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SUMMARY

A central principle in neuroscience is that neurons within the brain act in concert to produce perception,
cognition, and adaptive behavior. Neurons are organized into specialized brain areas, dedicated to different
functions to varying extents, and their function relies on distributed circuits to continuously encode relevant
environmental and body-state features, enabling other areas to decode (interpret) these representations for
computing meaningful decisions and executing precise movements. Thus, the distributed brain can be
thought of as a series of computations that act to encode and decode information. In this perspective, we
detail important concepts of neural encoding and decoding and highlight the mathematical tools used to
measure them, including deep learning methods. We provide case studies where decoding concepts enable

foundational and translational science in motor, visual, and language processing.

INTRODUCTION

Imagine sitting at a piano reading the sheet music, taking in the
dark notes on the crisp white page of Rachmaninoff’s Piano Con-
certo No. 2. You have a mental (internal) model of how the piano
works; thus, the task for your brain is how to translate the notes
into motor actions. The tactile sensation of the keys provides
critical proprioceptive feedback, and your auditory senses are
heightened as they immerse themselves in the melodic contours
and harmonic progressions, listening intently to each note as you
play and hum along. From this multi-sensory input, you
constantly refine your next movements that ultimately create
the rich tapestry of a motor skill in action. This scenario show-
cases the brain’s ability to both encode sensory stimuli and
decode this representation into meaningful actions while modu-
lating your play with memories and emotions.

Within the brain, sensory areas must encode stimuli, such as
the edges and dark contrast of the notes on the page, and down-
stream areas must decode these features to build an internal
model of yourself and the environment, transforming the statis-
tical spiking properties of input neurons to construct new useful
representations within other neurons (Figure 1A).? For example,
internal models ultimately serve to select control policies that
enable goal-directed actions,’ having integrated multi-sensory
information with the prior state of the body. Collectively, this pro-
cess of neural encoding and decoding lies at the heart of one

5814 Cell 187, October 17, 2024 © 2024 The Author(s). Published by Elsevier Inc.

fundamental question in neuroscience: that is, how the brain
computes to perceive, act, and learn.

“Decoding the brain” therefore has two meanings: one, as
described above, is how neural dynamics decode and transform
incoming information across distributed circuits to represent
meaningful information about sensory and other task stimuli
(Figure 1A). The other is how we can build “decoder” algorithms
to measure information in the brain (representational level analysis)
and use it for translational approaches like brain-computer inter-
faces (BCI)®? (Figure 1A), but this does not necessarily link to neu-
ral mechanisms. Nonetheless, both avenues require recording
from neurons and transforming action potentials (or other signals
gleaned from fMRI, electroencephalogram [EEG], etc.) into
lower-dimensional representations of the data or latent factors.

However, the inherent challenge lies in the brain’s complexity,
from its vast scale to the intricacies of its internal language, span-
ning from the 302 neurons in a worm to the 80 billion in the human
brain.'® Fortunately, technological advances allow us to record
from large numbers'""? of neurons and build powerful machine
learning models.'®'* Deciphering the neural code involves grap-
pling with non-linear, dynamic systems distributed across brain
regions, functioning across temporal scales to integrate past ex-
periences, the current state, and future predictions.

A significant challenge of decoding is determining the neces-
sary dataset scale and even timescale to train and evaluate the
performance and generalization of the learned model. Namely,
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Figure 1. Encoding-decoding across scales

A Encoding and decoding models (A) An encoder represents the neural response of
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Decoding model ~—— decoder aims to recover x(t) given the neural ac-
tivity K(t) via P(x|K).
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Brain Functional imadi Lastly, we argue that ultimately the field
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TR (optical imaging: Network A )
en institute 2p, 1p; fMRI, EEG, neuroscience that allows us to infer and test causality
opto-fMRI) in neural circuits.
System
(circuits) CNNs, RNNs,
neural- NEURAL ENCODING
transformers
Decoding information from neural activity
Neurons GLMs, latent hinges on the assumption that the infor-
(and glia) Phta;malc°'°9yv variable models mation is, in fact, encoded by the neural
atch clampin . . . .
. i population in the first place (Figure 1).
Hodgkin-Huxley Thus, we begin by covering neural encod-
ing principles, as it serves as a foundation
NotPyNE Synapses ODEs, LIF for our understanding of how neurons
encode information and how we interpret
e AlphaFold, .neural. activity. Founda.tlonal research
proteomif:s gene-regulatory involving frogs, cats, mice, non-human
mgzgﬁfés networks primates, and humans has demonstrated
\ and protein,s that neurons convey information through
AlphaFold (DeepMind) Data Tools and models their action potentials. As neuroscientists,

for constructing a decoder for BCI applications in motor control
or language, for example, shorter time bins of spiking data from
local neuronal populations are likely sufficient. However, learning
hierarchical behavioral representations that span orders of
magnitude in both time (from seconds to years) and space
(from local environments to the entire world) in order to build
foundational internal world models for downstream decoding
tasks definitely requires richer, larger datasets. These datasets
should ideally encompass recordings from individual neurons
to the entire brain across multiple timescales (Figure 1B).

we develop encoding models to quantify,
from an information-theoretic perspec-
tive, the extent to which neural activity
can be explained by externally observable or internally estimated
variables.'>'®

From a mathematical perspective, an encoder represents the
neural response of population K to stimulus (or event) x:

P(K|x) (Equation 1)

Here K is a vector representing the activity of N neurons, and

each entry represents, e.g., the number of spikes in some time
bin or the rate response of that particular neuron. Fundamentally,
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this statistical relationship summarizes how a group of neurons
respond to an event x. As we discuss, there are different ap-
proaches for estimating these models.

Techniques such as linear regression, generalized linear
models (GLMs), and artificial neural networks (ANNs) enable us
to assess how individual neurons encode information.'®* This
understanding is crucial because it forms the basis for construct-
ing models of neural population dynamics, whether through pop-
ulation vectors, latent factor dynamical systems, or sophisti-
cated hierarchical neural network models (which will be
discussed in depth below).

In brief, linear regression models provide a basic framework by
predicting neural responses through a linear relationship with
stimulus features, while GLMs offer more flexibility by accommo-
dating non-normal response distributions and non-linear link
functions, making them well-suited for a broader range of neural
data.'”'® To quantify the amount of information neural re-
sponses convey about stimuli, information theory models such
as mutual information are utilized, offering a measure of predic-
tive accuracy without assuming a specific relationship form.
ANNs consist of (multiple) layers of simplified (computational)
neurons, whose connectivity patterns mimic the hierarchical,
integrative properties of biological circuits. They are universal
function approximators®® and thus have emerged as powerful
non-linear encoding models."®>*

DECODING WITHIN THE BRAIN

Once information is encoded, downstream areas must integrate
information from upstream ensembles of neurons. For example,
when reading the sheet music, the retina processes photons,
and retinal ganglion cells transmit activity via the lateral genicu-
late nucleus to primary visual cortex. Even at the level of the
retina, encoding and decoding approaches have been powerful
to better estimate the variance in neural responses.'”

