for understanding a system. Thus, an alternative method is sym-

bolic regression (SR), which provides human-readable mathe-

matical expressions directly from data and has recently shown

some success in (re-)discovering natural laws.196,197 SR has

mostly been used for discovering fðxÞ from paired observations

ðx; fðxÞÞ but has been extended for dynamics (ODE _x = fðxÞ),
even with multi-modal and noisy data.70 Here, transformers

can be trained to predict the differential equation from raw

data alone.70 This approach, called ODEFormer, reaches
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state-of-the-art performance on a number of classic problems,

such as Lotka-Volterra, a binocular rivalry model, a cell cycle

model, or a Van der Pol oscillator.70

Ultimately, we would like to build meaningful ‘‘standard

models’’ for causal understanding that link statistical firing prop-

erties of neural populations to their underlying mechanisms. A

formidable goal would be to develop the neural dynamics equiv-

alent to gold standards in physics, such as Newton’s laws of

motion.

CONCLUSIONS

Where will we be in 50 years?
The progress of machine learning in the last year alonemakes it a

daunting task to look 50 years ahead. Yet, the future certainly will

be a place where we can build powerful causal models that pre-

dict across scales. Thus, we must consider how the framing of

causal encoding-decoding can be natively built into foundation

models for (Neuro)Science. Current efforts to build foundation

models revolve around tokenizing a multitude of datatypes,

leveraging GPT-4-style (inferred) training with human alignment

and reinforcement learning. The goal is to build good ‘‘next pre-

diction’’ models for all these datatypes in relevant downstream

tasks. However, the future might dig deeper: can we build fully

mechanistic models that predict, behave, or even show signs

of cognitive, compositional thinking? Perhaps this hinges on

what the ultimate tasks will be for GPT-42 (or such). This answer

will lie in the values of society 50 years from now and our under-

standing of the neural mechanisms that give rise to action,

perception, and cognition.
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