The information encoded by specific groups of neurons, such
as local contours in an early visual area of the visual hierarchy like
V1 (although not all),*® is processed or decoded by downstream
neurons in higher visual areas like V4 to transform information
and encode higher-order features like contours or textures.”**’
Therefore, from the brain’s point of view, neurons are encoding
new information (i.e., representing specific latent world vari-
ables) by decoding and transforming information from upstream
neurons. The encoding-decoding process must be thought of as
two sides of the same coin, where neurons encode, transform,
and process information from upstream neurons to more easily
decode high-level relevant features of the world and drive
behavior. Of course, sensory information cannot increase along
a processing hierarchy, and thus all information about the visual
world at a given instance is in the photon patterns impinging on
the retina. However, the question lies in the simplicity of the
decoder to extract relevant information, both from the experi-
menter’s point of view and downstream neurons.?%28

For instance, the representation of a specific friend under all
possible poses, lighting conditions, clutter, scales, etc., is en-
coded in the patterns of activity in the retina, forming a non-linear
neural manifold embedded in a high-dimensional space. Howev-
er, decoding or extracting the identity of that specific friend from
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all other possible images in a generalizable way requires a com-
plex, non-linear decoder at the level of the retina.?® In contrast,
neurons in the inferotemporal (IT) cortex may allow for simpler
decoding, potentially even with a linear decoder.?%?***° This pro-
gression through the visual processing hierarchy illustrates the
shift from implicit to explicit encoding of information.?%® Early
visual processing involves implicit encoding that does not
directly convey object identity, whereas higher visual areas like
the IT cortex provide more explicit representations tied to iden-
tifiable objects, making them easier to decode and more “hu-
man-interpretable.” This view is, of course, oversimplified, as
the visual cortex contains abundant redundant reciprocal con-
nections, and this yin-yang of encoding and decoding is not sim-
ply done in a feed-forward manner.

One elegant line of work on how neurons might decode up-
stream spikes comes from studies on decision-making in rodents.
Watabe-Uchida, Uchida, and colleagues have shown that dopa-
minergic neurons in the ventral tegmental area (VTA) encode
reward prediction errors (RPEs), and GABAergic neurons encode
a function akin to the estimated state value.*° Notably, this maps
exceedingly well to reinforcement learning algorithms.®%" Then,
to address how dopamine neurons come to compute these
RPEs, they measure their anatomical “inputome,”* and go on to
record from these upstream neurons to find partially computed
RPEs,*® suggesting that dopamine neurons must decode these
partially computed RPEs and inputs from GABAergic neurons in
order to fully compute then broadcast RPEs.>* This elegant
example highlights how theoretical models and the neural decod-
ing framework allow us to estimate what neurons decode in order
to compute. Moreover, it offers us a mathematical framework to
formalize mapping neural representations to neural computations.

NEURAL DECODING: MATHEMATICAL PRINCIPLES

As outlined, information processing in the brain can be concep-
tualized (in a simplified fashion) as a series of cascading encod-
ing-decoding operations. Through these operations, the brain
extracts relevant information from the environment, transforms
it, and ultimately uses it to guide behavior. Decoding models
serve as powerful tools in this context. This section goes into
the mathematical principles of these decoders.

Consider a population of neurons encoding a stimulus x as
described by Equation 1: P(K|x). A natural question to ask is
can we predict x from a spike count vector K? The aim of a
decoder is to predict x from the neural response K. Mathemati-
cally, a decoder is a function that maps K to some estimate
X(K). Naturally, many different decoders are possible, and we
first describe one of the simplest—the linear decoder—in more
detail. A linear decoder combines the activities of the different
neurons in a linear fashion, i.e.,

X(K) = wq-Ky+wya-Ky+ ... +wy-Ky, (Equation 2)

where the different w; are weight vectors that indicate how much
the activity of neuron K; contributes to the estimate. This decoder
is biologically plausible, as it is rather natural to think of neurons
to linearly combine their inputs.
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A particularly instructive and simple example is given by the
cercal system of the cricket.*® The cricket has four neurons
that integrate information of hair cells that are responsive to
planar wind (Figure 2A). By combining their activity in a linear
fashion, one can estimate the wind direction in a simple and
effective way (Figure 2B). This linear combination is commonly
called population vector, i.e., the weighted sum of the activity
of all neurons. We will later see that the population vector en-
ables strong movement decoding in primates,*® and that linear
decoders are essential for assessing learned representations
of models (linear probing). Furthermore, linking to the earlier
example, object identity can be accurately decoded from IT
but not from upstream brain areas with linear decoders.?**°

Another simple yet powerful decoder is given by the k-nearest
neighbors (k-NN) algorithm (illustrated in Figure 2C). Consider L
recorded neural responses K’ each associated with a stimulus x':
(X', K"), (x%,K?),...(x-,KL). To decode the stimulus from a new
trial with neural response K, the 1-NN algorithm finds the neural
pattern K/, which is closest to K, and assigns the new trial to the
corresponding stimulus X/ (Figure 2C). In the more general case,
one considers the k-NN and can also average their events.

Bayesian decoders directly use the probabilistic encoding
model."®*” Concretely, a Bayesian decoder uses Bayes’ theo-
rem to compute the probability that, given a response K, the
stimulus x was presented. Mathematically, let P(x) denote the
probability of a stimulus x and P(K|x) the conditional probability
of obtaining the population response K given the stimulus x (as in
Equation 1; illustrated in Figure 2D). Bayes theorem states that:

P(Klx)-P(x)

PUIK) = =gy

(Equation 3)

with P(K) = > P(Klx) -P(x). Using this expression of the poste-
rior probability P(x|K), we can predict the most likely stimulus:
the x that maximizes P(x|K). Bayesian decoders such as the
naive Bayes decoder have been popular for position decoding
from hippocampal activity, and here one can utilize priors repre-
senting the a priori expected location of the animal.*® Another
classic decoder builds on the Kalman filter®® and allows levering
the dynamics of the system.

How can we assess the quality of a decoder? For a continuous
variable, like wind direction, we can just check how well it recon-
structs the original stimulus x:

Expi | X(K) = x]1?, (Equation 4)

where we average over samples K.'® This is the variance of the
decoder. We think that one particular decoder is better than
another decoder if it has a lower variance or, in other words, if
it is more accurate at estimating x from the neural response of
the population.

Given the large number of potential decoders, establishing
lower bounds to the variance is crucial to studying theoretical
components of representations. The Cramér-Rao inequality
serves exactly this purpose. It states that the variance of any un-
biased estimator can be bound from below by the inverse Fisher
information.'® Notably, the Fisher information can be calculated
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directly from the encoding model, P(K|x), enabling the extraction
of valuable insight for simple tuning curves (such as parameter-
ized place and grid cells) within this framework."®*! For an excel-
lent review on this topic, see Kriegeskorte and Wei.*?

However, in many instances where the encoding model P(K|x)
is complex or not even explicitly known, calculating the posterior
probability P(x|K) is computationally challenging. As we discuss
next, this is where data-driven and normative models, taking
advantage of machine learning, can learn powerful statistical
models to facilitate decoding.

DATA-DRIVEN MACHINE LEARNING

As delineated above, the key to a good decoder algorithm is a
solid encoding model. There are several approaches to do so,
namely data-driven or task-driven models. Data-driven decod-
ing approaches, which we cover in this section, build powerful
statistical models to assess how stimuli or behavior are encoded
in neural activity, not necessarily focusing on mechanistic real-
ism (Figure 3). Concretely, by mechanistic models, we mean
they aim to model the biological basis of a given neural function,
such as the Hodgkin-Huxley model.*®

Historically, data-driven models were hindered by, one, the
lack of large-enough datasets, but modern methods allow for
single-neuron resolution of nearly 1 M neurons at a time,"" and
two, modeling approaches that could combine data across ses-
sions and animals without averaging data.'®'* Combined, this
paradigm shift now greatly enables data-driven modeling ap-
proaches capable of capturing the complexity of high-dimen-
sional population activity while remaining computationally
feasible.

Two main categories of data-driven statistical models have
emerged in neuroscience: fully observed models and latent var-
iable models.'**%">% Fully observed models, such as GLMs and
vine copula models, strive to explicitly delineate the interactions
among neurons by directly modeling the joint activity of the pop-
ulation, operating under the assumption that the recorded pop-
ulation encompasses all relevant neuronal activity without the
need to account for unrecorded neurons contributing to the neu-
ral manifold. On other hand, latent variable models, which we will
mostly focus on, infer hidden (i.e., latent) variables that capture
the underlying structure of the observed neural data through a
joint probability distribution, acknowledging the possibility that
unrecorded neurons or other unseen factors may contribute to
the observed data. The goal of both approaches is to measure
how much information, often measured through decoding or
other information-theoretic approaches, about a given stimulus
or behavior is captured by a model.

Given the intractability of modeling the entire space of neural
activity, fully observed models rely on efficient descriptions of
neuronal dynamics, often a priori ascribing the dynamics for
simplicity.>’** On the other hand, latent variable models operate
under the assumption that population activity is typically con-
strained on a low-dimensional manifold and can be summarized
by a compact set of variables known as latent factors (or var-
iables).>®

How can we extract neural latents? Classic dimensionality
reduction techniques such as principal-component analysis
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Figure 2. Encoding model and decoding methods

(A) The cercal system of the cricket has four interneurons that represent the wind direction. The preferred wind directions of the neurons are pointing in four
cardinal directions and can be represented by orthogonal vectors (on the left). Each neuron responds with a firing rate approximated by a half-wave rectified
cosine function. The maximum firing rate is elicited when the wind is blowing in the preferred direction.

(B) The wind direction x can be decoded as the direction of the population vector x. This vector is the sum of the four preferred orientations scaled by their firing
rate. An example is shown for neurons responding with activity [36,12,2, 1]7. Note how the population vector closely matches the wind direction.

(C) In the k-nearest neighbors (k-NN) decoding method, neural activity K is represented within a neural activity space, which is illustrated here in 2D for two
neurons for clarity (neuron 1 and neuron 2 from A). With these two neurons, angles between 0° and 225° can be represented. For simplicity, we focus on an NN
variant with k = 1. As 1-NN is only able to decode discrete variables, we classify the angles in three ranges: 0°-45°, 45°-135°, and 135°-225°. Previously
observed trials are color-coded by their associated wind direction ranges (L = 13). To decode the wind direction for a new trial (unfilled triangle), the k-NN (here,
k = 1) in the activity space are identified. The decoded wind direction corresponds to the wind associated with the NN, highlighted by the sample connected to
the observed sample via a dashed line.

(D) Bayesian decoders incorporate a prior P(x) (dashed line) that reflects the probability of different wind directions before taking neural evidence into account and
influences the decoded angle. For instance, if mainly wind directions around 125° have been experienced (mean of the prior P(x)), the decoded angle will be
shifted toward this direction. The likelihood P(K|x) (green-blue line) describes the probability of observing a particular neural response K given a specific wind
direction. Following Bayes’ theorem,” the prior P(x) and the likelihood P(K|x) are multiplied to obtain the posterior distribution P(x|K) (solid black line). The
posterior can be used to decode the wind direction, here 270°, based on the highest value for the observed neural activity K.

(PCA)*°® and independent component analysis (ICA)°” simplify
neural data by revealing the underlying (linear) structure essential
for understanding the stimuli that are encoded. Of note, while
such linear methods enhance interpretability, they often sacrifice
performance and may over-estimate the true dimensionality.*®>°
A correct estimation of the intrinsic dimensionality is arguably
critical for scientific interpretability. Namely, our aim is to reduce
the dimensionality of the high-dimensional neuronal space into a
latent space of reduced dimensions where the geometry of the
latent space is interpretable with respect to behaviorally mean-
ingful features like objects, actions, decisions, cognitive states,
etc. Emerging frameworks have successfully illustrated this in
many different domains.’*°93
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These latent factors are the mathematical representation un-
derlying dynamics that give rise to the observable data (spikes)
that we can directly record (Figure 4A). Thus, rather than explic-
ity modeling neuron correlations, these models capture
neuronal relationships through the activation of these latent fac-
tors, often through non-linear machine learning approaches
such as variational auto-encoders (VAEs),®* or contrastive
learning.'*®°%% The aim of these methods is to generate a latent
space, or so-called embedding, that captures the variance of the
observed neural data within a smaller number of factors. This is
akin to a dimensionality reduction procedure.

With those frameworks, complex, non-linear relationships
between stimuli and neural responses can be assumed.
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Figure 3. Data-driven models: Statistical power vs. mechanistic re-
alism

Ultimately, as a field, we want to map mechanism to computation in order to
have causal, testable models. On one side we have mechanistic models, and
on the other statistical models that aim to best encode neural dynamics, but
there is a large gap between them. We provide a non-exhaustive selection of
contributions: Schneider et al., '* Pillow et al.,’” Lange et al.,®” Hodgkin and
Huxley,*® Jones et al.,”* Bernaerts et al.,”> Chen et al.,*® and Chen et al.””

ANNSs are particularly useful for quantifying non-linear relation-
ships in neural data.'®'92%26:29 Recent strides in non-linear
disentangled representation learning and self-supervised
learning have paved the way for new methods that can be
jointly applied to behavioral and neural recordings,®>®” unveil-
ing meaningful lower-dimensional neural population dynamics.
Recently, a new dimensionality reduction method called CE-
BRA introduced a new paradigm for joint modeling of time-
series data with a generalized contrastive learning algorithm'*
(Figure 4A). Critically, the data-sampling scheme (the selection
of “positive” samples of paired (x,K) data vs. the “negative”
samples that are ultimately contrasted against, ¢) and the
model optimization (minimally denoted by ¢(-, -)) are directly
linked such that the resulting latent factors can be interpreted
based on the input auxiliary variables (such as behaviors
[kinematics], animal identification, rewards, estimated internal
states, etc.).

Given an aucxiliary variable x, such as the continuous position
of an animal, and neural data K, one can select the positive dis-
tribution (samples) of paired data, p(x|K), to explicitly test the
relationship of the auxiliary variable to the neural data. This is
then contrasted with a negative distribution g(x|K) to optimize
an ANN. It was empirically shown that if x does not influence
K, the model cannot falsely fit the data (in fact, it collapses on
the manifold used for training’®). Thus, this method can be
used to construct data-driven models that allow for hypothesis
testing, and this model can be simply linked to a decoder algo-
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rithm of choice for downstream use, whether for BCls or for inter-
pretation of the latent variables.#¢%-6°

Note, the goal of this contrastive approach, in comparison to
auto-encoders (like VAEs), is not to reconstruct the input data
(i.e., spikes) but rather invert the data generating process to
extract latent variables that give rise to the recorded data
(whether from spikes, fMRI, ECoG, or calcium imaging'*°®). A
promising direction of this work is to interrogate how neurons
across time contribute to latent variables.®® Here one can build
on advances in interpretable machine learning. Moreover, we
can begin to derive the underpinning ordinary differential equa-
tions (ODEs) that govern the latent representation.*®”"° Criti-
cally, this approach could be additionally merged with normative
approaches (see below) in order to ultimately link mechanistic to
statistical approaches to build causal models (Figure 3).

NORMATIVE, TASK-DRIVEN MACHINE LEARNING

Normative models address the question of why a system ex-
hibits particular features,”’’ aiming to better link mechanism
to function. For example, Horace Barlow proposed the efficient
coding hypothesis, which postulates that a sensory system min-
imizes the number of action potentials (energy constraints) to
efficiently represent sensory information.”” One can, for
instance, deduce that simple cells emerge as a consequence
of sparsely representing natural scenes.”* Sparse coding also
explained coding properties in many other systems.

Machine learning has elevated normative modeling to new
heights in the name of task-driven modeling, where the norma-
tive principle is the goals (or computational task, i.e.,
Figure 1B) that the system is trained to achieve.”®"? It is impor-
tant to keep in mind that just 15 years ago, it was considered
challenging to train machines to recognize objects in natural
scenes.”® Yet, while robustness issues persist,”” in the mean-
time, these models are the best models at predicting the neural
representations of the ventral pathway in non-human pri-
mates.”>?? Importantly, for decoding the brain, this suggests
that we can gain insights into neural coding with a complemen-
tary approach to data-driven modeling. This approach is partic-
ularly successful in the (neural) data-poor regime.

The normative approach leverages the computational power
of ANNs to explore how neural circuits implement complex
tasks. The underlying assumption is that neural responses
emerge as an interplay of task objectives, neural circuit architec-
ture, and learning constraints. This approach involves training
models on specific tasks to test hypotheses regarding the com-
putations carried out by neural circuits. By doing so, they provide
insights into the functional significance of neural activity patterns
and their role in mediating behavior. The emerging representa-
tions are then compared neural data via linear probing, i.e.,
one checks how well the activity on test stimuli can be decoded
from the learned representations via a linear readout.?®>°

This normative framework is general and has been applied
beyond vision,'®"?%?* in studies on audition,”® propriocep-
tion,””’® heat perception,”” and path integration.?>®" In
contrast to neural-data-heavy (data-driven) approaches, here
one needs large-scale stimulus datasets, tasks, and architec-
tures. Thus, for instance, in the context of path integration,
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Figure 4. Learnable latent variable models

On the path to building more causal models are new frameworks, such as CEBRA,'“ that allow for learning a mapping from the observable data K to the latent
dynamics Z. Here, the aim is to use identifiable models with contrastive learning (the encoder), then invert this model or use another decoder framework to probe
the relationship between the estimated latents, Z', and a variable such as an externally observable state (behavior), internal, or sensory (i.e., recover some

stimulus space (x)).

one simply needs movement trajectories.®’ In the context of
object recognition, one needs large-scale image datasets
with annotations of objects.'®° If primary data for a particular
stimulus is not easily available, physics engines can help to
generate the relevant large-scale datasets.””"®%? For instance,
Marin Vargas et al.”® used musculoskeletal simulators to gener-
ated synthetic proprioceptive inputs resulting from passive,
naturalistic movement at scale, which they then used to train
neural network models on computational tasks reflecting hy-
potheses about proprioception. Subsequently, they tested if
the network’s learned internal representations resembled those
of proprioceptive brain areas and found that task-driven
models could more accurately predict single-trial neural dy-
namics than classical encoding models. For the majority of
computational tasks, architectures that performed better at
solving the computational tasks based on biomechanical data
were better at explaining the neural data.”® This work highlights
that we can gain insight into neural processing via constraints
from the body, including muscles.

However, as our capabilities to scale up recording tech-
niques improve and we enter the regime of very large-scale
data in neuroscience,'" including in behaving non-human pri-
mates,®® we are beginning to see data-driven models outper-
form task-driven ones.®* This shift opens exciting research di-
rections to develop new normative models to bridge these
gaps. One such intriguing principle is the idea that biological
neural systems have evolved to reflect the symmetries of the
natural world. For example, in object recognition, translation,
scale, and 3D pose represent group symmetries or transforma-
tions that do not alter the identity of the object. In the context of
group theory, a symmetry is characterized as a transformation
that maintains the identify of an object through the relevant op-
erations. Leveraging the principle that neurons learn represen-
tations invariant to 2D translation, recent works have derived fil-
ters similar to those of V1 neurons, proposing an alternative
normative model to sparse coding that predicts the character-
istics of neurons in V1.%>:%¢
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VISUAL FEATURE DECODING

Understanding the brain’s algorithms of visual perception re-
quires comprehending how natural visual scenes translate into
neural activity. This subject has been explored using two com-
plementary methods: encoding methods, which describe neural
responses based on the stimuli, and decoding methods, which
aim to reconstruct the visual scene or specific attributes from
neural data without learning an encoding model first.

Historically, predicting how higher-order visual neurons
respond to visual stimuli has long been an open challenge.?® Ya-
mins et al.?° proposed the task-driven modeling approach and
could substantially improve our ability to predict the neural activ-
ity of V4 and IT neurons. Subsequently, progress was fast, and
more powerful encoding models were created gaining insights
into core-object recognition in primates. This approach was
also successful for modeling neural responses to static images
in mice®*?®%” and studying how brain states modulate neuronal
tuning.®®

These models have mostly focused on static images, and
learning encoding models for dynamic scenes has been a chal-
lenge. By following the data-driven foundation model paradigm,®®
recent works have built a video encoding model that was trained
on large-scale data (> 70, 000 neurons) combing data from many
mice and visual areas.’® Foundation models, by definition, are
built in order to provide a strong encoder model for many down-
stream decoding tasks. Indeed, the model improved the predic-
tive power for natural videos and many other stimulus domains
that the model was not trained on.*° It could also predict synaptic
connectivity in the MICrONS data,’’ which combined functional
imaging with synaptic connectivity measured through electron
microscopy.®® Conversely, anatomy can also be used to build
better encoding-decoding models. The recent emergence of a
partial connectome in Drosophila has also already been lever-
aged in models of vision using a connectome-constrained deep
mechanistic network that was able to predict neural responses
across the fly visual system at single-neuron resolution.®
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Figure 5. Examples of decoding from motor, vision, and language areas

(A) Close loop experiments using digital twins: schematic of an inception loop, depicted clockwise from the upper left: (1) presentation of large entropy natural
stimuli and tasks while recording large-scale neural activity; (2) deep learning models accurately predict neural activity, creating a functional digital twin of the
recorded neurons; (3) the in silico model facilitates unlimited experiments and employs mechanistic interpretability tools to characterize neural tuning; and (4)

images and hypotheses synthesized in silico are validated back in vivo.

(B) lllustration of decoded images from fMRI using diffusion models: ground truth (GT) vs. decoded images generated by Chen et al.°® from human fMRI with a
diffusion model. Note that decoded images share similar color, shape, and semantics.

(C) Multi-modal speech decoding: adapted from Metzger et al.,’” this panel shows the decoding pipeline, where neural activity was used to train an ANN to predict
phone probabilities, speech-sound features, and articulatory gestures. A decoder was then constructed to produce text, generate audible speech, and animate

an avatar, respectively.

When modeling more complex neural circuits, such as those in
the neocortex, deep learning models that lack implementation-
level details remain the gold standard. Introducing mecha-
nistic-level details of biological circuits to build more accurate
predictive models is challenging. This is formidable due to the
inherent complexity of cortical circuits and the difficulties asso-
ciated with global connectivity mapping. Moreover, even though
the architecture and elements of networks might not limit the
range of functions they can realize, they significantly influence
which function is selected during the learning process when
data is limited. This means that the inductive bias of architectural
elements is intricately linked to the learning rule, underscoring
that having the correct circuit structure may not be enough
without the appropriate learning rules to guide the model toward
better predictions.

A common criticism of using ANNs to model the brain is that
we are simply swapping one complex system (the brain) for
another (ANNs). However, unlike the brain, we have a degree
of control over how ANNSs are constructed.”?> While we may not

fully grasp the nuances of their capabilities, ANNs are to some
extent explainable through their architecture, task performance,
and training data. Furthermore, encoding-decoding models can
also be leveraged for closed-loop physiology experiments to
gain insights into neural coding (Figure 5A). A few years
ago, several groups made exciting breakthroughs in this
domain.?%949°

The development of accurate predictive models of neural ac-
tivity that function as digital twins of brain circuits has opened the
door to conducting in silico experiments. These models, com-
bined with emerging tools from the field of interpretability
research (or mechanistic interpretability),’® enable the genera-
tion of hypotheses that can be tested in vivo through closed-
loop experiments (inception loops, see Figure 5A). These models
have proven effective in predicting how the brain responds to
novel images®®°*°® and have paved the way for creating syn-
thetic images that maximally activate specific neurons or selec-
tively drive a particular neuron while inactivating another
group.?®%* This approach has vyielded significant insights: for
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example, evidence for a columnar organization of tuning to
spatial patterns in visual area V4,2° the characterization of sin-
gle-neurons invariances,”® and the exploration of contextual
modulations at the single-neuron level.'°° Recent advance-
ments, such as the use of diffusion mechanisms, have further
improved the process of predicting the most exciting stimuli,®*
offering faster and images that can generalize better across vary-
ing model architectures compared to earlier gradient-based.?%-**

In parallel, different groups also succeeded in reconstructing
visual input from neural activity. Using CEBRA with a k-NN
decoder to predict the best matching video frame from neural
activity in the visual cortex of mice.'* The predicted frame was
close to the frame that the mice actually saw (with = 95% accu-
racy). Here, the authors did not decode images at the pixel level.
Yet several other teams, based on paired data of images and
fMRI activity, trained data-driven diffusion models to tackle this
question.®® %1192 Whjle these demonstrated that a diffusion
model could decode realistic and semantically correct images
(Figure 5B), others have observed a significant decrease in per-
formance when applying these methods to datasets that were
specifically designed to prevent category overlaps between
training and test sets, underscoring the limitations of these
fMRI approaches. '

Taken together, the fusion of large-scale neural activity
recording with the latest advancements in machine learning
has significantly enhanced the precision of encoding-decoding
models, even in the context of higher visual processing. Although
encoding models are evaluated based on how accurately they
predict neural responses, interpreting these models and what
specific groups of neurons represent becomes complex when
dealing with natural images due to the highly non-linear nature
of neuronal tuning.

Decoding models are instrumental in translating neuronal
group activities into understandable stimulus features, such as
stimulus orientation, motion direction, or the detection of spe-
cific objects. The effectiveness of these decoding approaches
is heavily influenced by the selection of a quality metric or
training loss function, which guides the estimation of these de-
coded features. For tasks like identifying an object’s class or
the motion direction of a stimulus, the choice of loss function is
straightforward. However, when tackling more complex chal-
lenges, such as the reconstruction of whole visual scenes,
defining an appropriate loss function becomes more daunting.

Metrics based on image properties, like the widely utilized
mean-squared-error of pixel intensities, often fail to align with
how humans perceive similarity. This issue becomes particularly
pronounced when attempting to develop an effective loss func-
tion for reconstructing intricate natural scenes in higher visual
areas. These areas are proficient at extracting specific latent fea-
tures from visual scenes, including textures, shapes, colors, and
faces. However, the specific visual features encoded are not
known in advance. The key measure of success lies in the ability
of the decoded stimuli to accurately reflect the brain activity that
initiated their reconstruction, essentially creating visual equiva-
lents, or metamers, that are indistinguishable to a given neuronal
population when compared to the original image.

Lastly, in visual decision-making tasks, decoding can be very
powerful during closed-loop experiments. An elegant example is
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work from Peixoto et al.'® where the authors record from the

motor cortex during a visual discrimination (motion dot) task.
They constructed a “decision-variable” (DV) decoder such that
at each time step, in real time, they have a continuous readout
of the decoder’s prediction (concretely, the logistic model’s log
odds ratio) if the macaque will choose left or right. They found
that the within-trial DV fluctuations could predict behavioral
choices (starting within only 250 ms) substantially better than
the condition-averaged DV or the visual stimulus alone (and it
correlated with the strength of the motion coherence). Moreover,
analogous to the inception-loop paradigm, they used the DV to
terminate the trial at a particular DV threshold to test how accu-
rate the model was: if they terminated when the model strongly
predicted the macaque would “choice left,” for example, it
was over 90% accurate, suggesting that this readout from motor
cortex was tightly linked to the perceptual decision-making of
the animal.

DECODING THE MOTOR CORTEX

The study of the motor system testifies to the diversity and evo-
lution of approaches to decode the brain: from deciphering the
role of individual neurons to decoding the computations underly-
ing motor control. Pioneering work in the early 20th century es-
tablished the fundamental link between individual neuron activity
and motor function. Singular motor neurons firing in the spinal
cord activate specific muscles directly. Upstream, in the primary
motor cortex (M1), the activity of single neurons was found to be
correlated with a range of movement-related variables,'®° such
as force,'°® muscle activity,’®” and joint kinematics.'®” Given
that layer 5 M1 neurons project directly onto spinal alpha motor
neurons (in many primates), it is expected to find the representa-
tion of low-level movement variables.

If the activity of some neurons in M1 relates to lower-level ki-
netic and kinematic features, what about others? In the 1980s,
Georgopolous and colleagues showed that the direction of
whole-arm movements in monkeys could be predicted by simul-
taneously recording from multiple M1 neurons.'%%°° They found
many neurons that are broadly tuned to a preferred direction of
hand movement. By constructing a population vector—a
weighted sum of the firing rates of multiple neurons—the direc-
tion of the hand movement can be accurately decoded (akin to
the linear decoder in Figure 2). This framework highlighted a sim-
ple mathematical relationship between the reaching direction
and population neural activity (cf. Sussillo et al.?). The population
vector approach could successfully find representations of
higher-level kinematic variables in the motor cortex.'*®'""

BCls seek to build a link between neural activity and various
tools, e.g., in order to control computer cursors,''>"''® robotic
arms,”"~"19 or prosthetic devices for paralyzed patients.'2%'?
Another consideration, especially for BCls, is the impact of voli-
tional control on neural activity. Subjects have been shown to
quickly learn to optimize control by modulating neural activity, al-
lowing for effective operation of devices like robotic arms or
functional electrical stimulation onto muscles,''®'2? irrespective
of the neurons’ original encoding.

BCls thus rely on brain decoders and are ideal for testing the
performance of different algorithms. Early BCls primarily used
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linear decoders for extracting movement kinematics from neural
population activity.'?® However, incorporating Kalman filters has
demonstrably enhanced accuracy.''®'?*"'?® As indicated
above, the Kalman filter®® helps estimate the evolution of the
state (e.g., cursor velocity) over time and updates its estimates
according to the observations (neural recordings) and evolving
predictions. The success of Kalman filter decoders highlights a
key limitation of the classic population vector approach. While
population vectors offer a static snapshot of neural activity,
movements are inherently dynamic. Furthermore, identifying
representations of movement-related variables within a popula-
tion vector does not illuminate how either the representation or
the movement itself is generated.

The dynamical systems perspective focuses on how the state
of a neural population evolves over time. Here, the representa-
tion of a neural population is viewed as a dynamical system
that performs computations, such as generating movements,
through its temporal evolution. External inputs and intrinsic neu-
ral dynamics, which dictate how the current neural state influ-
ences the next, govern the evolution of neural activity.'?”'%®
Let the vector K(t) describe the firing rates of N neurons at
time t. We can express the evolution of this vector with the
following equation

dK(t)

— = f(K®),u(®)

ot (Equation 5)

where the vector % is the temporal derivative of K, u is a vector
describing the external inputs to the neural population, and fis a
function that defines the dynamics of the neural population.

This perspective shifted the focus from deciphering the infor-
mation encoded by the motor cortex to understanding how it
generates movement. Within this framework, how does Equation
5 aid in decoding the computations underlying movement con-
trol? Let’s consider the following: to execute a specific move-
ment at time t,,, the neural activity, represented by K(t,), needs
to reside within a certain subset of states—a specific configura-
tion of activity across individual neurons. Prior to target presen-
tation, nothing prevents the neural activity K to vary across trials.
However, as the brain prepares for movement, Equation 5 gov-
erns the evolution of K(t), effectively constraining it toward the
required subspace for the intended movement. This conver-
gence toward a specific subspace manifests itself as the reduc-
tion in variability across trials. Importantly, this analysis offers
valuable insight into the computational goal of motor prepara-
tion. From a dynamical systems perspective, the goal becomes
driving the neural activity toward the subspace before movement
onset to produce the necessary motor commands for the
desired movement.

The dynamical systems perspective has been further lever-
aged for studying movement preparation.'?°~'*? Kaufman and
colleagues identified distinct subspaces within the dynamics of
the overall neural population during movement preparation and
execution.'®*'** These subspaces were termed the “null space”
and the “potent space.” During preparation, neural activity can
evolve within the null space without triggering unwanted move-
ment. In contrast, movement execution is characterized by neu-
ral activity primarily in the potent space, which controls muscle
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activity. However, a part of the neural activity does not drive
the movement directly. Instead, it serves a supportive role in “un-
tangling” the neural dynamics —separating the neural states that
can result in different future behaviors.'® Further analysis of
movement-related neural activity has revealed that the dynamics
have a strong rotational component and that their phase and
amplitude are determined by the neural state reached during
movement preparation,®:°414.136

So far, we have reviewed how the dynamical systems
perspective sheds light on experimental recordings of neural
populations. By analyzing these recordings, researchers have
been able to formulate principles governing the computations
that take place during motor preparation and generation. In par-
allel, computational models have provided valuable insights.

Data-driven models based on recurrent neural networks
(RNNs) have been used to model the system’s dynamics Equa-
tion 5. These RNNs embody abstract representations of the un-
derlying neural circuit while driving movement. For instance,
RNNs have been trained to generate dynamics of muscle activity
patterns.’®”"'*8 Remarkably, even without being trained to fit neu-
ral data, these models can reproduce responses from individual
cortical neurons and capture features of the observed population
dynamics.'®”~"*9 Furthermore, training RNNs on different motor
tasks can test hypotheses about the computations performed
by distinct motor areas.'*®'*" Additionally, RNNs have shown
promise in increasing decoder robustness to temporal varia-
tions.® %2142 More recently, latent factors have been leveraged
to train spiking neural networks to perform two distinct motor
tasks,'** and data-driven latent variable models that use time
contrastive learning have been shown to have excellent perfor-
mance for decoding movement in sensorimotor areas.'*

In the past decade, the convergence of advancements in un-
derstanding cortical dynamics and powerful machine learning
tools has opened exciting avenues for BCls."?""'** Incorporating
latent factors and their dynamics into decoding algorithms has
improved performance.'*%"%'6 For instance, data-driven ma-
chine learning has played a critical role in achieving long-term
control of a four-limb exoskeleton by a tetraplegic individual us-
ing a BCL."*" Transformers, with their ability to be pre-trained on
a wide range or motor BCI datasets, offer the potential to
enhance BCI adaptability across experimental contexts.'*

Beyond therapeutic applications, BCls have emerged as
powerful tools for studying motor learning and adapta-
tion.'22:1497151 |n a typical setup, awake monkeys control a com-
puter cursor using their neural activity while receiving visual feed-
back of the cursor’s position.">? Unlike traditional motor tasks,
where complex and largely unknown transformations convert
cortical activity to muscle activity and movement, in a BCI, the
decoder characterizes this transformation. By manipulating
this mapping, experimenters can study the adaptation required
to compensate for the perturbation.'>? For instance, it was found
that monkeys could learn to compensate for perturbations within
the original intrinsic manifold within a session, but it took many
sessions to learn perturbations that required control in directions
outside the manifold (off-manifold).'*° This finding reinforces the
idea that although neural state space is high-dimensional, neural
population dynamics lives in a low-dimensional manifold reflect-
ing intrinsic constraints.
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Beyond intrinsic constraints, the physical properties of mus-
cles, tendons, and bones as well as the sensory feedback
streams, play a significant role in determining how neural signals
create movement.'°*~'°% Recently, a study in fruit flies has high-
lighted how the brain controls head movements by adding a bias
to proprioceptive feedback loops.'®” In a BCI setting in humans,
stimulating the somatosensory cortex to mimic tactile feedback
has been shown to improve robotic arm control.'® Going for-
ward, we need better models that incorporate biomechanics
and biophysics. Advances in biomechanics simulators'>®""
and continuous control learning algorithms'®'%* are being
actively combined to further address these challenges. '%~'¢®

LANGUAGE DECODING

The power of machine-learning-fueled decoding algorithms has
perhaps most clearly been illustrated for speech decoding,
where the action spaces are naturally very high dimensional.
Speech is a fundamental mode of human communication, intri-
cate in its orchestration of neural signals and motor actions.
The advent of speech neuroprosthetics promises to restore
communication capabilities by bridging the gap between neural
activity and speech production. Central to understanding
speech neuroprosthetics is deciphering the complex neural
mechanisms orchestrating speech production. From conceptu-
alization to articulation, speech involves a finely choreographed
interplay of neural circuits spanning cortical and subcortical re-
gions. Broca’s area, Wernicke’s area, primary motor cortex,
and supplementary motor area are among the key brain regions
implicated in speech and language generation. Perhaps the best
characterized so far is the motor and premotor cortices in the
precentral gyrus.'%7°

The lateral aspect of the precentral gyrus features a somato-
topic organization of orofacial and unique dual laryngeal vocal-
tract articulator representations.’”""'"? Accumulating evidence
suggests that the precentral gyrus is not only critical for
executing but also for planning speech movements, a function
that is commonly mis-attributed to Broca’s area.'”® Kinematic
analyses have revealed the encoding of dynamical, low-dimen-
sional patterns of speech movements called “gestures.”’'”*
One example is how the specific movements of forward tongue
raise and jaw closure are coordinated to create a “d” sound at
one local site in the precentral gyrus. The motor cortex contains
a complete inventory of speech-related movements to create all
of the sounds of a given language.'”*

The core objective of speech neuroprosthetics is to decode
neural signals associated with speech production and translate
them into intelligible output. Traditional approaches have
focused on text output and synthetic voice. This entails harness-
ing BCI technologies coupled with machine learning algorithms
to interpret neural activity patterns and reconstruct spoken
words or phrases. The first successful demonstration of speech
decoding of full words and sentences was carried outin 2021 ina
man with severe paralysis after a brainstem stroke.'”® The effi-
cacy of speech neuroprosthetics critically hinges on the devel-
opment of robust decoding algorithms capable of discerning
nuanced patterns of neural activity corresponding to different
phonetic units. Recent strides in machine learning, particularly
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deep learning architectures such as RNNs, have propelled the
field forward by enabling more precise and efficient decoding
of speech-related brain signals.

More recent BCl approaches decode subword linguistic units,
such as phonemes or characters, rather than individual words or
sentences. This is a common technique in automatic speech
recognition where language models—trained to capture the sta-
tistical patterns of subword units and words—are used to
convert decoded phoneme or character sequences into senten-
ces. Progress has been rapid with recent demonstrations of fast
and large vocabulary decoding. The approaches leveraged RNN
models trained to map an input sequence of neural activity to an
output sequence of phonemes without the need for any align-
ment.®”'"® Language models then mapped decoded phoneme
sequences into text words and sentences.

Metzger et al.”” also used a similar approach to decode neural
activity into synthesized speech; however, rather than regressing
the acoustic mel-spectrogram, they decoded input sequences
of neural activity into output sequences of discrete acoustic-
speech units. During training, a large self-supervised audio
model (HuBert'’") was adapted to convert target waveforms
(generated from a text-to-speech model) into sequences of
discrete acoustic-speech units (Figure 5C). During online infer-
ence, the decoded discrete acoustic-speech unit sequences
were decoded into intelligible sentence-level speech. They first
used this voice-conversion approach to personalize synthesized
speech for an individual with vocal-tract paralysis using speech
samples recorded before the injury.®”

While still in its nascent stages, speech neuroprosthetics hold
immense potential for revolutionizing the rehabilitation and
communication landscape for individuals with speech impair-
ments."”® Beyond restoring speech functionality, these neuro-
technological innovations may pave the way for novel therapeutic
interventions targeting a range of neurological disorders affecting
speech and language. However, several challenges, including
achieving high decoding accuracy, minimizing invasiveness,
and ensuring long-term reliability, warrant further investigation
to realize the full clinical potential of speech neuroprosthetics.

TOWARD CAUSAL MODELS

Overall, encoding-decoding has been a powerful mathematical
framework that enables understanding perception, action, and
cognition, as illustrated by several examples. But there are still
challenges and opportunities ahead for better understanding
the brain and building better BCI decoders.

One major thrust toward this challenge will be coming from
foundation models.® Training large models on diverse data
gives rise to stupendous capabilities, and those models can be
adapted for many tasks relevant for neuroscience, such as
behavioral analysis via in-context learning'”® and speech recog-
nition.’®® As we outlined above, within neuroscience, training
large-scale models on data from many studies will also open
up many possibilities.

Furthermore, we are advocating for advancing models that are
mechanistic (biologically plausible) and statistical (can account
for neural data) at the same time (Figure 3). Encoding-decoding
models lie at the heart of this pursuit. As we have summarized,



Cell

neuroscience has created many powerful statistical models of
brain function for vision, motor control, and language. Beyond
neuroscience, advances in machine learning have led to models
with high explanatory power grounded in statistical learning the-
ory.’®" Next, we illustrate this envisoned future via examples.
What all examples have in common is that these models have
good (statistical) explanatory power while being grounded via a
mechanism from the lower level(s) of analysis (Figure 1B).

One excellent avenue is exploring the relationship between
neural physiology and gene expression, which naturally describe
a neuron at different levels, but are linked via biophysical mech-
anisms such as ion-channel models.*>**° Indeed, recent work
created mechanical ion-channel models that can be constrained
statistically from transcriptomics data (called NPE-N), thus also
linking across scales (Figure 1B). Given that (classically) neuronal
cell types are characterized via their anatomical and physiolog-
ical characteristics, single-cell transcriptomics continues to
refine our taxonomies of cell types.'®?

Another interesting example is studying the conditions under
which hexagonal firing fields emerge in RNNs that were trained
to path integrate.®' Classical mechanistic models for path inte-
gration are built on attractor models.'®® The connectivity of these
models is designed to allow path integration. Remarkably, the
normative models learned similar mechanisms to represent the
location of animals (via center-surround connectivity), and to
integrate movement updates (via shift circuits). They also pro-
vide a mathematical mechanism, grounded in pattern formation
theory, why hexagonal tuning curves emerge in the abstract ANN
models.®'

How might we continue to push further? Combining statistical
models and mechanistic models may require new mathematical
tools. Relevant approaches are being developed in other fields
such as in causal machine learning. Schélkopf and von Kiigel-
gen'®* propose using causality to build systems that do not
only rely on statistical dependencies of data and that generalize
better to out-of-distribution examples. In particular, causal rep-
resentation learning aims to extract the relevant causal variables
from data and learn representations that contain not just statis-
tical information but support interventions, reasoning, and plan-
ning. We can think of this approach as an extension of the classic
latent variable analysis. Indeed, just as with latent variables, we
can apply a decoder to the causal variables to extract the rele-
vant behavioral variables. However, causal variables also come
with the corresponding mechanisms and a causal graph that
captures the relationships between each other. Concretely, let
X1, ...,Xyq be some experimental variables (with some of them
corresponding to neural data K for different brain areas, others
to sensory inputs, and motor outputs)—they possess a causal
factorization:

d

[1pXiIPA),

i=1

p(X1,...,Xq) = (Equation 6)

where PA; denotes the direct causes of X; and p(X;|PA;) repre-
sents the mechanisms of the model. Although learning this
causal factorization from the recorded data is a challenging
task, if we have some knowledge of the causal structure (which
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variable is caused by which) then only the mechanisms need to
be inferred.'®> As the relevant behavioral variable x can be de-
coded from the causal variables x = g(Xi, ..., Xy), the causal
factorization can ultimately link the mechanisms with behavior.
Although this approach is promising and has already generated
concrete tools for machine learning (causal auto-encoders, self-
supervised causal representation learning, or independent
mechanism analysis), it might take further refinements to apply
to the field of neuroscience. #5187

Another avenue to explore is merging learning dynamical sys-
tems (such as ODEs or physics-informed neural networks
[PINNSs], see below) with latent variable models. Historically, in
latent variable models, the dynamical system has been a priori
ascribed to the generative model.>’ One notable exception is
CEBRA,'* where the authors explore the implicit dynamics of
the learned latent variables but do not explore the explicit equa-
tions that best model the latents. A potential challenge could be
having several sets of differential equations (solutions), even for
these theoretically identifiable models.

Here, we can turn to a recent success within the machine
learning field regarding modeling dynamical systems via neural
ODEs (N-ODE).“° Yet, despite N-ODE’s success in fitting tempo-
ral data for various applications like forecasting, control, and
system identification, the approach lacks interpretability, as
one simply gets a neural network that fits the data.

Another important direction is building knowledge into neural
network models, e.g., via PINNs, which offer a different
approach to bridge the gap between data-driven decoding of
brain activity and understanding the underlying mecha-
nisms.'®%"8% Unlike traditional black-box models (in machine
learning), PINNs can incorporate physics knowledge, such as
biomechanics or neural dynamics, as constraints during training.
By combining the data-fitting power of ANNs with physical con-
straints, PINNs are guided toward solutions that align with real-
world principles. This not only enhances model interpretability
but also allows PINNs to achieve good performance even with
limited data. Furthermore, these physical constraints promote
better generalization to unseen scenarios and offer mechanistic
insights into the decoded information by revealing the potential
processes at play. Demonstrating remarkable success in
modeling physical systems, '°°~'9% and, more recently, biological
processes, ' °>'°* PINNs hold promise for understanding neural
mechanisms. For instance, recent work has developed models
of muscle spindles that can accurately predict neural dynamics
while also including biophysical mechanisms.'®® By bridging
the gap between biomechanics and neural dynamics, this model
offers a comprehensive understanding of muscle spindle func-
tion as adaptable signal processors in sensorimotor control.

Historically, differential equations provided the gold standard
for understanding a system. Thus, an alternative method is sym-
bolic regression (SR), which provides human-readable mathe-
matical expressions directly from data and has recently shown
some success in (re-)discovering natural laws.'*®*'®” SR has
mostly been used for discovering f(x) from paired observations
(x,f(x)) but has been extended for dynamics (ODE X = f(x)),
even with multi-modal and noisy data.”® Here, transformers
can be trained to predict the differential equation from raw
data alone.”® This approach, called ODEFormer, reaches
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state-of-the-art performance on a number of classic problems,
such as Lotka-Volterra, a binocular rivalry model, a cell cycle
model, or a Van der Pol oscillator.”®

Ultimately, we would like to build meaningful “standard
models” for causal understanding that link statistical firing prop-
erties of neural populations to their underlying mechanisms. A
formidable goal would be to develop the neural dynamics equiv-
alent to gold standards in physics, such as Newton’s laws of
motion.

CONCLUSIONS

Where will we be in 50 years?

The progress of machine learning in the last year alone makes it a
daunting task to look 50 years ahead. Yet, the future certainly will
be a place where we can build powerful causal models that pre-
dict across scales. Thus, we must consider how the framing of
causal encoding-decoding can be natively built into foundation
models for (Neuro)Science. Current efforts to build foundation
models revolve around tokenizing a multitude of datatypes,
leveraging GPT-4-style (inferred) training with human alignment
and reinforcement learning. The goal is to build good “next pre-
diction” models for all these datatypes in relevant downstream
tasks. However, the future might dig deeper: can we build fully
mechanistic models that predict, behave, or even show signs
of cognitive, compositional thinking? Perhaps this hinges on
what the ultimate tasks will be for GPT-42 (or such). This answer
will lie in the values of society 50 years from now and our under-
standing of the neural mechanisms that give rise to action,
perception, and cognition.
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